用户名: 密码: 验证码:
纳米碱式氯化镁(BMC)晶须的合成、改性以其在塑料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱式氯化镁(BMC)的化学组成为Mgx(OH)y Clz·mH2O(2x-y-z=0,0≤m≤6),晶体的形貌为针状或纤维状,具有高耐火性,低热传导性、高耐磨性以及优异的机械性能等优点,可用作塑料、橡胶和树脂的填充剂和阻燃剂以及热稳定剂。随着材料科学的突飞猛进,人们对塑料的要求越来越高,然而现阶段塑料填充剂存在着热稳定性能差、力学性能降低以及成本高等缺点,寻找一种高效低成本的热稳定剂和填充剂的愿望越来越迫切。BMC作为填充剂能够有效地提高塑料的力学性能,改善塑料的热稳定性,且成本低,然而,BMC存在着与塑料的相容性较差,且晶须结构不稳定等缺点,亟须改善。
     为了深入研究BMC的制备原理,降低制备成本,并改进BMC晶须在塑料中的分散性,从而达到控制制备、降低成本以及纤维增强增韧的作用,本文首先在两种不同的体系(CaO-MgCl2-H2O体系以及以白云岩为原料的CaO/MgO-MgCl2-H2O)中通过水热反应可控合成了BMC晶须,并研究了BMC的结构、形貌、性质等随反应物浓度、摩尔比、水热条件的变化。随后,我们针对BMC晶须的特性,将其经过硅烷偶联剂γ-MPS表面处理后,进行表面接枝改性,最后将表面接枝改性后的g-BMC分别与PVC混合制备了g-BMC/PVC、和ABS、PP熔融共混制备了ABS/PP合金材料,并研究了乙醇/水介质体系、反应时间对晶须形态和悬浮接枝聚合反应的影响以及对PVC热稳定性的影响和ABS/PP合金材料的力学性能和熔融指数等影响。
     合成实验结果表明:在CaO-MgCl2-H2O体系以及CaO/MgO-MgCl2-H2O体系中,当氯化镁浓度大于3 mol/L能得到一维BMC,且BMC的长径比随氯化镁浓度和CaO、(CaO+MgO)与MgCl2的摩尔比R的增大而减小。在CaO-MgCl2-H2O体系,R小于0.5时,制备具有高长径比的BMC的最佳条件为[MgCl2]=4 mol/L,R=0.05。水热条件不仅影响着BMC的长径比及有序度,还决定了BMC的合成相:较低温度(≤150℃)下合成的产物为相3或相5,而高温下的产物为相9。以白云岩煅粉为原料的CaO/MgO-MgCl2-H2O体系,R介于0.025-0.075之间可得到一维BMC,直径为50-120 nm。
     表面接枝改性实验中,以乙醇/水为反应介质,K2S2O8(KPS)为引发剂的反应条件能够在满足保持BMC晶须形貌的前提下获得较好的MMA接枝效果。最佳反应条件为乙醇/水介质配比为8:2、反应温度82℃、反应时间6 h。此时,BMC晶须形貌很好的被保存下来(经FT-IR、SEM、XRD表征),并且接枝效果较好(接枝效率达到56.1%)。
     将表面接枝改性后的BMC晶须材料与PVC熔融共混,能够有效地改善PVC的热稳定性和提高PVC的初始降解温度。随着g-BMC添加量的增加,PVC的白度有所降低。当g-BMC的添加量为2.5%时,PVC的变色时间和刚果红变色时间分别为140 min和204 min。
     将表面接枝改性后的BMC晶须材料包覆一层TPE橡胶制成BMC母料添加入ABS中,分别考察BMC母料含量以及BMC母料中BMC含量对BMC填充ABS材料性能的影响。研究结果表明:ABS/BMC复合材料的拉伸强度随着BMC含量的增加而增加,当BMC母料含量为15%,BMC母料中BMC含量为55%左右时有较佳的冲击性能。然后,固定BMC母料与ABS比例不变,将BMC母料、ABS、PP、PP-g-MAH熔融共混获得ABS/PP合金材料,实验分别研究了PP含量、BMC含量对ABS/PP合金材料的影响。研究结果表明:当PP含量为9-10%时BMC填充ABS/PP合金材料有最好的拉伸强度和冲击强度;BMC填料含量对BMC填充ABS/PP合金材料的拉伸强度影响不大,但随其用量增加冲击强度有明显的提高;BMC填充ABS/PP合金材料的熔体流动性能在PP含量10%左右时达到最大,但随BMC含量增加而下降。
     本论文不仅提供了一种可控制备BMC的新途径和表面改性的新方法,更拓宽了白云岩的应用领域,拓展了碳酸盐矿物如石灰石等的潜在用途,对完整保存晶须形态的改性方法具有借鉴意义,对BMC的应用研究具有补充发展的作用。
The chemical composition of basic magnesium chloride(BMC) whisker is Mgx(OH)y Clz·mH2O(2x-y-z=0,0≤m≤6), and its morphology is needle or fiber. Due to the characteristics of high fire behavior, low thermal conductivity, excellent wear-resisting and mechanical properties, BMC is widely use in areas of plastics, rubbers and resins as filling agents and heat stabilizer. With the development of material science, more and more researches were studied to settle the problem between increasing requirements of people and short points of meterials. However, BMC can inhance plastics'thermal stability and mechanical properties unless its compatibility and whisker structure well preserved.
     This study was aimed to settle the utilization problem of BMC's applications and cost in Plastic. Firstly, one-dimensional BMC was controlled prepared in two different system. Then, BMC was pretreated by silane coupling agent 3-(trimethoxysilyl) propyl methacrylate (y-MPS) and then conducted to surface radical grafting polymerization, the grafted BMC was applied to poly(vinyl chloride)(PVC) and ABS/PP composites respectively at last. The effects of MgCl2 concentration, molar ratio (R), and hydrothermal conditions on the structure and morphology of BMC were investigated, Besides, the influence of reaction conditions on both conservation of whisker topography and the effect of grafting polymerization is discussed, both thermal stability of PVC and mechanical properties of ABS/PP composites were studied in this paper. The main contents and results were as follows:
     It is found that, both in two systems of CaO-MgCl2-H2O and CaO/MgO-MgCl2-H2O, BMC can only be synthesized when the MgCl2 concentration was greater than 3 mol/L The molar ratio R plays a key role to the structure and morphology of BMC. The diameter and radius-length ratio of BMC increase with the MgCl2 concentration and R. In the system of CaO-MgCl2-H2O, the optimum conditions to prepare BMC are [MgCl2]=4 mol/L and R=0.05. The reaction temperature determines the phases of BMC, where phase 3 (Mg2(OH)3Cl·4H2O) is stable at below 150℃and phase 9 (Mg10(OH)18Cl2·5H2O) is obtained at above 150℃. The optimum R to prepare BMC is between 0.025 and 0.075 in the system of CaO/MgO-MgCl2-H2O, using calcined dolomite.
     The result of grafting study shows that the reaction condition has a strong impact on the topography of nano-composite material. The grafting efficiency is maximum (up to 56.1%) and the appearance of BMC whisker is well conserved when ethanol:water=8:2,the reaction temperature is 82℃,and the reaction time is 6 hours.
     When applied to PVC composites, g-BMC can enhance the thermal stability and increase the decomposition temperature of PVC. When 2.5 wt% g-BMCwas added, the color change time and Congo red time of PVC composites are 140 min and 204 min.
     The test results of composites'mechanical property and melt performance indicated that as the g-BMC packing content increased when in experimental range, the composites tensile strength improved as well; When the content of master batch was 15% and the g-BMC packing content was about 55%, the composites had better impact property; when the content of PP is 9% to 10%, the composites has the best tensile strength and impact property; while the g-BMC packing content has little effect on the tensile strength, it has improved impact property greatly with its increased use; with respect to melt performance, it reached the maximum when the content of PP is about 10%, while it decreased with the increase of g-BMC packing content.
引文
Ball M C. Reactions of compounds occurring in sorel's cements[J]. Cements Concrete Research,1977,7:575-584.
    Bilalbegovic G. Structural and electronic properties of MgO nanotube clusters[J]. Physical Review B:Condensed Matter,2004,70(4):4540-4551.
    Bilinski H, Matkovic B, Mazuravic C, et al. The formation of magnesium oxychloride phases in the system MgO-MgCl2-H2O and NaOH-MgCl2-H2O[J]. American Ceramic Society,1984, (67):266-272.
    Chen L, Xu C, Zhang X F. DFT calculations of vibrationa spectra and nonlinear optical properties for MgO nanotube clusters [J]. Molecular Structure-theochem,2008,863(1-3):55-59.
    Christensen A N, Norby P, Hanson J C. Chemical reactions in the system MgO-MgCl2-H2O followed by time-resolved synchrotron X-ray powder diffraction[J]. Solid State Chemistry,1995,114:556-559.
    Cole W F. Demediuk T. X-ray, thermal, and dehydration studies on magnesium oxychlorides[J]. Austrila Chemistry,1955,8(2):234-251.
    Cooray B B, Scott G. The effect of thermal processing on PVC. Reactive antioxidants as thermal stabilizers[J]. European Polymer Journal,1980, 16(12):1145-1151.
    Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science,2001, 293(5533):1289-1295.
    Deng D H, Zhang C M. The formation mechanism of the hydrate phases in magnesiμm oxychloride cement[J]. Cement and Concrete Research,1999, 29(9):1365-1371.
    Duan X F, Huang Y, Cui Y, et al. Indi μm phosphide nanowires as building blocks for nanoscale electrnic and optoelectronic device[J]. Nature,2001, 409(6816):66-71.
    Evans C C. Whiskers[M]. London:Mills Boon Limited,1972:1-68.
    Fan W L, Song X Y, Sun S X, et al. Hydrothermal formation and characterization of magnesium hydroxide chloride hydrate nanowires [J]. Journal of Crystal Growth,2007,305(1):167-174.
    Fan W L, Sun S X, You L P, et al. Solvothermal synthesis of Mg(OH)2 nanotubes using Mg(OH)18Ci2·5H2O nanowires as precursors[J]. Materials Chemistry,2003,13(12):3062-3069.
    Fan W, Sun S, Song X, et al. Controlled synthesis of single-crystalline Mg(OH)2 nanotubes and nanorods via a solvothermal process[J]. Solid State Chemistry, 2004,177(7):2329-2334.
    Friedrich S, Dieter C. Poly(vinyl chloride) mixtures for antistatic hollow bodies and blown foils[P]:DE,1803787.1970,04,23.
    Gay P J, Hedges E S. Stabilization of chlorinated rubber[P]:DE,925313.1995, 03,17.
    Gupta A K, Jaln A K, Ratnam B K, et al. Studies on binary and ternary blends of polypropylene with ABS and LDPE:impact and tensile properties [J]. Journal of Applied Polymer Science,1990,39(3):515-530.
    H.S.卡茨.塑料用填料及增强剂手册.北京:化学工业出版社,1994:20-22.
    Haruo M, Yas μ mi S, Shoichi K. Antioxidative properties of methyltin S-2-ethylhexyl thioglycolates for mineral oils[J].Sdkiyu Gakkaishi,1978, 21(4):266-270.
    Hoang T V, Michel A, Guyot A. Study of the stabilization of poly(vinyl chloride) with model molecules.V.stabilization by phenylindole[J]. European Polymer Journal,1976,12(6):357-364.
    Holemes J D, Johnston K, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires[J]. Science,2000,287(5457):1471-1479.
    Hornsby P. The application of fire-retardant fillers for use in textile barrier materials[J]. Multifunctional Barriers for Flexible Structure,2007, 22(3):22-28.
    Hu J, Odom, T W, Lieber, C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research,1999,32:435-446.
    Hu L. MgO nanowire growth from Mg metal and SiO2[J]. Nanosei Nanotechn, 2004,4(8):107.
    Jeevanandam P, Mulukutla R S, Yang Z, et al. Nanocrystals to nanorods:A precursor approach for the synthesis of magnesium hydroxide nanorods from magnesium oxychloride nanorods starting from nanocrystalline magnesium oxide[J]. Chemistry of Materials,2007,19(22):5395-5403.
    Kulas F R, Thorshaug N P. Influence of stabilizers on the fusion of rigid poly(vinyl chloride)[J]. Polymer Engineering and Science,1974, 14(5):336-370.
    Lau H C, Bhattacharya S N, Field G J. Influence of rheo logical properties on the sagging of polypropylene and ABS sheet for thermoforming applications[J]. Polymer Engineering and Science,2000,40(7):1564-1570.
    Li C, Gu Q, Cheng Q. Synthesis and morphology characterization of aciculate basic magnesium chloride[J]. Journal of East China University of Science and Technology,2005,31 (3):314-318.
    Matkovic B, Popovic S, Rogic V, et al. Reaction products in magnesium oxychloride cement pastes system MgO-MgCl2-H2O[J]. American Ceramic Society,1977,60(11-12):504-507.
    Mazuranic C, Bilinski H, Matkovic B. Reaction products in the system MgO-MgCI2-H2O[J]. American Ceramic Society,1982,65(10):523-526.
    Mcneill I C, Mohammed M H, Cole W J. A detailed analysis of pyrolysis products from dioctyltin maleate and its mixture with PVC[J]. Polymer Degradation and Stability,1998,61 (1):95-108.
    Michio I, Yukio O. Liquid stabilizers for vinyl chiloride polymers[P]:JP, 53016064:1978,02,14.
    Min S H, Woo J S, Han S P, et al. Rheological properties and phase inversion of polypropylene and poly(styrene-co-acrylonitrile) blends[J]. Polymer Journal, 2003,35(2):127-133.
    Mushkin Y I, Rukevich O S, Zakharova E S. Lead cyanurate[P]:SU,841271. 1983,12,15.
    Park J H, Sung W M, Hyun J C, et al. The effects of biend composition and compatibilizer on the mechanical properties of the PP/SAN and the PP/ABS blends[J]. Polymer,2002,26(1):53-60.
    Reed M C, Frasier G. Stabilization of vinyl resins and compositions produced thereby[P]:US,2075543(A).1937,03,30.
    Rikio M, Yasuharu S. Studies on poly(vinyl chloride) stabilizers.Ⅱ. the effects of metal strarates on discoloration of poly(vinyl chloride) [J]. Kogyo Kagaku zasshi,1962,65:396-398.
    Savelev A P, Potepalova S N, Shargorodskii A M. Composition containing a stabilizing mixture for poly(vinyl chloride) [P]:SU,440328.1974,08,25.
    Shugal N F, Branzburg M Z, Sysoeva T F, et al. Lead cyanurates[P]:SU, 1237664.1986,06,05.
    Sorel S. On a new magnesium cement[J]. Comptes Rendus,1867,65:102-104.
    Sugimoto H, Daimatsu K, Nakanishi E, et al. Preparation and properties of poly(methylmethacrylate)-silica hybrid materials incorporating reactive silica nanopatticles[J]. Polymer,2006,47(11):3754-3759.
    Sugimoto K, Dinnebier R E, Schlecht T. Structure determination of Mg3(OH)5Cl·H2O (F5 phase) from laboratory powder diffraction data and its impact on the analysis of problematic magnesia floors[J]. Acta Crystallographica Section B,2007,63(6):805-817.
    Takashi M, Tadashi T, Hideo M, et al. Stabilized poly(vinyl chloride) compositions having good process ability[P]:JP,51007051.1976,01,21.
    Troitskii B B, Dozorov V A, Minchuk F F. Simplest mathematical of the process of the thermal dehydrochlorination of poly(vinyl chloride)[J]. European Polymer Journal,1975,11(3):277-281.
    Tsutomu K, Yujiro S. Stabilizer for poly(vinyl chloride)[P]:JP,31007537.1956, 08,30.
    Urwongse L, Sorrell C A. The system MgO-MgCl2--H2O at 23℃[J]. American Ceramic Society.1980,1(63):501-506.
    Ved E I, Zharow E F, Phong H V. Mechanism of magnesium oxychloride formations during the hardening of magnesium oxychloride cements (Russ.) [J]. ZhPrikc Khim,1976,4(49):2154-2158.
    Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:Synthesis, characterization, and application[J]. Advanced Materials,2003,15(5):353-389.
    Xu J S, Xue D F. Chemical synthesis of BaCO3 with a hexagonal pencil-like morphology [J]. Journal of Physics and Chemistry of Solids,2006, 67(7):1427-1431.
    Yanagida T, Nagashima K, Tanaka H, et al. Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition[J]. Journal of Application Physics,2008,104(1):16401-16407.
    Yang Q, Sha J, Wang L, et al. Synthesis of MgO nanotube bundles[J]. Nanotechnology,2004,15(8):1004-1009.
    Zagranichnyi V I, Lesin A D, Rukevich O S, et al. preparation of lead cyanurate
    by a "dry" method[J]. Khimicheskaya Promyshlennos(Moscow, Russian Federation),1978,4:288-290.
    Zhao A D, Shen Y S. A route to prepare magnesium oxide fiber[J]. Journal of Inorganic Materials,2005,20 (1):215-219.
    安悦,常国彬,顶素云,等.天然水镁石粉填充聚丙烯阻燃性能研究[J].辽宁师范大学学报,1999,22(2):34-37.
    陈雪刚,吕双双,夏枚生,等.碱式氯化镁晶须的制备与应用进展[J].材料导报:综述篇,2009,4(23):52-55.
    陈雪刚,吕双双,张路,等. CaO-MgCl2-H2O体系中一维碱式氯化镁的水热合成与表征[J].无机材料学报,2010,2(25):129-134.
    董智贤,周彦豪,贾德民. WABS/WPP共混合金的研究[J].塑料工业,2005,33(10):60-63.
    范方荣.镁系纳米棒的合成工艺研究[J].大连:大连理工大学,2006,56(2):215-219.
    范宏,傅丽玲,卜志杨,等. PP/M-HOS/POE三元复合材料的界面改性与力学性能[J].功能材料,2004,32(9):36-38.
    冯绍华,左建东,黄兆阁,等. ABS/PP相容剂的制备与应用[J].现代塑料加工应用,2003,15(6):21-28.
    胡海青,赵尧森,王亚,等.晶须改性聚丙烯[J].塑料工业,2001,29(2):46-51.
    贾巧英,马晓燕,梁国正,等.晶须及其在高分子材料中的应用[J].高分子通报,2002,(06):71-78.
    金栋,肖铭.PVC树脂市场分析[J].化学工业,2008,26(9):24-29.
    李春忠,古庆山,程起林,等.针状碱式氯化镁的合成及形态分析[J].华东理工大学学报(自然科学版),2005,3(31):314-318.
    李静,高玉杰,任继春.碱式氯化镁晶须作纸张填料[J].中华纸业,2003,27(7):53-59.
    李武,无机晶须[M].北京:地质出版社,1993:4-68.
    李秀悌,姚志通,孙杰,等.利用粉煤灰支取白炭黑及其表面改性研究[J]. 功能材料,2010,1(6):45-47.
    李玉芳,伍小明.PVC无毒热稳定剂的研究开发进展[J].橡胶技术与装备,2010,37(1):29-35.
    廖明义,隗学礼.镁盐晶须增强聚丙烯力学性能研究[J].工程塑料应用,2000,28(1):12-18.
    廖明义,隗学礼.镁盐晶须增强聚丙烯力学性能研究[J].塑料科技,1999,(6):41-43.
    刘春林,姚汝奇.镁盐晶须/聚丙烯复合材料的研究[J].塑料工业,2003,31(8):19-21.
    刘海军.硫脲衍生物类新型有机热稳定剂[J].塑料助剂,2010,3:1-5.
    刘建平,方廉,宋霞,等.PVC热稳定剂的现状与发展[J].中国塑料,2001,15(1):15-18.
    刘喜军,李青山,王慧敏,等.纤维级Mg(OH)2超细粉的应用[J].功能高分子学报,2001,14(3):31-33.
    刘喜军,马文辉,王佳祥,等.聚丙烯/纤维级Mg(OH)2/P复合材料研究[J].中国塑料,2002,15(12):40-45.
    刘晓明.硬聚氛乙烯改性与加工[M].北京:中国轻工业出版社,1998:7-8.
    刘烨,景殿策,王宝和,等.氢氧化镁纳米棒的制备及热分解动力学研究[J].河南化工,2008,25(1):25-31.
    吕通建,于洋,范平,等.碱式硫酸镁晶须增强阻燃聚丙烯的研究[J].中国塑料,2001,5(9):81-85.
    罗振敏,任大伟.天然纤维水镁石在阻燃材料中的应用[J].非金属矿,2000,24(3):211-215.
    潘普林,B R.晶体生长[M].北京:中国建筑工业出版社,1981:13-45.
    潘兆橹.结晶学与矿物学[M].北京:地质出版社,1993:78-119.
    庞玉娜,乌志明,周园,等.碱式氯化镁5Mg(OH)2·MgCl2·3H2O的制备与表征[J].无机化学学报,2010,5(12):807-810.
    任庆利,刘斌,陈维,等.制备工艺对纤维状碱式氯化镁晶体的影响[J].绝缘材料,2004,(2):32-39.
    尚文宇,刘庆峰,陈寿田,等.碳酸钙晶须填充改性PP的研究[J].工程塑料 应用,1999,(10):7-11.
    史天兵,张延芳,陈宏博.新型聚氯乙烯热稳定剂双巯基乙酸异辛脂二正辛基锡的合成[J].精细石油化工,2010,2:58-61.
    孙新华.硼酸铝的应用与制备[J].化工新型材料,1998,4:33-39.
    王宝和,吕晓明.碱式氯化镁纳米棒的制备和表征[J].河南化工,2010,7(27):29-32.
    王洁,孙新华,欧秀芹,等.碱式氯化镁废渣生产氧化镁[J].无机盐工业,2003,(5):45-51.
    王丽秋,李青山,王莉莉,等.纤维级氢氧化镁阻燃体系研究[J].功能高分子学报,1998,11(3):35-41.
    王全,张良.纤维水镁石在增强水泥制品中的应用[J].混凝土与水泥制品,2000,(1):42-46.
    王世栋,褚敏雄,孙庆国,等.卤水-氨法碱式氯化镁晶须的制备及影响因素的研究[J].海湖盐与化工,2006,35(2):1-9.
    王伟宁,胡金华.针状氢氧化镁在热塑性塑料中的增强与阻燃研究[J].中国塑料,2001,15(12):40-47.
    王伟宁,王思嘉,胡金华,等.高纯针状结晶氧化镁对聚丙烯的增强作用[J].塑料工业,1991,(2):46-51.
    王伟宁,王思嘉,胡金华.碱式氯化镁阻燃剂的应用研究[J].阻燃材料与技术,1991,(1):21-27.
    王在华,冯刚,孙庆国,等.碱式氯化镁和氧化镁晶须的制备与表征[J].盐湖研究,2007,15(4):40-46.
    邬润德,徐亮成,童筱莉,等.交联剂和助交联剂对ABS/PP/CaCO3反应性共混的影响[J].中国塑料,2007,21(5):901-904.
    吴国峰,常笑蕾,胡书春,等.氧化锌晶须/聚苯胺核壳结构复合物的制备与性能研究[J].功能材料,2008,39(10):1720-1723.
    吴小王,钟辉,胡克伟,等.镁盐晶须增强材料的研究及应用[J].化工新型材料,2005,33(12):13-14.
    徐惠,史建新,翟钧,等.纳米TiO2表面接枝甲基丙烯酸甲酯的聚合反应[J].高分子材料科学与工程,2008,24(2):27-31.
    薛冬峰,邹龙江,闫小星,等.氧化镁晶须制备及影响因素考查[J].大连理工大学学报,2007,47(4):488-492.
    姚连增.晶体生长基础[M].北京:化学工业出版社,1998:20.
    闫平科,刘江,高玉娟,等.碱式氯化镁晶须制备及其应用研究进展[J].中国非经书矿工业导刊,2010,4(4):19-29.
    于建,张庆,张良方.水镁石对高密度聚乙烯的复合改性研究[J].合成树脂及塑料,2002,19(3):11-17.
    袁建军,方琪,刘智恩,等.晶须材料的研究进展[J].材料科学与工程,1996,14(4):1-3.
    张波,李丽娟,聂峰等.以碱式氯化镁为前躯体制备棒状氢氧化镁阻燃剂[J].盐湖研究,2010,2(1):13-15.
    张林栋,卢亚哲,袁俊生.碱式氯化镁晶须在塑料中的应用研究[J].海湖盐与化工,2005,34(2):7-11.
    张林栋,杨剑,袁俊生,等.碱式氯化镁晶须用于热熔胶的研究[J].粘接,2004,25(2):10-17.
    张路,陈雪刚,姚志通,等.碱式氯化镁晶须表面接枝甲基丙烯酸甲酯聚合反应的研究[J].无机材料学报,2009,4(24):52-55.
    张路,陈雪刚,姚志通,等.乙醇/水介质体系纳米碱式氯化镁晶须悬浮接枝甲基丙烯酸甲酯的研究[J].中国塑料,2009,23(4):44-48.
    赵爱东,申玉双,翟学良.一种制备氧化镁纤维的方法[J].无机材料学报,2005,20(1):215-219.
    赵爱东,王红,翟学良.卤水-氨法制备碱式氯化镁纤维的SEM研究[J].电子显微学报,2005,24(4):371-379.
    赵爱东,翟学良,王红,等.液相法制备氧化镁晶须的SEM研究[J].电子显微学报,2004,23(4):455-459.
    赵爱东,翟学良.卤水-氨法制备纤维状碱式氯化镁[J].功能材料,2007,3:2895-2897.
    朱古丹,颜婉茹,牟宏晶,等.聚氯乙烯塑料无机盐复盐热稳定性的研究[J].牡丹江师范学院学报(自然科学版),2007,1:8-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700