用户名: 密码: 验证码:
牡蛎壳海卤缓释氮肥对辣椒和香菜生长影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡蛎是一种著名的海产经济贝类,具有很高的营养价值,且资源丰富,产量在贝类中居首位。人们在食用牡蛎肉后,将大量牡蛎壳丢弃,既污染环境,又造成了资源浪费。牡蛎壳由于其多孔穴结构而具有较好吸附性能。海盐苦卤是海水制盐后的废弃液体,含有大量的矿物元素,直接排入海洋中既造成近海环境的污染,又浪费资源。但目前对这两种可再生资源的利用研究较少,造成利用率低下,大量资源浪费的现象。本文以牡蛎壳和海盐苦卤为主要原料制备一种海卤缓释氮肥,对氮肥的性质进行定性定量描述,并以对香菜和辣椒的生长状况、叶绿素、氨基酸及微量元素的影响为依据描述缓释氮肥的肥效。
     本文的主要研究工作及结果如下:
     1.海盐苦卤成分分析
     (1)海盐苦卤的粘度值为5.2mpa·s,波美度为32.8°Bé,pH值为6.47,其紫外吸收在294nm处有最大吸收,其最大吸收值为1.047。
     (2)海盐苦卤的含水量为56.18%。海卤经过半年以上静置后分层,上层为黄色透明液体,与原海卤相同,中层为奶黄色半透明液体,下层为白色固体,经确认为盐。上层卤水与中层卤水相比,总碳含量低,总有机碳含量高;上层卤水中总有机碳含量占总碳的67.35%,中层卤水总无机碳含量占总碳含量的99.88%。用微波消解-紫外分光光度法测得卤水中总氮含量为17.74mg/L。
     (3)用阴、阳离子谱法测定徐闻海盐卤水的常见的阴、阳离子,结果表明:卤水中阴离子Cl-、Br-、SO42-的含量分别为204.00g/L、3.56g/L、74.20g/L,PO43-未检出(含量小于0.30g/L);阳离子Na+、K+、Ca2+、Mg2+含量分别为28.50g/L、19.30g/L、﹤0.50g/L、83.00g/L。用ICP与ICP-MS测定了14种微量元素,含量最高的是Ca,其含量为36.5 mg/kg,Fe、Se、Li的含量也较高,分别达到14.8 mg/Kg、8.1 mg/Kg和4.9mg/Kg,Hg的含量最低,其含量小于0.001 mg/Kg。
     (4)对乙醚萃取卤水中的有机物,进行GC-MS分析,表明乙醚萃取的有机物成分主要是一些烷烃、烯烃、醇类、酯类、酮类、醚类和酸酐类物质。
     另外,用冷冻法从海盐苦卤中提取出了白色针状晶体,用沉淀法及单晶X-射线衍射仪确定晶体为硫酸镁,得率为133.18 g/L。
     2.海卤缓释氮肥制做及性质描述
     (1)海卤缓释氮肥优选工艺:将海盐苦卤密度调节至1.1g/mL,取200mL,加入尿素20g,溶解后,加入500g已活化的牡蛎壳粉(在活化温度750℃活化1.5h后冷却制得),经充分搅拌均匀后用保鲜膜密封,在生化培养箱中于45℃、pH8.5条件下吸附3h,制粒后在75℃-80℃下烘干,可得海卤缓释氮肥。
     (2)海卤缓释氮肥有较好的缓释性:日平均释放率较平稳,尿素释放期约为35d,完全达到缓释氮肥的要求。
     (3)对制得的海卤缓释氮肥制定标准,需达到如下要求:灰黄色粒状固体;N含量≥100g/Kg;K含量≥20g/ Kg;Mg含量≥20g/ Kg;B含量≥0.1g/ Kg;微量元素种类≥25种,含有Zn、Fe、Mn、Ca、Cu、Ni、Co、Cd等;微量元素总量≥1.5mg/ Kg;Pb≤0.2mg/Kg;N吸附率≥80%;N释放期30-40d。
     (4)海卤缓释氮肥对土壤有较好的保水性,能够抑制土壤水分蒸发。
     3.海卤缓释氮肥对辣椒和香菜生长的影响盆栽香菜与辣椒,施以牡蛎壳为载体海卤缓释氮肥组为实验组,施以普通尿素肥和不施氮肥组为对照组,记录发芽情况,测定缓释氮肥对叶绿素、氨基酸和微量元素的影响。
     (1)对香菜的影响:实验组与两个对照组相比,施以牡蛎壳为载体海卤缓释氮肥可使香菜的发芽时间提早1d,发芽率提高约15%;叶绿素a、叶绿素b、总叶绿素的含量差异显著(P﹤0.05),且存在关系:实验组>对照组1>对照组2,施加海卤缓释氮肥更有利有叶绿素a的积累;单个氨基酸、总氨基酸、必需氨基酸及呈味氨基酸显著增加(P﹤0.05);所测得微量元素差异显著(P﹤0.05),除P和B含量减少外,其它元素含量均有不同程度的增加,以Fe的含量增长最多,增加了约4×10~3μg/(g·干重)。
     (2)对辣椒的影响:实验组与两个对照组相比,施以牡蛎壳为载体海卤缓释氮肥可使辣椒的发芽时间提早1天,但对其发芽率没有影响;叶绿素a、叶绿素b、总叶绿素的含量差异显著(P﹤0.05),且存在关系:实验组>对照组1>对照组2,对辣椒叶片中叶绿素a与叶绿素b的比例没有影响;单个氨基酸、总氨基酸、必需氨基酸及呈味氨基酸显著增加(P﹤0.05);所测得微量元素差异显著(P﹤0.05),以Ca、Na、Cu、Sr、Mn增加较多(约为对照组的1倍);施以海卤缓释氮肥,可使辣椒对蚜虫具有驱逐作用,保护植物的生长,减少农药的使用量。
Oyster is a famous economic shellfish with high nutritive value. The resource is abundant and yield is the largest in shellfish. Large quantities of oyster shell are abandoned, which not only pollute the environment, but also waste resources. And oyster shell is of good adsorption capability because of its favealo configuration. Sea brine is abandoned liquor after making salt with seawater, it contains a lot of mineral elements, eliminating brine directly to sea can pollute the environment as well as waste resources. However, at present, the utilizing rate of the two renewable resources is low because of studying on comprehensive utilization of them is scare. In this paper, a kind of controlled release fertilizer with oyster shell and sea brine was made, and described its character and the impacts of fertilizer on sprout complexion, chlorophyll, amino acids and trace elements of coriander and cayenne pepper.
     In this paper, the main research tasks and results were the following:
     1.The ingredient of sea brine
     (1)For sea brine, viscosity degree was 5.2mpa·s, the Baume degree of sea brine was 32.8°Bé, pH degree was 6.47, and there was an obvious peak value at at 294nm, absorbed degree 1.047.
     (2)For sea brine, the content of water was 56.18%. After standing more than half a year, sea brine was delaminated, the superstratum was crystal yellow liquor and as the same as the original sea brine, the middle layer was translucence milk-yellow liquor, the underlayer was white salt after validated. Compared the upper brine with middle, total carbon content was lower, with higher total organic carbon content; total organic carbon content was 67.35% of total carbon in the upper, while total inorganic carbon brine content was 99.88% of total carbon in the middle. Total nitrogen content in the brine was 17.74mg / L with Microwave Digestion - Spectrophotometric determination.
     (3)Used anion and cation spectra to mensurate common anions and cations from Xuwen sea brine, and the results showed that: The concentrations of anion Cl-, Br-, SO42- were respectively 204.00g / L, 3.56g / L, 74.20g / L, PO43-not detected (concentration less than 0.30g / L), the concentrations of cation Na +, K +, Ca2 +, Mg2 + were respectively 28.50g / L, 19.30g / L, less than 0.50g / L, 83.00g / L. there were 14 microelements with ICP and ICP-MS determination, the highest content of Ca, its content was 36.5 mg / kg, content of Fe, Se, Li was higher, respectively, 14.8 mg/Kg, 8.1 mg/Kg and 4.9mg/Kg, Hg was the lowest with less than 0.001 mg /Kg.
     (4)Analyse with GC-MS to the organic matters extracted by aether brine and showed that: the organic matters extracted by aether were mainly alkanes, alkenes, alcohols, esters, ketones, ethers and anhydrides substances.
     In addition, obtain white acicular crystal by freezed sea brine, and make sure it is MgSO4 by deposition and single crystal X-ray diffraction, and obtained rate was 133.18 g/L.
     2.Make sea brine controlled release nitrogenous fertilizer and describe the character
     (1)The best technics to make sea brine controlled release nitrogenous fertilizer: Regulated the density of sea brine to 1.1g/mL, then got 200mL sea brine, and solved 20g urea. At this moment, mixed 500g activated oyster shell (activation temperature 750℃, activation time 1.5h) and stires enough and then airproofed with preservative film. Adsorbed at the condition of 45℃, pH 8.5 in biochemistry incubator, and then making grain, dried at 75℃-80℃. Now obtained sea brine controlled release fertilizer.
     (2)Sea brine controlled release nitrogenous fertilizer was of well slow-release: The rate of average daily release was equational, and the release cycle of urge reached about 35d, which completely arrived at the need of controlled release fertilizer.
     (3)The standard of sea brine controlled release nitrogenous fertilizer was required some quality index as follows: lark grain solid; the concent of N≥100g/Kg; the concent of K≥20g/ Kg; the concent of B≥0.1g/ Kg; the kinds of microelements≥25, which contains Zn、Fe、Mn、Ca、Cu、Ni、Co、Cd et al.; the concent of all microelements≥1.5mg/ Kg; the concent of Pb≤0.2mg/Kg; The release rate of N≥80%; the release cycle of N was 30-40d.
     (4)Sea brine controlled release fertilizer can keep water well in the soil, and be capable of restraining evaporation of water.
     3.The effect of sea brine controlled release nitrogenous fertilizer with oyster shells as the carrier on the grown activites of coriander and cayenne pepper
     Potted coriander and cayenne pepper, was fertilized brine controlled release fertilizer with oyster shells as the carrier to be experimental group, and with ordinary urea fertilizer and no fertilizer for comparison, noted coriander sprout complexion, mensurated chlorophyll、amino acids and microelements.
     (1)Impact on coriander: the experimental group compared with the two others, made coriander germination time of 1 day ahead and germination rate about 15% increase. there was obvious difference among chlorophyll-a, chlorophyll-b and toll chlorophyll (P﹤0.05), the relationship was: the experimentation> the comparison 1>the comparison 2, and it’s more avail accumulation of chlorophyll-a to be fertilized brine controlled release fertilizer. single amino acids, total amino acids, essential amino acids and flavourous amino acids were visibly different (P﹤0.05) and increased prodigiously; the difference were distinct in measured microelements (P﹤0.05), and microelements increased with respective degree, and Fe increased the maximum growth around 4×10~3μg/(g·dry weight).
     (2) Impact on cayenne pepper: the experimental group compared with the two others, made coriander germination time of 1 day ahead but the germination rate was invariability. there was obvious difference among chlorophyll-a, chlorophyll-b and toll chlorophyll (P﹤0.05), the relationship was: the experimentation> the comparison 1>the comparison 2, but it made no difference in the proportion of chlorophyll-a and chlorophyll-b. single amino acids, total amino acids, essential amino acids and flavourous amino acids were visibly different (P﹤0.05) and increased prodigiously. the difference were distinct in measured elements (P﹤0.05), and there was much more incressing in Ca, Na, Cu, Sr, Mn. Fertilizered sea brine controlled release fertilizer made aphid away from cayenne pepper, so as to propect the plants and reduce the pesticide.
引文
[1]王亮,孙金才.牡砺壳超微粉碎工艺及粉体性质[J].无锡轻工大学学报,2004(1):58-61.
    [2]赵砾岩,赵翡翠,李亚丽.牡砺主要成份含量测定方法验证[J].新疆中医药,2004,22(3):38-39.
    [3]楼永明,朱洪.福建牡蝠软体的化学成份研究[J].海峡药业,2003,15(5):67-68.
    [4]陈玉枝,林舒.牡蜗壳与龙骨成分的分析[J].福建医科大学学报,1999,33(4):432-434.
    [5] Mikami K, Okumura T. Underwater Soil Improvement for Port Facilities by Compaction Piles of Oyster Shell-Sand Mixture[J]. International Symposium on Underwater Technology, 2007,11(6):66-75.
    [6]Kwon Y.T., Lee C,W., Yun J.H.. Development of vermicast from sldge and powered oyster shell [J].Joumal of Cleaner production,2009,7(17):708-71.
    [7]秦秀娟.用贝壳制备醋酸钙[J].食品工业科技,1996,3:57-59.
    [8]Nakatani Noburake, T akamori Hitoshi,Takeda Kazuhiko. et al. Transesterication of soybean oil using combusted oyster shell waste as a catalyst [J], Bioresource Technology, 2009, 100(3): 1510-1513.
    [9]洪鹏志,章超桦,郭家辉.等.牡蛎壳制备活性钙[J].湛江海洋大学学报,2000,20(4):46-49
    [10]曾庆祝,曾庆孝.海洋贝类(牡蛎、扇贝、文蛤等)功能性食品的开发利用[J].氨基酸和生物资源,2002,24(3):31-34.
    [11] Seung Woo Lee, Young Moon Kim, Ryun Hwa Kim. et al. Nano-structured biogenic calcite: A thermal and chemical approach to folia in oyster shell[J], Micron,2008,39(3):380-386.
    [12]Kwon Hyok-Bo, Lee Chan-Won, Jun Byung-Sei, et al. Recyclingwaste oyster shells for eutrophication control[J]. Conser Vation and Recycling, 2004, 41: 75-82.
    [13]Lee Chan-Wan, Jeon Hong-Pyo, Kwon Hyok-Bo. Physical Properties of Pyrolized Oyster Shell Consisting of Porous CaO/CaCO3 and Phosphorus Removal [J]. Journal of the Korean Ceramic Society, 2010,47(6):524-528.
    [14]W. H. Park, C. Polprasert. Phosphorus adsorption characteristics of oyster shells and alum sludge and their application for nutrient control in constructed wetland system[J]. Journal of Environmental Science and Health, 2008,43(5): 511-517.
    [15] Hyok-Bo Kwon, Chan-Won Lee, Byung-Sei Jun. Recycling waste oyster shells for eutrophication control[J], Resources Conservation and Recycling 2004,41(8):75–82.
    [16]W.H. Park,C. Polprasert. Roles of oyster shells in an integrated constructed wetland system designed for P removal[J], Ecological Engineering,2008,34:50-56.
    [17] Yan Yu, Renping Wu, Malcolm Clark. Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell[J], Journal of Colloid and InterfaceScience, 2010,350:538–543.
    [18]熊小京,黄智贤,景有海,等.牡蛎壳填料浸没式生物滤池的除磷特性[J].环境污染与防治,2003,25(6):329-331.
    [19]Gao Yanjiao, Zhao Lihong, Zhang Jian, et al. Heavy Metal Removal from Synthetic Landfill Leachate Using Oyster Shells Adsorbent[J]. 2010 International Conference on E-Product E-Service and E-Entertainment.
    [20]Deok Hyun Moon, Kyoung-Woong Kim, In-Ho Yoon. Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells[J], Environ Earth Sci, 2010,1007:2665-2674.
    [21]G.R. MacFarlane, S.J. Markich, K. Linz,etal. The Akoya pearl oyster shell as an archival monitor of lead exposure[J], Environmental Pollution,2006,143:166-173.
    [22]David C. Love,Greg L. Lovelace,Mark D. Sobsey. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus,and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams(Mercinaria mercinaria) by depuration[J], International Journal of Food Microbiology,2010,143:211-217.
    [23] Satoshi Asaoka, Tamiji Yamamoto, Shunsuke Kondo. et al Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments[J], Bioresource Technology, 2009,100(3):4127–4132.
    [24]邹秋月,杨萍,王燕,等.牡蛎壳煅烧物对刚果红的吸附研究[J].化工技术与开发,2010,39(6):48-50.
    [25]周银龙.由牡蝠壳制备离子化钙(活性钙) [J].天津药学,1994,6(4):28-30.
    [26]Yang Mun Choi, Jong Hyun Whang, Jin Man Kim. The effect of oyster shell powder on the extension of the shelf-life of Kimchi[J], Food Control, 2006,17:695-699.
    [27]Young Soon Kim, Yang Mun Choi, Dong Ouk Noh. The effect of oyster shell powder on the extension of the shelf life of tofu[J], Food Control, 2007,103:155-160.
    [28]王家明,魏玉西,殷邦忠,等.以牡蛎壳为钙源的谷氨酸螯合钙制备工艺研究[J].中国海洋药物杂志,2010,29(2):22-26.
    [29]李峰.以牡蛎壳为原料制备食品级添加剂丙酸钙的工艺研究[D],西北大学,2008:28-34.
    [30]Y.T. Kwon, C.W. Lee,J.H. Yun. Development of vermicast from sludge and powdered oyster shell[J]. Journal of Cleaner Production,2009,17:708-711.
    [31] Sohn Byunqkyu, Lee Jeong-Woo, Won Sung-Huan. Hydraulic characteristics of artificial reefs using the oyster shell [J]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2009,4:425-434.
    [32]Eun-Ik Yang, Myung-Yu Kim, Hae-Geun Park,et al. Effect of partial replacement ofsand with dry oyster shell on the long-term performance of concrete[J], Construction and Building Materials,2010,24:758-765.
    [33]Chang Hoon Lee, Do Kyoung Lee, Muhammad Aslam Ali, et al. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials[J]. Waste Management, 2008,28(2):2702-2708.
    [34]冯永增,徐华梓,彭磊,等.三维多孔牡蛎壳/消旋聚乳酸复合人工骨的研制及其相关性能的检测[J].中国生物医学工程学报,2009,28(1):90-95.
    [35]Kyu Bock Lee,Seung Woo Lee,Seung Bin Park. Growth of single-crystalline sodium titanate and sodium tungstate one- dimensional nanostructures: Bio-inspired approach using oyster shell [J]. Journal of Crystal Growth,2009,311:4365-4370.
    [36]Seung Woo Lee, Gun Kang, Kyu Bock Lee,etal. New approach for fabrication of folded-structure SiO2 using oyster shell[J]. Micron, 2009,40:713-718.
    [37]Chong Mi-Hwa, Chun Byoung-Chul, Chung Yong-Chan, et al. Fire-retardant plastic material from Oyster-shell powder and recycled polyethylene [J]. Journal of Applied Polymer Science, 2006,99(4):1583-1589.
    [38]Nobutake Nakatani, Hitoshi Takamori, Kazuhiko Takeda. Transesterification of soybean oil using combusted oyster shell waste as a catalyst[J]. Bioresource Technology, 2009100:1510–1513.
    [39]刘顺伟.牡蛎壳土壤调理剂对北沙参生理生化影响的研究[D].中国海洋大学,2004.
    [40]董晓伟.牡蛎壳土壤调理剂对大棚土壤理化、生物性状影响的研究[D].中国海洋大学,2004.
    [41]张桂芹,孙建之,马培华.等.火焰原子吸收和发射光谱法测定盐湖卤水的锂钠钙镁离子[J].盐业与化工,2006,36(1):10-16.
    [42]樊兴涛,詹秀春,巩爱华.能量色散X射线荧光光谱法测定卤水中痕量溴铷砷[J].岩矿测试,2004,23(1):15-18.
    [43]陈敏.罗布泊钾盐及卤水中钾的测定[J].新疆有色金属,2001,11:50-51.
    [44]王庆忠,祁永唐,李青凤.超声波测定盐湖卤水的密度[J].盐湖研究,2001,9(3):27-31.
    [45]贾茜,胡小进,唐娜.等.西藏扎仓茶卡盐湖卤水制取氯化钾的相图分析[J].盐业与化工,2009,38(3):13-16.
    [46]杨卉凡,李琦,王秋霞.等.从卤水中回收硼的试验研究[J].矿产保护与利用,2002,4:39-42.
    [47]胡小进.罗布泊卤水中提取钾盐的研究[J],海湖盐与化工,2003,32(3):17-20.
    [48]王红,张俊杰,李红霞.乳状液膜法提取卤水中的溴[J].无机盐工业,2006,38(11):18-20.
    [49]尉争鸣,程利山,王红奎.运城盐湖高镁卤水制取白色六水氯化镁[J].无机盐工业.2005,37(11):35-37.
    [50]王世栋,褚敏雄,孙庆国.卤水-氨法碱式氯化镁晶须的制备及影响因素的研究[J],海湖盐与化工,2005,35(2):1-3.
    [51]李浩,唐中凡,尹新斌.等.利用罗布泊盐湖卤水制取硫酸钾工艺试验研究[J].盐业与化工,2007,37(2):9-12.
    [52]袁俊生,吴举等.中国海盐苦卤综合利用技术的开发进展[J].盐业与化工,2006,35(04):33-37.
    [53]马欣华.卤水化工[M].北京:化学工业出版社,1995:1-3.
    [54]刘树文,张成伟.X射线荧光光谱法测定东营地区卤水中的氯溴碘[J].中国测试技术,2006,32(5):133-135.
    [55]刘有智,张琳娜.我国工业化卤水提溴现状与问题思考[J].盐业与化工,2009,38(5):37-40.
    [56]张月琴,叶旭初,张林进.改进石灰卤水法制备Mg(OH)2[J].南京工业大学学报(自然科学版),2008,30(06):54-58
    [57]单志坤,徐勇,朱红卫.兑卤法工艺生产氯化钾技术发展概况[J].海湖盐与化工, 2002,32(02):26-27.
    [58]刘晓红,李安等.盐析法由卤水制备纯碱的新工艺[J].无机盐工业2008,40(09):27-28.
    [59]J. Le Dirach,S. Nisan,C. Poletiko. Extraction of strategic materials from the concentrated brine rejected by integrated nuclear desalination systems[J].Desalination2005,182:449-450.
    [60]S.V. Alexeev, L.P. Alexeeva,ect. Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian Platform[J]. Russian Geology and Geophysics2007,48:225-236.
    [61]Anton Purnama,H.H.Al-Barwani.Some criteria to minimize the impact of brine discharge into the sea[J]. Desalination2004,171:167-172.
    [62]E.Korngold, L.Aronov, N. Belayev. et al. Electrodialysis with brine solutions oversaturated with calcium sulfate[J]. Desalination,2005,172:63-75.
    [63]Xiao Ma, Chao-Shan Da, Lei Yi. et al. Highly efficient primary amine organocatalysts for the direct asymmetric aldol reaction in brine[J]. Tetrahedron: Asymmetry, 2009,20:1419-1424.
    [64]刘强,袁菊,陈凤凰等.贵阳市集中饮用水源中总有机碳和元机碳的测定[J].分析仪器,2010(1):84-87.
    [65]GB 11894-89.中华人民共和国水质监测方法标准[S].
    [66]葛璐,杨涛等.海洋沉积物孔隙水中阴阳离子含量的离子色谱法分析方法[J].海洋地质与第四世纪地质,2006,26(4):125-130.
    [67]何志明.电感耦合等离子体原子发射光谱法测定铝质耐火材料中钙、镁、铁、钛及钾的含量[J].理化检验-化学分册,2009,45(09):1040-1042.
    [68]黄冬根,周文斌,刘雷等.ICP-MS法测定高岭土中微量成分及杂质元素的研究[J].光谱学与光谱分析2009,29(2):504-508.
    [69]黄永林,文永新等.金花茶挥发性成分的GC-MS分析[J].食品科技2009,34(8):257-230.
    [70]胡世伟,王浩,宋文东等.徐闻卤水中无机盐阴、阳离子色谱分析与有机物GC-MS分析[J].安徽农业大学学报2010,37(2) :352-356.
    [71]王国强,张淑芬,王俐聪等.聚偏氟乙烯中空纤维气态膜法海水提溴研究[J].海湖盐与化工,2004,33(2):17-19.
    [72]孙志中,邓小川,伊文涛等.GC-MS联用技术对卤水中有机物的分析[J].盐湖研究2008,16(03):40-43.
    [73]GB/T 23348-2009.中华人民共和国缓释氮肥标准[S].
    [74]弓建国,徐松鹤.氮磷钾有机肥对马铃薯叶绿素含量的影响[J].安徽农业科学,2009,37(23):10940-10942.
    [75]段小华,邓泽元,朱笃.杜仲种子脂肪酸及氨基酸分析[J].食品科学,2010,31(4):214-217.
    [76]赵彤,郝丽,王磊等.ICP-MS测定贻贝中微量元素及不确定度的评定[J].光谱实验室,2008,25(5):874-877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700