用户名: 密码: 验证码:
水热合成硬硅钙石晶须及其在超轻质硅酸钙材料中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超轻质硅酸钙材料由于其低导热系数,良好高温热稳定性及较小容重被广泛应用于各行各业。然而,该材料力学性能不易达到使用要求,限制了推广应用。硬硅钙石晶须可作为一种用途广泛的补强增韧材料。本文采用水热合成工艺制备硬硅钙石晶须和球形粒子,分别采用“外掺增强法”和“晶须原位生长增强法”制备技术,最终实现该材料力学性能的提高。
     本文率先以硬硅钙石晶体为研究对象,通过水热合成法研究了原料、水热合成工艺对硬硅钙石产物形貌的影响。结果表明,硅质原料前驱体形态决定了水热合成产物的形貌。基于产物不同形貌特征,探讨并对比了硬硅钙石晶须和球形粒子生成机理及水热反应过程。硬硅钙石晶须和球形粒子生成分别按溶解-沉淀反应机理和原位转变机理进行。在CaO-SiO2-H2O反应体系中,CaO:SiO2(mol)=1.0,硬硅钙石晶体反应过程可描述为:非晶态C-S-H凝胶→富钙C-S-H(II)→富硅C-S-H(I)→硬硅钙石。基于硬硅钙石晶体反应过程,建立了相应动力学关系式:硬硅钙石晶须为? dc A /dt = kcA4/5,球形粒子为? dc A /dt = kcA0.9。依此动力学关系式和近藤氏模型计算得到硬硅钙石晶须和球形粒子表观活化能分别为75-77 kJ·mol-1、77-84 kJ·mol-1。动力学分析结果表明了硬硅钙石晶体生长机理及反应过程的正确性。
     对各工艺参数条件下制备的硬硅钙石晶须材料微观结构进行了全面分析。结果表明:以CaCl2和100g·L-1KOH溶液混合制得Ca(OH)2悬浮液为钙源,K2SiO3溶液为硅源,体系pH=12.6,反应物浓度为0.05mol·L-1,在225℃保温15 h的条件下水热合成硬硅钙石晶须结晶良好、热稳定性较好、长径比可达50-100。重点分析了杂质及含量对水热合成产物微观结构的影响。以CaCl2为钙源引入Cl-离子,控制Na2O含量小于5%,Al2O3含量小于1%有利于硬硅钙石晶须的制备。
     创新性地以电石渣为原料制备硬硅钙石晶体。鉴于不同水热产物形貌对原料提出的特殊要求,以酸洗除杂技术对电石渣进行预处理,并用于制备硬硅钙石晶须,确定了适宜制备工艺参数为酸洗pH=8.0,225℃保温15 h。分别以煅烧和超声技术对电石渣进行预处理,并用于制备硬硅钙石球形粒子,确定了适宜制备工艺参数为:以800℃保温2 h煅烧电石渣,12倍80℃去离子水搅拌30 min制备Ca(OH)2乳液为钙质原料,或以160 W超声3 h预处理电石渣为钙质原料,钙硅摩尔比为1.0,水固比为28:1,升温阶段搅拌速度400 rpm,保温阶段搅拌速度150 rpm,215℃保温10 h。
     针对水热合成硬硅钙石及晶体生长特点,采用“外掺增强法”及“晶须原位生长增强法”制备工艺,实现超轻质硅酸钙材料的补强增韧。采用“外掺增强法”时,适宜的制备工艺参数为:长径比50-100硬硅钙石晶须掺量5%,成型压力为0.5 MPa,脱模75℃烘干12 h,制得容重109 Kg·m-3增强体制品抗折、抗压强度分别为0.37 MPa和0.59 MPa。采用“晶须原位生长增强法”时,适宜的制备工艺参数为:以K2SiO3:H2SiO3(mol)=2:1为硅质原料,在225℃保温15 h条件下进行水热合成反应,成型压力为0.5 MPa,脱模75℃烘干12 h,制得容重为118 Kg·m-3的增强体制品抗折、抗压强度分别为0.42 MPa、0.66 MPa。以3%玻璃纤维制得制品的比强度值Specific strengthF和Specific strengthC分别为2.22×103 cm和3.65×103 cm,以5%硬硅钙石晶须制得制品比强度值Specific strengthF和Specific strengthC分别为3.40×103 cm和5.41×103 cm。以硬硅钙石晶须为增强材料制得制品具有更低容重,更高比强度和更好保温隔热性能。
Ultra-light material of calcium silicate has been widely used in industry for its low thermal conductivity, wide applying temperature range and low density. However, it was limited due to the disadvantage of mechanical properties. Xonotlite whiskers, which are required in the development of modern composite materials, have been attracting attention as a kind of strengthening and toughening materials. The xonotlite whiskers and spherical particles were synthesized using the hydrothermal synthesis method, and the ultra-light material of calcium silicate had been strengthened with the methods of“adding reinforcing agent”and“whisker in–situ growth”respectively.
     In this paper, xonotlite crystal was firstly prepared by the hydrothermal synthesis method, and the effect of raw materials and hydrothermal synthetic technologies on the morphology of xonotlite was also studied. The results indicated that the morphologies of hydrothermal synthesis products were determined by the precursor states of kiesel materials. Base on the different morphology characteristics of the products, the growth mechanism and reaction mechanism of xonotlite whiskers and spherical particles were explored, and the growth of xonotlite whiskers and spherical particles were accorded with the dissolution-precipitation mechanism and in situ transformation mechanism. In the CaO-SiO2-H2O system, the reaction mechanism of xonotlite crystal was described as follows while having CaO:SiO2(mol)=1.0: amorphous C-S-H gel→calcium-rich C-S-H(II)→silicon-rich C-S-H(I)→xonotlite. The kinetics formulas of xonotlite whiskers and spherical particles were found based on the reaction mechanism of xonotlite crystal: ? dc A /dt = kcA4/5 is for xonotlite whiskers and ? dc A /dt = kcA0.9 is for xonotlite spherical particles. At last, the apparent activation energy of xonotlite whiskers and spherical particles are 75-77 kJ·mol-1 and 77-84 kJ·mol-1 respectively through those kinetics formulas and Kondo model. The anlysis results of kinetics indicated that the growth and reaction mechanisms of xonotlite crystal are correct.
     The microstructures of xonotlite whiskers prepared at different process parameters were analyzed comprehensively. The results showed that the xonotlite whiskers, which are of well crystallized, excellent thermal stability and aspect ratio of 50-100, were synthesized by hydrothermal processing with Ca(OH)2 suspension which was prepared by using CaCl2 and 100g·L-1KOH solution as calcareous material and K2SiO3 solution as kiesel materials, controlling the system of pH=12.6 and reactant concentration of 0.05mol·L-1 at 225℃for 15 h. The effect of impurities and its content on the morphologies of hydrothermal synthesis products was studied mainly in this paper, and adding Cl- ions when using CaCl2 as calcareous material, controlling the Na2O content less than 5% and Al2O3 content less than 1% are beneficial to the preparation of xonotlite whiskers.
     The xonotlite crystal was prepared for the first time using the carbide slag as raw material. The requirements of raw materials are different attributed to the different morphologies of hydrothermal synthesis products, and then the xonotlite whiskers were synthesized from the carbide slag which was pretreated by the way of pickling under the conditions of pH=8.0 when pickling, at 225℃for 15 h, which are the best process parameters in this paper. The xonotlite spherical particles were prepared from the carbide slag which was pretreated by the methods of calcination and ultrasonic technologies respectively, under the conditions of using Ca(OH)2 suspension which was prepared from the carbide slag calcined at 800℃for 2 h and digested by the deionized water of 12 times and 80℃for 30 min as calcareous material, or using the carbide slag slurry at 160 W ultrasonic for 3 h as calcareous material, CaO/SiO2 mol ratio 1.0, water/solid weight ratio of 28:1, stirring speed of 400 rpm and 150 rpm when heating and reaction stage respectively, at 215℃for 10 h.
     Base on the growth characteristics of xonotlite crystal, the ultra-light material of calcium silicate was strengthened with the methods of“adding reinforcing agent”and“whisker in–situ growth”respectively. The product of 109 Kg·m-3 was prepared under the conditions of aspect ratio of 50-100, whiskers mixing amount of 5%, forming pressure of 0.5 MPa, demould and drying at 75℃for 12 h, and its flexural and compressive strength are 0.37 MPa and 0.59 MPa respectively when having the method of“adding reinforcing agent”. The product of 118 Kg·m-3 was prepared under the conditions of K2SiO3/H2SiO3 mol ratio 2.0, hydrothermal treatment proceeded at 225℃for 15 h, forming pressure of 0.5 MPa, demould and drying at 75℃for 12 h, and its flexural and compressive strength are 0.42 MPa and 0.66 MPa respectively when having the method of“whisker in–situ growth”. The specific strengthF and specific strengthC of the products prepared by adding glass fibers of 3% are 2.22×103 cm and 3.65×103 cm respectively, and the specific strengthF and specific strengthC of the products prepared by adding xonotlite whiskers of 5% are 3.40×103 cm and 5.41×103 cm respectively. The results indicated that the product prepared by adding xonotlite whiskers is of lower density, higher specific strength and well thermal insulation performance.
引文
[1]袁建君,方琪,刘智恩.晶须的研究进展[J].材料科学与工程, 1996, 14(4): 1-7
    [2] Erker L. Tretise on Ores and Assaying, 1574, 2nded, 15680[J].University of Chicago, 1951:177-183
    [3] Boyle R. The Sceptical Chemist[M]. Everyman’s Edition. London, 1661:193
    [4] Herring C, Galt J.K.. Elastic and plastic properties of very small metal specimens[J]. Physical Review, 1952, 85(6):1060-1061
    [5]陈艺峰. ZnO晶须生长理论及热镀锌渣制备四针状晶须工艺研究[D].博士学位论文.长沙:中南大学, 2004
    [6]熊艳丽,杨锐,王汝敏,等.晶须及其在高分子材料中的应用[J].中国胶粘剂, 2006, 15(2): 35-39
    [7]李法强,凌宝萍,刘宝胜,等.特殊形貌MgO材料的研究[J].盐湖研究, 2004, 12(1):23-33
    [8]陈尔凡,田雅娟,周本廉.晶须增强体及其复合材料研究进展[J].高分子材料科学与工程, 2002, 18(4): 1-5
    [9]陈尔凡,郝春功,李素莲,等.晶须增韧陶瓷复合材料[J].化工新型材料, 2006, 34(5):1-4
    [10]马晓燕,梁国正,贾巧英.晶须在复合材料中的应用[J].材料导报, 2001, 15(7): 44-46
    [11]时虎,刘凯,鲁红典,等.晶须材料在阻燃防火上的应用[J].消防技术与产品信息, 2006, (6): 17-21
    [12]徐兆瑜.晶须的研究和应用新进展[J].化工技术与开发, 2005, 34(2): 11-17
    [13]胡晓兰,梁国正.晶须/聚合物基复合材料的研究[J].材料科学与工艺, 2002, 10(4): 442-448
    [14]戴静,王敏,张金才.硼酸盐晶须在复合材料中的应用[J].化工矿物与加工, 2005, 10:36-38
    [15]胡克伟,李东升,孙彦军.硼酸镁晶须增强材料的制备与应用[J].广东微量元素科学, 2006, 13(4): 14-16
    [16]岑兰,陈福林,王志远,等.硅酸钙晶须在NBR/PVC体系中的应用[J].特种橡胶制品, 2006, 27(5): 10-13
    [17]周祚万,楚珑晟,唐明文,等. ZnO晶须增强树脂基复合材料研究[J].高分子材料科学与工程, 2004, 20(3): 202-205
    [18]周健,蒋艳峰.晶须镁盐/POE/聚丙烯共混体系力学性能的研究[J].塑料工业, 2005, 33(9): 18-21
    [19]李武,靳治良,张志宏.无机晶须材料的合成与应用[J].化学进展, 2003, (7):264-274
    [20] Sun F.S., (Sam) Froes F.H.. Solidification behavior of Ti5Si3 whiskers in TiAl alloys[J]. Materials Science and Engineering A, 2003, 345:262-269
    [21] Katsumi Y, Iwao H. Development of directionally aligned SiC whisker wheel[J]. Precision Engineering, 1995, 17:5-9
    [22]时虎,张锦丽,石晨旭,等.晶须材料在涂料中的应用[J].中国涂料, 2007, 22(5):54-56
    [23]李武.无机晶须[M].北京:化学工业出版社, 2005:1-12
    [24] Givargizov E.I.. Highly Anisotropic Crystals[M]. Tokyo: Terra scientific publishing company, 1987:70
    [25]周祚万,胡书春.晶须的特点及其产业化前景分析[J].新材料产业, 2002, (6): 18-28
    [26]卡茨H.S..塑料用填料及增强剂手册[M].李佐邦等译.北京:化学工业出版社, 1985: 403-421
    [27]孟季茹,赵磊,梁国正,等.无机晶须在聚合物中的应用[J].化工新型材料, 2001, 29(12): 1-6
    [28] Brenner S.S.. Facters influencing the strength of whiskers in composite materials[J]. American Society for Metals, 1965:11-18
    [29]李广宇,吴子东.晶须的性能及其应用进展[J].热固性树脂, 2000, 15(2): 48-51
    [30]潘金生,陈永华.晶须及其应用[J].复合材料学报, 1995, 12(4): 1-7
    [31]王晓丽,薛冬峰.无机晶须材料的研究及应用[J].无机盐技术, 2006, (3):11-15
    [32]隗学礼,赵宽放.晶须及其增强塑料复合材料[J].现代塑料加工应用, 2001, 13(6): 52-56
    [33]崔小明.无机晶须的研究和应用进展[J].无机盐技术, 2006, (4):17-21
    [34]王泽红,韩跃新,袁致涛. CaSO4晶须制备技术及应用研究[J].矿冶, 2005, 14(2): 38-41
    [35] Evans C.C.. Whiskers[M]. London: Mill&Boon Limited, 1972:62
    [36] Tyson W.R.. Theoretical strength of perfect crystals[J]. Philosophical Magazine, 1966,14:925-936
    [37] Uemoto H, Tanaka H, Hirao T, et al. Bi-based superconducting whiskers grown at various O2 gas flow rates[J]. Physica C: Superconductivity, 2002, 378-381: 303-305
    [38] Inomata K, Kawae T, Kim S.-J., et al. Carrier density control of Bi-2212 whisers[J]. Physica C: Superconductivity, 2002, 372-376: 335-338
    [39]龚安华,孙岳玲.纳米晶须材料的研究概述[J].化学工程师, 2008, (5):41-43
    [40] Ping P, Sorrella C. Preparation of mullite whiskers from topaz decomposition[J]. Materials Letters, 2004, 58:1288-1291
    [41] Supatra J, Dujreutai P, Wojciech S, et al. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate[J]. International Journal of Inorganic Materials, 2001, 3:997-1001
    [42] Wang D.B., Yu D.B., Shao M. W., et al. Growth of Sb2Se3 whiskers via a hydrothermal method[J]. Materials Chemistry and Physics, 2003, 82:546-550
    [43] Chen Z.Z., Shi E.W., Zheng Y.Q., et al. Growth of hex-pod-like Cu2O whisker under hydrothermal conditions[J]. Journal of Crystal Growth, 2003, 249:294-300
    [44] Ping P, Chris S. Preparation of mullite whiskers from topaz decomposition[J]. Materials Letters, 2004, 58: 1288-1291
    [45] Li J.X., Narita T, Ogawa J, et al. In situ synthesis of porous ceramics with a framework structure of aluminuium borate whisers[J]. Journal of Material Science, 1998, 33(10): 2601-2605
    [46] Zhu H.X., Abbaschian R. In-situ processing of NiAl-alumina composites by thermite reaction[J]. Materials Science and Engineering A, 2000, 282:1-7
    [47] Supatra J, Dujreutai P, Wojciech S, et al. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate[J]. International Journal of Inorganic Materials, 2001, 3:997-1001
    [48] Wang D.B., Yu D.B., Shao M.W., et al. Growth of Sb2Se3 whiskers via a hydrothermal method[J]. Materials Chemistry and Physics, 2003, 82:546-550
    [49] Chen Z.Z., Shi E.W., Zheng Y.Q., et al. Growth of hex-pod-like Cu2O whisker under hydrothermal conditions[J]. Journal of Crystal Growth, 2003, 249:294-300
    [50]陈锐,罗康碧,李泸萍,等.晶须在材料中的应用[J].化工科技, 2007, 15(6):58-61
    [51] Wagner R.S., Ellis W.C.. The vapor-liquid-solid mechanism of crystal growth and its application to silicon[J]. Transactions of the Metallurgical Society of AIME, 1965, 233: 1053-1064
    [52] Wagner R.S.. Defects in silicon crystals grown by VLS technique[J]. Journal of Applied Physics, 1967, 38: 1554-1560
    [53] Frank F.C.. The influence of dislocation on crystal growth[J]. Discussions of the Faraday Society, 1949, 5: 48-54
    [54] Masahiro Y, Hiroyuki S, Kengo O, et al. Hydrothermal synthesis of biocompatible whiskers[J]. Journal of Material Science, 1994, 29:3399-3402
    [55] Xu H.H., Smith D.T., Simon C.G.. Strong and bioactive composites containing nano-silica-fused whiskers for bone repaire[J]. Biomaterials, 2004, 25: 4615-4626
    [56] Xu H.H., Quinn J.B., Smith D.t., et al. Effects of different whiskers on the reinforcement of dental resin composites[J]. Dental Materials, 2003, 19: 359-367
    [57]金培鹏,周文胜,丁雨田,等.晶须在复合材料中的应用及其作用机理[J].盐湖研究, 2005, 13(2):1-6
    [58]聂立芳,张玉军,魏红康.碳化硅晶须增韧陶瓷基复合材料的研究进展[J].山东陶瓷, 2006, 29(2):16-19
    [59]魏明,王春波,乃学瑛,等.无机晶须研究进展II:钛酸钾晶须在复合材料中的应用[J].盐湖研究, 2005, 13(1): 56-60
    [60] Wu S.Q., Wei Z.S., Tjong S.C.. The mechanical and thermal expansion behavior of an Al-Si alloy composite reinforced with potassium titanate whisker[J]. Composites Science and Technology, 2000, 60: 2873-2880
    [61] Hong S.H., Chung K.H., Lee C.H.. Eeffects of hot extrusion parameters on the tensile properties and microstructures of SiCw-2124 Al Composites[J]. Materials Science and Engineering A, 1996, 206:225-232
    [62] Isao T, Tsunemichi I, Kyosuke A. High temperature properties of aβ-Si3N4 whisker reinfoeced aluminium alloy composite produced by squeeze casting[J]. Scripta Metallurgical et Materialia, 1995, 32(11): 1801-1806
    [63] Pernilla P, Mats J. Thermal shock properties of alumina reinforced with Ti(C,N) whisker[J]. Journal of the European Ceramic Society, 2003, 23:309-313
    [64] Ding D.Y., Wang D.Z., Zhang X.X., et al. Mechanical properties of the alumina-coated Al18B4O33w:6061Al composites[J]. Materials Science and Engineering A, 2001, 308:19-24
    [65]岳涛,朱黎霞,杨荣榛,等.无机镁盐晶须的应用研究进展[J].无机盐工业, 2003, 35(4):11-13
    [66]魏昶,罗天娇,黄卉,等.四针状氧化锌晶须制备方法及其在复合材料中的应用[J].矿冶, 2004, 13(1):64-67
    [67]张林栋,卢亚哲,袁俊生.碱式氯化镁晶须在塑料中的应用研究[J].海湖盐与化工, 2005, 34(2): 7-9
    [68]陈绪煌,凌秀菊,卢丽红.六钛酸钾晶须的表面处理及其在高分子材料中的应用[J].塑料制造, 2007, 1(2):53-58
    [69]梁振芬.钛酸钾晶须在工程塑料中应用的研究[J].化学工程师, 2005, 113(2):12-14
    [70]熊英,陈光顺,郭少云,等.聚氯乙烯/钛酸钾晶须复合材料性能的研究[J].塑料工业, 2004, 32(7):32-35
    [71]胡晓兰,梁国正,朱光明.钛酸钾晶须改性聚合物基复合材料的研究[J].材料导报, 2001, 15(11):57-59
    [72]杨洁颖,梁国正,唐玉生,等.硼酸铝晶须增强氰酸酯树脂的性能[J].材料研究学报, 2005, 19(6):625-630
    [73]杨洁颖,梁国正,唐玉生,等.硼酸铝晶须增强氰酸酯树脂/玻璃布复合材料的研究[J].航空学报, 2006, 27(2):331-335
    [74]周建萍,邱克强,傅万里.氧化锌晶须/聚丙烯复合材料性能的研究[J].合成树脂基塑料, 2004, 21(4):72-75
    [75]张林栋,杨剑,袁俊生,等.碱式氯化镁晶须用于热熔胶的研究[J].粘接, 2004, 25(2):10-12
    [76]贺云果,宋永才.碳酸钙晶须的制备与应用研究进展[J].材料导报, 2005, 19(7):33-36
    [77]陈学玺,崔波.磷石膏晶须与天然石膏晶须在造纸上的应用[J].实用技术, 2006, 35(5):31-32
    [78] Albert P.L.. Whisker Technology[M]. New York: John Wiley, 1970:47-119
    [79] Everett R.K., Arsenault R. J.. Metal Matrix Composites: Mechanism and Properties[M]. Boston: Academic Press, 1991:287-328
    [80]靳治良,李胜利,李武.晶须增强体复合材料的性能与应用[J].盐湖研究, 2003, 11(4):57-66
    [81]王启宝,曾鸣,郭梦熊. SiC晶须的特性及其合成与应用发展现状[J].化工新型材料, 1997, (5):8-13
    [82]党争光.无机晶须的应用现状[J].辽宁化工, 2007, 36(11): 777-792
    [83] Chihiro K, Akira Y. Effect of metal oxides addition on the preparation of Si3N4 whiskersby vaporization of amorphous Si3N4[J]. Ceramics International, 1999, 25: 297-302
    [84] Javier L. Fatigue of particle-and-whisker-reinforced-matrix composites[J]. Progress in Material Science, 2002, 47:283-353
    [85]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社, 1993:529-531
    [86]毛仲佳,盛建新.超轻型硅酸钙保温材料的研究[J].硅酸盐通报, 1997, (1):50-54
    [87]梁宏勋,李懋强.动态水热合成中搅拌对生成硅酸钙球形团聚体的作用[J].中国粉体技术, 2002, 8(4): 1-5
    [88]李懋强,陈玉峰,夏淑琴,等.超轻微孔硅酸钙绝热材料的显微结构和工艺控制[J].硅酸盐学报, 2000, 28 (5): 401-406
    [89] Churakov S.V., Mandaliev P. Structure of the hydrogen bonds and silica defects in the tetrahedral double chain of xonotlite[J]. Cement and Concrete Research, 2008, 38: 300-311
    [90]倪文.硅钙石型硅酸钙保温材料的特点与发展趋势[J].新材料产业, 2002, (11): 32-35
    [91] Li M.Q., Liang H.X.. Formation of micro-porous spherical paticles of calcium silicate(xonotlite) in dynamic hydrothermal process[J]. China particuology, 2004, 2(3): 124-127
    [92] Taylor H.F.W.. The chemistry of cements[M]. London: Academic Press, 1964
    [93]梁宏勋.动态水热法合成硬硅钙石球形团聚体形成机理的研究[D].硕士学位论文.北京:中国建筑材料研究院, 2001
    [94] Shaw S, Clark S.M, Henderson C.M.B.. Hydrothermal formation of the calcium silicate hydrates, tobermorite(Ca5Si6O16(OH)2·4H2O) and xonotlite(Ca6Si6O17(OH)2): an in situ synchrotron study[J]. Chemical Geology, 2000, 167:129-140
    [95] Meducin F, Bresson B, Lequeux N, et al. Calcium silicate hydrates investigated by solid-state high resolution 1H and 29Si nuclear magnetic resonance[J]. Cement and Concrete Research, 2007, 37: 631-6318
    [96] Aitken A, Taylor H.F.W.. Hydrothermal reaction in lime-Quartz pastes[J]. Journal of Materials Science, 1960, (10): 27-32
    [97]朱林.合成超细直径硬硅钙石纤维基础研究[D].硕士学位论文.北京:北京科技大学, 2004
    [98] Endo T, Sugiura S, Salamaki M, et al. Sintering and mechanical preperties of beta-Wollastanite[J]. Journal of Materials Science, 1994, 29(6): 1501-1506
    [99] Katsumata H, Kaneco S, Matsuno R, et al. Removal of organic polyelectrolytes and their metal complexes by adsorption onto xonotlite[J]. Chemosphere, 2003, 52: 909-915
    [100]纪明辉,魏平原,孟庆飞.纳米纤维的制备及性能[J].高科技纤维与应用, 2002, 27(3): 11-14
    [101]郑元林,张吉元,蒋智,等.硬硅钙石活性料浆的动态水热合成及其制品的研制[J].新型建筑材料, 1991, (12): 7-11
    [102]方春霖,宋东生.耐高温硅酸钙保温材料[J].江西建材, 1995, (4): 11-14
    [103]余志伟.粉石英在微孔硅酸钙保温材料中的应用研究[J].华东地质学院学报, 1997, 20(3): 233-238
    [104]宋素兰,韩锦州,郑权.动态法合成超轻微孔硅酸钙[J].北京建材, 1988, (4): 8-15
    [105] Saclay C.E.A.. Silicon substitution for aluminum silicate hydrates[J]. Journal of the American Ceramic Society, 1999, 82(5): 1307-1312
    [106] Konodo R, Ohsawa S. Reactivities of various silicates with calcium hydroxide and water[J]. Journal of the American Ceramic Society, 1979, 62(2): 9-10
    [107] Al-Tayyib A.J., Jung H.J., Shamim Khan M. Development of calcium silicate thermal insulator in Saudi Arabia[J]. Cement and Concrete Research, 1990, 20(5): 767-777
    [108]侯云芬.水热合成C-S-H凝胶的新方法及其应用[J].北京建材, 1997, 5(4):6-10
    [109]许晓玲,毛仲佳,王炜.生产轻质硅酸钙扳的一些基本条件[J].中国建材技术, 1997, 6(6 ): 1-9
    [110]王炜,毛仲佳,许晓玲.制约我国硅酸钙隔热制品行业发展的几个因素[J]. 1998, 7(3):5-7
    [111] Glasser F.P., Hong S.-Y.. Thermal treatment of C-S-H gel at 1 bar H2O pressure up to 200℃[J]. Cement and Concrete Research, 2003, 33: 271-279
    [112] Qian G.R., Xu G.L., Li H.Y., et al. Mg-xonotlite and its coexisting phases[J]. Cement and Concrete Research, 1997, 27(3): 315-320
    [113]王华,宋存义,曹贞源,等.硅酸钙保温材料的原料选择依据[J].墙材革新与建筑节能, 1999, (4): 37-38
    [114]奥新.生石灰[M].王保林译.北京:中国建筑工业出版社, 1956
    [115]林燕成.硬硅钙石球状二次粒子形成机理研究[D].硕士学位论文.北京:北京科技大学, 2001
    [116]李懋强.硅酸钙保温材料[J].上海建材,1997, (4): 29-31
    [117]姚治才.硅酸钙隔热保温材料[J].陶瓷, 1992, 99(5): 33-36, 11
    [118] Meller N, Hall C, Kyritsis K, et al. Synthesis of cement base CaO-Al2O3-SiO2-H2O (CASH) hydroceramics at 200 and 250℃: Ex-situ and in-situ diffraction[J]. Cement and Concrete Research, 2007, 37: 823-833
    [119] Hartmann A, Buhl J.-Ch., Breugel K.V.. Structure and phase investigations on crystallization of 11 ? tobermorite in lime sand pellets[J]. Cement and Concrete Research, 2007, 37: 21-31 [ 1 20] Mostafa N.Y., Shaltout A.A., Omar H, et al. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites[J]. Journal of Alloys and Compounds, 2009, 467(1-2): 332-337
    [121]袁凤林. GF板保护钢结构的设计与施工[J].消防技术与产品信息, 2001, (4): 13-17
    [122]曾令可,曹建新,王慧等.硬硅钙石-SiO2气凝胶复合纳米孔超级绝热材料[J].陶瓷学报, 2004, 25(2): 75-80
    [123]王天民.不燃陶瓷纸[J].建材工业信息, 1996, (7): 12
    [124]韩剑宏,倪文,于衍真.硬硅钙石二次粒子对含铅废水处理效果的影响[J].环境污染治理技术与设备, 2006, 7(1): 22-25
    [125]姚启均.硬硅钙石类人造木材[J].建材工业信息, 1996, (20): 7
    [126]黄翔.生物活性硅灰石及其复合材料的研究[D].博士学位论文.上海:中国科学院上海硅酸盐所, 2002
    [127] Milestone N.B., Ghanbari Ahari K. Hydrothermal processing of xonotlite based compositions[J]. Advances in Applied ceramics, 2007, 6 (106): 302-308
    [128] Udawatte C.P., Yanagisawa K, Kamakura T, et al. Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing[J]. Materials Letters, 2000, 45:298-301
    [129] Yoshimura M, Suda H. Hydrothermal synthesis of biocompatible whiskers[J]. Journal of Materials Science, 1994, 29: 3399-3402
    [130] Huang X, Jiang D.L., Tan S.H.. Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability[J]. Materials Research Bulletin, 2002, 37: 1885-1892
    [131] Takahashi K, Yamasaki N, Mishima K, et al. Coating of pulp fiber with xonotlite under hydrothermal conditions[J]. Journal of Materials Science Letters, 2002, 21: 1521-1523
    [132] Lin K.L., Chang J, Chen G. F., et al. A simple method to synthesize single-crystallineβ-wollastonite nanowires[J]. Journal of Crystal Growth, 2007, 300: 267-271
    [133] Udawatte C.P., Yanagisawa K, Kamakura T, et al. Solidification of xonotlite fibers withchitosan by hydrothermal hot pressing[J]. Materials Letters, 2000, 45: 298-301
    [134] Kunugiza K, Tsukiyama K, Teramura S. Direct formation of xonotlite fiber with continuous-type autoclave[J]. Gysum & Lime, 1988, (216): 34-40
    [135] Yanagisawa K, Feng Q, Yamasaki N. Hydrothermal synthesis of xonotlite whiskers by ion diffusion[J]. Journal of materials science letters, 1997, 16: 889-891
    [136]黄翔,江东亮,谭寿洪.生物活性硅酸钙晶须的螯合剂法水热合成[J].无机材料学报, 2003, 18(1): 143-148
    [137]黄翔,江东亮,谭寿洪.托贝莫来石晶须的螯合剂法水热合成[J].陶瓷学报, 2001, 22(3): 138-141
    [138] Li X.K., Chang J. A novel hydrothermal route to the synthesis of xonotlite nanofibers and investigation on their bioactivity[J]. Journal of Material Science, 2006, 41: 4944-4947
    [139]梁宏勋,李懋强.硝酸锶对水热合成硬硅钙石球形团聚体的影响[J].硅酸盐学报, 2002, 30(2): 258-262
    [140] Yasuo A, Tamotsu Y, Shigeti A, et al. Effect of additive on crystal shape and control of xonotlite[J]. Inorganic Material, 1995, 2(258): 310-319
    [141] Shibahara K, Kubo K, Takahashi A. Effect of raw lime materials on the textures of synthesized xonotlite[J]. Gysum & Lime, 1986, (203): 33-38
    [142] Yasuo A, Yasue T, Aoki S. Crystal shape and size controls of xonotlite[J]. Gysum & Lime, 1994, (248):17-25
    [143] Shibahara K, Kubo K, Takahashi A. Effect of silica raw materials on the textures of synthesized xonotlite[J]. Gysum & Lime, 1986, (202): 34-42
    [144]蔡子明.硅酸钙制品的性能及应用[J].保温材料与节能技术, 1996, (4): 25-30
    [145]焦鸿阁,徐延臻.硅酸钙系保温材料的结构特性及应用[J].耐火材料, 1989, (6): 31-33
    [146]许晓玲.我国高温硅酸钙生产中存在的一些问题[J].北京建材, 1998, (3): 31-33
    [147]李懋强.水热合成硅酸钙微孔球形颗粒[J].硅酸盐学报, 2002, 30(suppl.): 64-67
    [148]郑骥,倪文,肖晋宜.硬硅钙石动态水热法合成及其微观形貌控制[J].材料科学与工程, 2008, 26(2): 161-164
    [149] Lin K.L., Chang J, Chen G.F.. A simple method to synthesize single-crystallineβ-wollastonite nanowires[J]. Journal of Crystal Growth, 2007, 300: 267-271
    [150]李莲莲. YMn<,2>0<,5>多铁性陶瓷粉末的水热合成[D].硕士学位论文.杭州:浙江大学, 2008
    [151]吴淑雅.钙钛矿铌酸盐电介质陶瓷粉末的水热合成[D].博士学位论文.杭州:浙江大学, 2008
    [152]杨贤锋.含钛纳米结构材料的可控水热合成及性能研究[D].博士学位论文.广州:中山大学, 2008
    [153]驻华云.金属硫化物的水热合成及表征[D].硕士学位论文.杭州:浙江大学, 2008
    [154]天津大学物理化学教研室.物理化学[M].第四版.王正烈等修订.北京:高等教育出版社, 2006: 3-13
    [155]杜清枝,杨继尧.物理化学[M].第二版.重庆:重庆大学出版社, 2005: 218-228
    [156]华东理工大学化学系,四川大学化工学院.分析化学[M].第五版.北京:高等教育出版社, 2007: 102-114
    [157]周海牛,庄志强,王歆. BaTiO3粉体的水热法合成[J].中国陶瓷, 2001, 37(3): 44-47
    [158] Shi C.J., Jimenez A.F.. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements[J]. Journal of Hazardous Materials, 2006, 137(3): 1656-1663
    [159] Luke K. Phase studies of pozzolanic stabilized calcium silicate hydrates at 180℃[J]. Cement and Concrete Research, 2004, 34: 1725-1732
    [160] Hong S.-Y., Glasser F.P.. Phase relations in the CaO-SiO2-H2O system to 200℃at saturated steam pressure[J]. Cement and Concrete Research, 2004, 34: 1529-1534
    [161] Cheyrezy M, Maret V, Frouin L. Microstructural analysis of RPC(reactive powder concrete)[J]. Cement and Concrete Research, 1995, 25(7): 1491-1500
    [162] Zanni H, Cheyrezy M, Maret V. Investigation of hydration and pozzolanic reaction in reactive powder concrete(RPC) using 29Si NMR[J]. Cement and Concrete Research, 1996, 26(1): 93-100
    [163] Tsunematsu S, Inoue K, Kimura K, et al. Improvement of acid resistance of calcium silicate hydrate by thermal treatment[J]. Cement and Concrete Research, 2004, 34: 717-720
    [164] Etoh J, Kawagoe T, Shimaoka Takayuki, et al. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material[J]. Waste Management, 2009, 29(3): 1048-1057
    [165] Qian G, Li A, Xu G, et al. Hydrothermal products of the C3MS2-C12A7-MgO system[J]. Cement and Concrete Research, 1997, 27(12): 1791-1797
    [166] Qian G, Xu G, Li H, et al. The effect of autoclave temperature on the experansion and hydrothermal products of high-MgO blended cements[J]. Cement and Concrete Research, 1998, 28(1): 1-6
    [167] Sugama T. Hot alkali carbonation of sodium Metaphosphate modified fly ash/calcium aluminate blend hydrothermal cements[J]. Cement and Concrete Research, 1996, 26(11): 1661-1672
    [168] Siauciunas R, Baltakys K. Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz[J]. Cement and Concrete Research, 2004, 34: 2029-2036
    [169] Feylessoufi A, Crespin M, Dion P, et al. Controlled rate thermal treatment of reactive powder concretes[J]. Advanced Cement Based Materials, 1997, 6:21-27
    [170] Qian G, Sun D.D., Tay J.H., et al. Autoclave properties of kirschsteinite-based steel slag[J]. Cement and Concrete Research, 2002, 32: 1377-1382
    [171] Cong X.D., Kirkpatrick R.J.. 29Si and O17 NMR Investigation of the structure of some crystalline calcium silicate hydrates[J]. Advanced Cement Based Materials, 1996, 3: 133-143 [ 1 72] Shaw S, Henderson C.M.B., Komanschek B.U.. Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study[J]. Chemical Geology, 2000, 167: 141-159
    [173]郑元林,张吉元,蒋智,等.动态水热合成硬硅钙石的反应历程研究[J].中国建筑材料科学研究院学报, 1991, 3(4): 19-27
    [174] Meller N, Hall C, Phipps J.S.. A new phase diagram for the CaO-Al2O3-SiO2-H2O hydroceramic system at 200℃[J]. Materials Research Bulletin, 2005, 40: 715-723
    [175] Mostafa N.Y., Shaltout A.A., Omar H. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites[J]. Journal of Alloys and Compounds, 2009, 467:1-6
    [176]胡树青.应用Matlab确定化学反应速率方程[J].今日科苑, 2008, (12): 283
    [177]张引沁,刘伟.一级反应速率常数测定数据处理方法选择[J].平原大学学报, 2001, 18(2): 81-82
    [178]王林春,王磊,李维国.求解反应动力学参数的一类方法[J].西安石油大学学报(自然科学版), 2006, 21(1): 82-86
    [179]熊杰明,张丽萍,吕九琢.反应动力学参数的计算方法与计算误差[J].计算机与应用化学, 2003, 25(1): 159-162
    [180]何伟保,张民选.数值分析[M].贵阳:贵州科技出版社, 2003:222-225
    [181] Noma H, Yamada H. Formation of xonotlite from Ill-crystallized calcium silicate hydrate(C-S-H)[J]. Gypsum & Lime, 1991, (231): 99-104
    [182] Wieslawa N.W.. Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates[J]. Cement and Concrete Research, 1999, 29: 1759-1767
    [183] Wieslawa N.W.. Effect of some inorganic admixtures on the formation and properties of calcium silicate hydrates produced in hydrothermal conditions[J]. Cement and Concrete Research, 1997, 27(1): 83-92
    [184] Meller N, Hall C, Phipps J.S.. A new phase diagram for the CaO-Al2O3-SiO2-H2O hydroceramic system at 200℃[J]. Materials Research Bulletin, 2005, 40: 715-723
    [185]劳迪斯R.A..单晶生长[M].刘光照译.北京:科学出版社, 1979: 92
    [186]张克从,张乐憓.晶体生长科学与技术[M].北京:科学出版社, 1990: 91
    [187]罗谷风.结晶学导论[M].北京:地质出版社, 1985: 112
    [188]徐宝琨,阎卫平,刘明登.结晶学[M].长春:吉林大学出版社, 1991: 143, 269
    [189]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社, 1999: 197
    [190]施尔畏,钟维卓,华素坤,等.关于离子配位多面体生长基元模型[J].中国科学(E), 1997, 27(3): 229-236
    [191]李汶军,施尔畏,殷之文,等.配位多面体生长基元模型与晶体的生长习性[J].中国科学(E), 2001, 31(6): 487-495
    [192] Li W.J., Shi E.W.. Growth mechanism and growth habit of oxide particles[J]. Journal of Crystal Growth, 1999, 203: 186-192
    [193] Huang X, Jiang D.L., Tan S.H.. Novel hydrothermal synthesis of tobermorite fibers using Ca(II)-EDTA complex precursor[J]. Journal of the European Ceramic Society, 2003, 23: 123-126
    [194]冯丽珍,莫晓丹.电石渣浆的治理及完善措施[J].中国氯碱, 2008, (6): 38-39
    [195]张友坤,康朝晖,李晓,等.电石渣的处理及回收利用[J].聚氯乙稀, 2001, (1): 52-54
    [196]黄存捍,邓寅生,刑学玲,等.电石渣的综合利用途径探讨[J].焦作工学院学报(自然科学版), 2004, 23(2): 143-146
    [197]严福英.聚氯乙烯工艺学[M].北京:化学工业出版社, 1990
    [198]王欣荣.浅谈电石渣的综合利用[J].中国氯碱, 2003, (8): 36-39
    [199]张朝,许锡均.浅谈电石渣的综合利用[J].研究进展, 2006, (7): 41-43
    [200]石瑛.电石渣浆的综合治理与利用[J].中国氯碱, 2004, (6): 39-41
    [201]马国清,李兆乾,裴重华.电石渣的综合利用进展[J].西南科技大学学报. 2005, 20(2): 50-52
    [202]王慧青,童继红,沈立平.电石渣的资源化利用途径[J].化工生产与技术, 2007, 14 (1): 47-51
    [203]胡国静,张树增,王键红.电石渣的综合利用[J].聚氯乙烯, 2006, (8): 39-44
    [204]刘春英.工业废弃物-电石渣的国内现状及其资源化方向[J].水泥技术, 2005, (6): 60-62
    [205]余建芳.开发和综合利用电石渣有效途径拓展的研讨[J].中国氯碱, 2000, (10): 31-32
    [206]张炳慧.天津化工厂废渣综合利用工程[J].氯碱工业, 2001, (2): 30-32
    [207]王昌军.电石渣综合利用制水泥[J].中国氯碱, 1999, (6): 39-41
    [208]赵琦.电石法制氯乙烯生产的三废治理[J].中国氯碱, 1995, (5): 25-27
    [209]吴彬,郭书清.电石渣的有效利用-制作漂白液[J].中国氯碱, 1997, (12): 31-32
    [210]薛福连.电石渣的综合开发利用[J].再生资源利用, 1999, (1): 27-30
    [211]叶东忠,张亮,黄太松.电石渣作混合材对水泥结构与性能影响的试验研究[J].福州大学(自然科学版), 2004, 32(1): 43-46
    [212]邱树恒,袁罡,林秀娟.用改性电石渣取代石膏磨制硅酸盐水泥的研究[J].水泥, 2004, (3): 3-5
    [213]石忠贵,谢新光.利用电石渣与粉煤灰配料生产水泥[J].水泥技术, 1998, (4): 52-53 [2 1 4] Jaturapitakkul C, Roongreung B. Cementing Material from Calcium Carbide Residue-rice Husk Ash[J]. journal of Materials in Civil Engineering, 2003, 15(5): 470-475
    [215] Krammart P, Tangtermsirikul S. Properties of Cement Made by partially Replacing Cement Raw Materials with Municipal Solid Waste Ashes and Calcium Carbide Waste[J]. Construction and Building Materials, 2004, (18): 579-583
    [216]王敏.电石渣-煤渣免烧砖的研制[J].粉煤灰综合利用, 2004, (1): 56
    [217]高文元,马铁成.利用粉煤灰水淬矿渣和电石渣生产蒸压砖的研究[J].新型墙体材料与施工, 2003, (8): 35-36
    [218]罗洪伟,周兴国.电石渣稳定土路面基层应用技术研究[J].辽宁交通科技, 2004, 23(2): 22-23
    [219]付峰,房立军.粉煤灰-电石渣复合胶凝材料的研制和应用[J].粉煤灰综合利用, 2004, (3): 23-24
    [220]李立新,薛明.使用粉煤灰/电石渣作为公路基层的探讨[J].粉煤灰, 2003, (5): 30-32
    [221]史红.电石渣干粉在电厂烟气脱硫工艺中的应用[J].新能源及工艺, 2003, (5): 42-45
    [222]赵晓英,陈曙光,廖卫平.电石渣固硫性能的研究[J].污染防治技术, 1999,12(3): 152-154
    [223]韦筠寰.电石渣在酸性废水治理中的应用[J].化工进展, 2003, 22(4): 410-412
    [224]王绍东.用电石渣生产高活性氧化钙[P]. CN: 1035096A, 1989-08-30
    [225]袁竟成.用电石渣制取漂白粉的方法[P].CN: 1040007A, 1992-1-22
    [226]李厚鹏,唐敬祥.电石泥生产微细轻质碳酸钙的方法[P].CN: 1061391A, 1992-5-27
    [227]袁竟成.用电石渣制取高活性氧化钙的方法[P]. CN: 1058004A, 1992-1-22
    [228]白进伟,邓跃全.电石泥渣分析[J].理化检测-化学分册, 2004, 40(11): 659-663
    [229]王贞尧,吴梅梅,黄毓敏,等.石灰活性对中空硬硅钙石二次粒子球形貌的影响[J].耐火材料, 1997, 31(4): 205-207
    [230]薛绵绵,周宏铎.石灰乳活性度的测定[J].浙江化工,1996,27 (4): 35-36
    [231]程军,周俊虎,刘建超,等.电石渣动态煅烧及烧结过程的微观结构分析[J].化工学报, 2003, 54(7): 984-988
    [232]钟伟飞,吴忠标.石灰消化工艺的研究与优化[J].环境污染与防治, 2004, 26 (6): 424-436
    [233]曹建新. SiO2气凝胶-硬硅钙石型硅酸钙复合纳米孔超级绝热材料的制备与表征[D].博士学位论文.广州:华南理工大学, 2008
    [234]曹建新,刘飞,张煜,等.利用电石渣制备硬硅钙石[J].化学工程, 2007, 35(12): 51-54
    [235] Cao Jian-xin, Liu Fei, Lin Qian, et al. Effect of calcination temperature on mineral composition of carbide slag, lime activity and synthesized xonotlite[J]. Key Engineering Materials, 2008, 368-372:1545-1547
    [236] Cao Jian-xin, Liu Fei, Lin Qian, et al. Hydrothermal synthesis of xonotlite from carbide slag[J]. Progress in Natural Science, 2008, 18: 1147-1153
    [237]肖仙英,郑炽嵩,胡健,等.玻璃纤维在水中分散处理的研究[J].黑龙江造纸, 2003, (3): 1-3
    [238]曲玲玲,赵传山.玻璃纤维纸现状及发展概况[J].西南造纸, 2006, 35(3): 21-22
    [239] Ayao K, Akira W.界面电现象[M].邓彤,赵学范译.北京:北京大学出版社, 1988: 77-90
    [240]北原文雄.表面活性剂分析和试验法[M].毛培刊译.北京:轻工业出版社,1991: 115-163
    [241]刘程.表面活性剂应用大全[M].北京:北京工业大学出版社, 1992: 24
    [242]高积强,黄清伟,仵亚红,等.流延法制备短纤维增强玻璃陶瓷基复合材料[J].复合材料学报, 1999, 16(2): 105-109
    [243]柳华实,彭瑜,葛曷一,等.玻璃纤维增强石膏的研究[J].建材技术与应用, 2005, (5): 7-9
    [244]韩敏芳.玻璃纤维增强氯氧镁水泥混料(丝)方式及工艺实施[J].混凝土及水泥制品, 1997, (4): 44-45
    [245]高积强,王永兰,金志浩.纤维增强玻璃与玻璃陶瓷基复合材料[J].兵器材料科学与工程, 1995, 18 (5): 53-59
    [246] Brennan J. J., Nutt S. R.. SiC-whisker-reinforced glass-ceramic composites: Interfaces and properties[J]. Journal of the American Ceramic Society, 1992, 75(5): 1205
    [247] Moreno R. The role of slip additives in tape-casting technology(Part I)-solvents and dispersants[J]. Am Ceram SocBull, 1992, 71(10): 1521-1531
    [248] Frank E. K., Birnie IIID. P.. Fibre orientation during spin coating of composite solutions[J]. Journal of Materials Science Letters, 1995, (14): 1807-1809
    [249]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社, 1993: 153
    [250]特里顿D. J..物理流体力学[M].董务民等译.北京:科学出版社, 1986: 36-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700