用户名: 密码: 验证码:
土壤—蔬菜系统中碘的生物地球化学行为与蔬菜对外源碘的吸收机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碘的缺乏将会引起人体甲状腺肿大症,这己成为全球范围的一大公共卫生问题。为防治碘缺乏症(IDD)的发生,本文利用农业生物强化法提高蔬菜中碘的含量以改善人体碘的营养水平,从而探询更为高效、安全的补碘新途径。本研究以各种类型的蔬菜为栽培作物,选取不同形态的有机、无机碘和海藻碘肥作为外源碘,采用水培、土培、大田等多种栽培方式及常规和同位素研究法深入探讨碘在土壤-蔬菜系统中的环境生物地球化学行为及蔬菜富集碘的机制,从而为富碘蔬菜的筛选及碘的农业生物强化法的产业化应用推广提供切实的理论和技术依据。取得的主要结果如下:
     1.水培条件下外源碘的添加对蔬菜的生长均具有明显效应,在低浓度的碘水平下(<0.5 mg/L),外源碘能促进蔬菜生长,但高浓度的碘会对蔬菜的生长产生抑制作用。供试蔬菜都具有一定的吸收与积累水培液中外源碘的能力,随着外源碘浓度的提高,蔬菜可食用部位碘的含量均随之增加,蔬菜对三种不同形态外源碘的吸收能力总体表现为F>CH_2ICOO~->IO_3~-;三类不同蔬菜中以叶菜类对碘的吸收能力最强,其次为茎菜类,而果菜类蔬菜对碘的吸收能力相对较弱。小白菜不同基因型对外源的吸收及生长反应存在明显的差异,其中苏州青、矮脚青等基因型对碘的吸收及耐碘毒害的能力均较强。
     2.水培条件下蔬菜碘吸收速率在短时间内迅速上升达到最高值后随着时间的延长逐步下降。在低浓度下(<0.5 mg/L)蔬菜IO_3~-吸收速率与浓度之间的曲线图符合酶促反应动力学方程,具有元素主动吸收的基本特征。而在高碘浓度范围内(0.5-10.0 mg/L),蔬菜碘吸收速率随着外源碘浓度的提高呈现直线增加,反映了被动吸收特征。在一次供碘连续培养条件下蔬菜可食部位吸收碘的量随着处理时间的延长表现出前期上升后期下降的趋势,而在连续供碘条件下蔬菜可食部位碘的含量则表现出持续增加的趋势;在低浓度下(0.1 mg/L)蔬菜对IO_3~-的吸收能力强于I~-,而在较高浓度下(5 mg/L),蔬菜对I~-的吸收量明显高于IO_3~-。培养溶液中Cl~-的加入降低了低碘浓度下蔬菜碘吸收速率,而随着碘浓度的增加Cl~-对蔬菜碘吸收速率的影响逐渐减弱。
     3.两种形态的碘在3种菜园土上的吸附平衡均可采用Langmuir、Freundlich等吸附方程来拟合。土壤吸附态碘的解吸量随着碘吸附量的增加而增加。两种碘源中,IO_3~-更容易被土壤所吸附;3种土壤中,黄筋泥对碘的吸附能力最强而吸附态碘的解吸率最小,其次为青紫泥,而黄松土对碘的吸附能力最弱而吸附态碘的解吸率最高。碘在固液(土壤-平衡液)两相之间的分配系数(K_d)随着外源碘添加量的增加而迅速下降。
     4.加入到盆栽土壤的两种不同形态外源碘(I~-,IO_3~-)中,I~-更易被小白菜所吸收,对小白菜的毒性也更强,但在土壤中相对容易损失;3种菜园土中,黄松土中碘的生物有效性最强但碘的损失率也较高。而碘在黄筋泥中的生物有效性相对较低但碘的持效性最长。~(125)I在施入盆栽土壤后绝大部分就近被土壤所吸附,仅有很少一部分能迁移到土壤底层和外层;无论纵向还是横向迁移速度都是青紫泥较黄松土快。一段时间(8d)以后土壤和植物中都有部分碘被转化为挥发性碘而损失。
     5.土培条件下蔬菜中碘的含量均随土壤外源碘浓度的提高而增加;不同蔬菜对碘的吸收与积累能力呈现出叶菜类的大白菜最强,其次为茎菜类的莴苣,而根菜类的胡萝卜和果菜类的番茄相对较弱;供试蔬菜对碘毒害的耐性表现为胡萝卜>大白菜>莴苣>番茄。在第1茬时,KI更容易被蔬菜所吸收但毒性也更大;在第2茬时,海藻碘添加的蔬菜中碘含量则更高。连续种植两茬后,施用KI的土壤中碘残留量的下降幅度明显大于施用海藻碘肥的土壤,蔬菜种植明显加速了土壤中碘的亏损。
     6.海藻碘肥田间施用效果表明,供试蔬菜可食部位对碘的吸收均随着海藻碘肥添加浓度的提高而增加,其中叶菜类对海藻碘的吸收与积累能力最强,其次为茎菜类和根菜类,而果菜类可食部位对海藻碘的积累能力最弱。随着取样时间的延后,蔬菜可食部位对海藻碘的吸收除了大豆外均总体呈现出下降的趋势。两种不同的海藻碘肥施用方式中,土施更有利于蔬菜对碘的吸收和积累。在土施条件下,碘在根菜不同部位的分配表现为地上部分高于块根,而碘在其它蔬菜不同部位的分配表现为根>叶>茎>果实;在海藻液体碘肥喷施条件下蔬菜各部分中则是叶子的碘含量最高,其次为茎,而果实和根中碘积累量较低;两种栽培方式下,设施栽培较露天栽培更有利于蔬菜各部位对碘的吸收和积累。
     7.~(125)I添加下蔬菜体内碘的存在形态的分析表明,小白菜中水溶性碘主要以I~-形式存在,占总水溶性碘的66.7%,而有机结合碘则主要以蛋白质结合碘为主,占总碘的22.4%。小白菜所吸收的碘主要分配于细胞可溶部分,占了细胞总碘的54.8%-63.9%,其次为细胞器和细胞壁部分。随着外源碘浓度的提高,碘在细胞壁的分配比率有增加的趋势。碘在小白菜根细胞内主要定位于细胞壁附近的纤维组织中,而在小白菜茎、叶细胞内则主要存在于叶绿体中。
It has been well known that iodine deficiency can result in goiter,and this has become a global sanitation problem.In order to reduce the incidence of iodine deficiency disorders(IDD),the agricultural biofortification was used to increase iodine content in vegetable of human food chain to improve human nutrition.In our studies,the vegetable was cultivated as target crops and different forms of iodine (inorganic and organic) including seaweed were chosen in hydroponic,pot and field experiment,which were carried out to investigate the biogeochemical characteristics of iodine and mechanism of iodine enriched by vegetable.The objectives of the studies are to provide theoretic basic for the breeding of iodine-enriched vegetable and popularizing of iodine biofortification in practice,and ultimately to seek an effective,safe and scientific approach to the prevention and cure of iodine deficiency disorders(IDD).The main conclusions obtained from our studies are as follows:
     1.In the hydroponic experiment,the low levels of iodine(<0.5 mg/L) can promote the biomass of vegetable efficiently;however,high iodine levels can inhibit the growth of vegetables.The toxicity effects of different iodine forms are in the following order:Ⅰ~->CH_2ICOO~->IO_3~- except for water spinach(the toxicity of iodine is:CH_2ICOO~->I~->IO_3~-).Iodine uptake by vegetables was enhanced with the iodine addition,and the respective effects of iodine uptake by vegetables are: I~->CH_2ICOO~->IO_3~-.The capacity of iodine-enrichment and endurance of iodine toxicity varies in different genotypes of pakchoi,of which Suzhouqing and JiaxingAijiaoqing etc.possessed greater capacity and stronger endurance and could be recommended as iodine-enrichment vegetables.
     2.The hydroponics experiments showed that the uptake rate of iodine increased sharply in a short time(<60 min),then decreased slowly with the time.Under low iodine concentration(0-0.5 mg/L),the relation of uptake rate of iodate and iodate concentration was exactly suited to the characteristics of Michaelis Equation,which indicated that the iodate may be active absorbed by vegetable under low concentration.The uptake rate of iodine was linearly related with the iodine concentration when the concentration is higher than 0.5 mg/L,which indicated that iodine is passive absorbed by vegetable.The content of iodine in edible parts of vegetable increased in the first week then decreased with the incubation time when the exogenous iodine was added once only,and the content of iodine in vegetable increased steadily when the iodine concentration was preserved constantly.The cholrine added in solution decreased the uptake rate of iodine at low concentration of iodine(<0.5 mg/L),but the effect of chorine became weak with iodine concentration increasing.
     3.The isothermal curves of iodine adsorption on three garden soils could be described by either Langrnuir or Freundlich equation(r>0.97~(**)) for each equation.As compared with the iodide,the iodate could be easily adsorbed by soils;and the REQ (red soil developed on Quaternary red earths(clayey,kaolintic thermic plinthite Aquult)) adsorbed more I~- and IO_3~- than the IS(Interceptisol soil) and the AS (alluvial soil).The distribution coefficient(k_d) of iodine in the soils decreased exponentially with increasing iodine loading.
     4.In the pot soils,the iodide was easily adsorbed by pakchoi,and caused more toxic to vegetable,the rate of iodine loss in soil was higher as compared with the iodate. The iodine bioavaibility in AS was the strongest but the soil iodine persistent was the shortest among three tested soils,and the REQ showed the polar trend to the AS.~(125)I introduced into the soil inclined with the soil depth,but most of the applied ~(125)I remained in the surface layer and lower of ~(125)I moved downwards and outwards.The ~(125)I,adsorption in the soil and absorption in the plant,could be translate into gaseous state and released into the air.
     5.In the pot experiment,the toxicity of iodine and iodine concentration in tissues were much greater for plants grown with KI than with iodine fertilizer composed of seaweed in the first cutting,and the contrary trend was showed in the second cutting. The content of iodine in edible part of vegetable was as following order:Chinese cabbage>lettuce>carrot>tomato,and the endurance to iodine toxicity was showed as:carrot>Chinese cabbage>lettuce>tomato.The distribution of iodine in different parts of vegetables(Chinese cabbage,leetuce,tomato) was root>leaf>stem>fruit, but the iodine content of carrot shoot was much higher than the earthnut.The residual iodine in soil decreased with the increasing in growth time.The content of iodine applied with KI decreased by 41.5%-58.0%,whereas,iodine fertilizer composed of seaweed decreased to 56.0%-69.0%.As compared with the pot without vegetable,the pot with vegetables has much greater loss rate of soil iodine.
     6.In the field experiments,the iodine in the edible parts of vegetable increased with the increasing iodine addition in soil.Among these tested vegetable,the leaf vegetable was the type of strongest capability in iodine enrichment,then was stem vegetable,the fruit vegetable was the most weak to the iodine accumulation.Except the soybean,the iodine in edible parts of vegetable decreased with the grow time. Under two different application technique(root application and ex-root application), soil iodine root application was more favourable to iodine accumulation in vegetable, of which the distribution of iodine in leaf,stem and fruit vegetable was showed as: root>leaf>stem>fruit,but the iodine distribution in root vegetable was showed as: earthnut<shoot.Whreas with iodine ex-root application(spraying to the leaf),the iodine content of leaf was the highest,then was stem,and the iodine accumulation in fruit and root was the minimum in all these tested vegetables.
     7.Water soluble iodine of vegetable mainly consists of I~-,which was 66.7%of total water soluble iodine.Iodine associated with protein was the main form of organic iodine,with the amounts to 22.43%of total iodine of vegetable.The distribution of iodine in the subcell ofpakchoi showed that iodine was mainly present in soluble part of cell accounting for 54.8%-63.9%,with the iodine addition increasing,the proportion of cell wall had a upward tendency.In root cell,iodine combins with fibrous tissue,in stem and leaf cell,iodine consists in chloroplast.
引文
奥贝尔H.,潘塔M.著.刘铮,朱其清,唐丽华,等译.土壤中的微量元素[M].北京:科学出版社,1982.112-117.
    曹盛丰,杨丽娥,程美蓉等.日粮铁碘水平对蛋中铁碘含量及蛋品质的影响[J].上海农学院学报,1997,17(4):248-254.
    陈立乔,魏复盛.中国土壤中溴,碘的背景含量[J].干旱环境监测,1991,5(2):65-69
    成涛,杨华章.碘与甲状腺疾病[J].实用医学杂志,2002,18(8):900-901.
    程先豪.海洋沉积物中碘的早期成岩再迁移[J].海洋学报,1993,15(4):56-63.
    程先豪,潘建明,张海生.南大洋碘分布的生物制约性[J].海洋与沼泽,1994,25(1):38-47.
    陈志辉.近年来国内外碘缺乏病防治研究进展[J].海峡预防医学杂志,2001,7(2):27-29.
    陈祖培.全民食盐加碘的意义及对当前人群碘营养状况的基本评价[J].中国地方病防治杂志,2002,17(4):251-254.
    迟锡增.微量元素与人体健康[M].北京:化学工业出版社,1997.205-211.
    迟玉森,何熹,韩丽英等.海带生物活性碘剂及其在碘盐中的应用[J].现代科技,2002,4:50-51.
    迟玉森,唐琳,腾如君等.生物活性碘的制备及其功能观察[J].中国食品学报,2001,1(1):24-29.
    崔剑波,尹昭汉.外源硒对农作物籽实中硒的化学形态及其品质的影响[J].应用生态学报,1993,4(8):303-307.
    崔晓阳,桑英,宋金凤.外源碘在森林土壤中的残留及对山野菜植物的试用效果[J].应用生态学报,2003,14(10):1612.1616.
    但德忠,李平.环境地球化学中的碘与我国的碘缺乏病[J].矿物岩石,1994,14(4):69-75.
    范晓,王孝举.海藻中的碘[J].海洋科学,1994,4:16-20.
    高士美,陈国英天津城市环境含碘量的调查[J].天津医学院学报,1990,14(3):21-22
    龚子同,黄标.土壤中硒,氟,碘元素空间分异与人类健康[J].土壤学进展,1994, 22(5):1-12.
    顾爱军,翁焕新,陈静峰,孙向武.利用海藻中的碘培育富碘蔬菜防治IDD的初步研究[J].广东微量元素科学,2004,11(7):12-18.
    候为道,兰晓辉,朱祥林等.成都城乡居民膳食中碘摄入量调查与碘缺乏病监测分析[J].中国公共卫生,1999,15(5):453-455.
    侯小琳,柴之芳,钱琴芳等.海藻中碘的化学种态研究[J].海洋学报,1999,21(1):48-54.
    韩丽君,范晓.海藻中有机碘的研究Ⅰ.海藻中有机碘含量测定[J].水生生物学报,1999,23(5):489-493.
    韩丽君,范晓,李宪璀.海藻中有机碘的研究Ⅱ.存在形态及含量[J].海洋科学集刊,2001,43:129-135.
    黄益宗,朱永官,胡莹,等.土壤-植物系统中的碘与碘缺乏病防治[J].生态环境,2003,12(2):228-231.
    贾彦博,范浩定,杨肖娥.碘从环境向人类食物链的迁移[J].广东微量元素科学,2003,10(12):1-12.
    姜学玲,徐维华,于忠范等.海藻肥对黄瓜产量、品质及抗性影响的试验[J].蔬菜,2002:29.
    蒋廷惠,郑绍建,石锦芹,等.植物吸收养分动力学研究中的几个问题[J].植物营养与肥料学报,1995,1(2):11-19.
    李春娟,彭丽萍,李东刚.分光光度法测定饮料中的碘[J].齐齐哈尔大学学报,2002,18(4):30-32.
    李庆华,潘秀英.广西江河水碘含量与地方性甲状腺肿发病关系的调查[J].广西预防医学,1995,1(3):156.158.
    李洋,刘鑫.碘与人体健康[J].微量元素与健康研究,2004,21(1),56-60.
    廖自基编著.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1992.41-60.
    刘会嫒,白鹤英.加碘食盐中碘损失的实验研究[J].中国井矿盐,2004(5):43-45.
    刘勤,张新,赵言文,等.土壤植物营养与农产品品质及人畜健康关系[J].应用生态学报,2001,12(4):623-626.
    刘晓红,刘琼英,邝炎华等.碘—125在华南亚热带地区土壤中淋溶和迁移的研究[J].核农学报,1998,12(3):171-174.
    刘玉珠,刘卉.气态放射性碘捕集方法研究进展[J].辐射防护通讯没,1996,16(6):28-31.
    鲁如坤.土壤农业化学常规分析方法[M].北京:中国农业科学技术出版社,2000.
    彭永梅.碘与甲状腺疾病[J].现代医药卫生.2002,18(10):864-865.
    钱沁,周鸿智,杨林.硫氰酸铁.亚硝酸催化动力学法(饲料中碘的测定方法)[S].GB/T 13882-92.北京:中国标准出版社,1992.
    施积炎,陈英旭,田光明等。海州香薷和鸭跖草铜吸收机理[J].植物营养与肥料学报,2004,10(6):642-646.
    石磊,周瑞华,王光亚.食物烹调方法对含碘食盐中碘含量的影响[J].卫生研究,1998,27(6):412-414.
    宋远志,蒋正静,周新,等.碘盐在蔬菜烹饪过程中的化学转化及对人体吸收的影响[J].卫生研究,2003,32(3):352-353.
    孙向武,翁焕新,雍文彬,等.菠菜对外源碘的生物地球化学吸收[J].植物营养与肥料学报,2004,10(2):192.197.
    唐将,李勇,邓富银,等.三峡库区土壤中硒、碘、氟分布特征与规律研究[J].长江流域资源与环境,2005,14(4):491-495.
    王东升.地下淡水演变与水致疾病[J].地球学报,1998,19(4):443-448.
    汪建飞,段立珍,刘乃会.放大反应比色法测定土壤中微量碘[J].分析实验室,1999,18(6):71-73.
    王柯,侯小琳,张永保.碘的微堆超热中子活化法测定[J].核化学与放射化学,1996,18(4):243-246.
    王夔.生命科学中的微量元素(下卷)[M].北京:中国计量出版社,1992.216.
    王连方.碘的生物学基础及其与健康关系[J].地方病通报,1994,9(3):72-76.
    王留成,刘大壮,杨碧光.碘化钾水溶液中碘在活性炭上的吸附等温线[J].化学工程,1994,22(6):28-30.
    王永芳.碘与健康研究进展[J].中国食品卫生杂志,1996,8(4):36-37.
    翁焕新,蔡奇雄.一种含碘复合肥的制造方法[P],发明专利,专利号:ZL94108836.7,1 998.
    吴茂江.缺碘地区小麦和玉米中碘含量的测定[J].天中学刊,2000,15(5):23-24.
    武少兴,龚子同,黄标.土壤中的碘与人类健康[J].土壤通报,1998,29(3):139-142
    吴求亮,杨玉爱,谢正苗,等.微量元素与生物健康[M].贵阳:贵州科技出版社,2000.
    吴世汉,邢光熹.我国主要土壤类型中溴和碘的分布特征[J].土壤,1996,1:21-23.
    夏石头,彭克勤,萧浪涛.碘对豌豆苗生长及其可食部分游离氨基酸和维生素C 及纤维素含量的影响[J].湖南农业大学学报,2002,28(2):118-121.
    夏石头,彭克勤,萧浪涛.施碘对萝卜芽生长及其营养品质的影响[J].园艺学报,2003,30(2):218-220.
    许卉,贺萍,王美兰等.溴氧化法测定食盐中碘的若干问题探讨[J].理化检验化学分册.2002,38(3):156-157.
    颜世铭,李增禧.微量元素医学精要-Ⅱ.疾病的诊断和治疗[J].广东微量元素科学,2002,9(10):1-43.
    杨若明,乌兰塔娜.在膳食中补碘,消除碘缺乏病[J].中央民族大学学报(自然科学版),2000,19(1):47-51.
    杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望[J].青岛海洋大学学报,2003,33(1):53-57.
    於丙军,刘友良.植物中的氯、氯通道和耐氯性[J].植物学通报,2004,21(4):402-410.
    于富贵.我国补碘状况及补碘新途径的探讨[J].中国地方病防治杂志,2004,19(4):217-221.
    余孝颖.内蒙高腐殖酸地下水中碘的分布特征与IDD病的关系[J].环境科学,2000,21(3):56-59.
    于志恒,苑淑香.我国碘缺乏病防治出现的问题及其改进措施[J].中华预防医学杂志,2000,34(5):261-262.
    曾可明.碘盐质控样测定结果分析[J].中国地方病学杂志,2001,20(5):364-364.
    章衡,李志宏.喷施锌、碘对大白菜锌、碘累积量、产量及品质的影响[J].农业工程学报,1997,13(1):140-143.
    张高轩,孙延鸣,王开胜.碘缺乏区育肥羔羊饲喂碘化酪蛋白效果的研究[J].黑龙江畜牧兽医,2003,4:14-15.
    张玲,王连方.碘茶防治碘缺乏病后学生尿碘变化分析[J].地方病通报,1996,11:108-109.
    张峰山,潘新玉.复方碘添加剂喂饲雏鸡、肉鸡和蛋鸡的效果试验[J].浙江农业 科学,1989,6:288-290.
    张庆朝,李同树,李光德.环境中的碘元素与畜禽碘的营养关系[J].生态学杂志,1994,13(6):48-51.
    张庆朝,孙存孝,杨景芝等.环境中碘与动物体内碘代谢关系的研究[J].环境科学学报,1995,15(4):501-505.
    张绍均,许文静.焦作市生活饮用水碘含量监测分析[J].宜春医专学报,2001,13(2):180-181.
    张卫红,何倩琼.上海地区85种常用食物中的碘含量[J].营养学报,1996,18(4):492-494.
    张喜春,王鹏.动物必须微量元素—碘[J].动物科学与动物医学,2002,19(4):37-38.
    赵文虎,李传昭,徐世明.在人工生态系统内研究~(125)I气体对农业生态环境的污染及其防治对策[J].中国核科技报告,1996,1:1-33.
    郑宝山,王滨滨,朱广伟等.大气与植物中带碘的环境地球化学—综述与新的假说[J].地学前缘,2001,8(2):359-365.
    朱发庆,谭见安.土壤碘的来源及其与我国地甲病分布规律的研究[J].地理科学,1989,9(4):370-377.
    中国环境监测总站主编.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.244-245.
    Ziegler E.E.,Filer L.J.Jr.著.闻芝梅,陈君石译.《现代营养学》(第七版).北京:人民卫生出版社,1998.361-365,369.
    邹长明,高菊生.长期施用含氯化肥对稻田土壤氯积累及养分平衡的影响[J].生态学报,2004,24(11):2557-2562.
    Abdel- Moati M.A.R.Iodine speciation in the Nile River estuary[J].Marine Chemistry,1999,65:211-225.
    Amachi S.,Muramatsu Y.,Kamagata Y.Radioanalytical determination of biogenic volatile iodine emitted from aqueous environmental samples[J].Journal of radioanalytical and nuclear chemistry,2000,246(2):337-341.
    Anke M.,Groppel B.,Muller M.,Scholz E.and Kramer K.The iodine supply of humans depending on site,food offer and water-supply.Fresenius[J].Journal of analytical chemistry,1995,352:97-101.
    Arthur J.R.,Beckett G T.New metabolic roles for selenium[J].Proc.Nutr.Soc., 1994,53:615-624.
    Arthur J.R., Beckett G. T., Mitchell J.H. The interactions between selenium and iodine deficiencies in man and animals [J]. Nutr. Rs.Rev., 1999,12(1): 55-73.
    
    Ashmore CB, Gwyther JR, Sims HE. Some effects of pH on inorganic iodine volatility in containment [J]. Nuclear Engineering and Design, 1996, 166: 347-355.
    Ashworth D. J, Shaw G. Effects of moisture content and redox potential on in situ Kd values for radioiodine in soil [J]. Science of the total environment, 2006, 359: 244-254.
    
    Aston S. R., Brazier P. H. Endemic goiter, the factors controlling iodine deficiency in soils [J]. The science of the total environment, 1979,11: 99-104.
    
    Baker A.R., Thompson D., Campos M.L.A.M. et al. Iodine concentration and availability in atmospheric aerosol [J]. Atmospheric Environment, 2001, 34: 4331-4336.
    
    Bird G. A., Schwartz W. Distribution coefficients, Kds, for iodine in Canadian shield lake dediments under oxic and anoxic conditions [J]. Journal of environmental radioactivity, 1996, 35: 261-279.
    
    Boszormenyi Z., Cseh E. The uptake and reduction of iodate by wheat roots [J]. Curr Sci, 1960,29:340-341.
    
    Cao X. Y., Jiang X.M., Kareem A., Dou Z. H. Rakeman M.A, Zhang M. L., et al. Iodineation of irrigation waters as a method of supplying iodine to severely iodine deficient population in Xinjiang, China [J]. Lancet, 1994, 344: 107-109.
    
    Cook Perran L. M., Carpenter Peter D. and Butler Edward C. V. Speciation of dissolved iodine in the waters of a humic-rich estuary [J]. Marine Chemistry, 2000, 69(3): 179-192.
    
    Dai J. L, Zhang M, Zhu YG, et al. Adsorption and desorption of iodine by various Chinese soils I. Iodate [J]. Environment international, 2004, 30: 525-530.
    Dai J L. Zhu Y G. Zhang M. Huang Y Z. Selecting iodine-enriched vegetable and residual effectiveness of iodate application to soil [J]. Biol Trace Elem Res, 2004a, 101:265-275.
    Dai J. L, Zhang M, Zhu YQ et al. Availability of iodide and iodate to spinach in relation to total iodine in soil solution [J]. Plant Soil, 2006, 289: 301-308.
    Delange F., de Benoist B., Pretell E. Iodine dificency in the world: where do wu stand at the turn of the century [J]. Thyroid, 2001, 11: 437-447.
    
    Delong G R., Paul W.L. Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China [J]. The Lancet, 1997, 1350(13): 771-773.
    Diosadv L.L., et al. Microencapsulation for iodine stability in salt fortified with ferrous fumarate and potassium iodide [J]. Food research international, 2002, 35: 635-642.
    Dowd C.D.O., Jimenez J.L., Bahreini R. et al. Marine aerosol formation from biogenic iodine emissions [J]. Nature, 2002, 1417: 632-636.
    Edmonds H.N., Smith J.N., Livingston H.D. et al. ~(129)I in archived seawater samples [J]. Deep-Sea Research, Part1: Oceanographic Research Papers, 1998, 45(7): 1111-1125.
    Farrenkopf A.M., Luther GW., Truesdale V.W. et al. Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon [J]. Deep-Sea Research II, 1997,44 (6): 1391-1409.
    
    Fiona M. Fordvce. Chris C. Johnson. Udava R. B. Navaratna J. et al. Selenium and iodine in soil, rice and drinking water in relationto endemic goiter in Sri Lanka [J]. The science of the total environment, 2000,263: 127-141.
    
    Fordyce F.M., Stewart A.G, Ge X. et al. Environmental Control in IDD: A case study in the Xinjiang Province of China [C]. British Geological Survey, Keyworth, UK, Technical Report, 2003,13-81.
    
    Fuhrmann M., Bajt S., Schoonen M.A.A. Sorption of iodine on minerals investigated by X-ray absorption near edge structure(XANES) and ~(125)I tracer Sorption experiments [J]. Applied Geochemistry, 1998,13: 127-141.
    
    Fuge R. Iodine in water, possible links with endemic goiter [J]. Applied Geochemistry, 1989, 4: 203-208.
    Fuge R and Johnson C. C. The geochistry of iodine- a review [J]. Environmental geochemistry and health, 1986, 8(2): 31-54.
    Fuge R. Geochemistry of iodine in relation to iodine deficiency disease. In: Appleton JD, Fuge R, Mccall GJH(eds) Environmental geochemistry and health [M]. London: Geological Society Special Publication, 1996, 113: 201-211.
    Fuge R., Long A. M. Iodine in the soils of north Derbyshire [J]. Environmental Geochemistry and Health, 1989, 11: 25-29.
    Fuhrmann M., Bajt S. Schoonen M. A. A. Sorption of iodine on minerals investigated by X-ray absorption near edge structure andd ~(125)I tracer Sorption experiments [J]. Applied Geochemistry, 1998,13: 127-141.
    Graham RD, Senadhira D, Beebe S, Iglesias C, et al. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches [J]. Field Crops Research, 1999, 60: 57-80.
    Gregorio GB, Senadhir D, Htut H, Graham RD. Breeding for trace mineral density in rice [J]. Food Nutrition Bull, 2000, 21: 382-386.
    Hans G., Hans-Jakob P., Burgi E.et al. Colloidal aggregates of insoluble inclusions in human goiters [J]. Biochimie, 1999, 81: 441-445.
    Hans J.W., Hans J. J. Subcellular distribution and chemical form of cadmium in bean plant [J]. Plant Physiology, 1980, 65: 480-482.
    Harada S., Ichihara N., Arai J. et al. Influence of iodine excess due to iodine-containing antiseptics on neonatal screening for congenital hypothyroidism in Hokkaido prefecture [J]. Journal of the International Society of Neonatal Screening, 1994, 3: 115-123.
    Hetzel BS. Iodine deficiency disorders (IDD) and their eradication [J]. The Lancet, 1983,2: 1126-1129.
    Hou X.L., Chai C. F., Qian Q. F., et al. The study of iodine in Chinese total diets [J]. the science of the total environment, 1997,193: 161-167.
    Jiang X.,Cao X., Jiang J. et al. Dynamics of environmental supplementation of iodine: four years'experience of iodination of irrigation water in Hotien, Xinjiang, China [J]. Archives of Environmental Health, 1997, 52(6): 399-408.
    Johnson CC, Strutt MH, Hmeuras M, Mounir M Iodine in the environment of the high Atlas Mountain area of Morocco. British Geological Survey, Key worth. Nottingham.UK.Commiioned Report. 2002, CR/02/196.
    Jopke P., Bahadir M., Fleckenstein J., Schnug E. Iodine determination in plant materials [J]. Communication in soil science and plant analysis, 1996, 27: 741-751.
    Karen M., Eckhoff W., Maage A. Iodine content in fish and other food products from East Africa Analyzed by ICP-MS [J]. Journal of Food Composition and Analysis, 1997,10:270-282.
    Keppler F., Borchers R., Eisner P. et al. Formation of volatile iodinated alkanes in soil: results from laboratory studies [J]. Chemosphere, 2003, 52: 477-483.
    Keppler F. Eiden R, Niedan V, Pracht J, Scholer HF Halocarbons produced by natural oxidation processes during degradation of organic matter [J]. Nature, 2000,403:298-301.
    Knapp G. Iodine determination in biological materials-options for sample preparation and final determination [J]. Fresenius J Anal chem., 1998, 362: 508-513.
    Koch J. T., Rachar D. B., and Kay B. D. Microbial participation in iodide remoal from solution by organic soils [J]. Journal of Soil Science, 1989, 69: 127-135.
    Küpper RC, Schweigert N., Gall E.A. et al. Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodine [J]. Planta, 1998, 207: 163-171.
    
    Little J.R., Murray P.R., Traynor P.S. et al. A Randomized trial of povidone-iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination [J]. The American Journal of Medicine, 1999, 107: 119-125.
    Mactaylor R.S., Gilligan J.J., Castleman A.W.Jr. Reactions of iodine oxide and iodine oxoacid anion species with nitric acid [J]. International Journal of Mass Spectrometry, 1998,179-180: 327-335.
    Mackowiak CL, Grossl PR. Iodate and iodide effects on iodine uptake and partitioning in rice(Oryza sativa L.)grown in solution culture [J]. Plant Soil, 1999,212: 135-143.
    Michaelis L, Menten M L. The kinetics of invertin action [J]. Biochem, 1913, 49: 333-369.
    Mixake Y., Tsunogai S. J Evaporation of iodine from the ocean [J]. Journal of Geophysical Research, 1963, 68(39): 892-931.
    Muramatsu Y., Fehn U., Yoshida S. Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan [J]. Earth and Planetary Science Letters, 2001, 192:583-593.
    Muramatsu Y, Uchida S, Sriyotha P, Sriyotha K. Some considerations on the Sorption and desorption phenomena of iodide and iodate on soil [J]. Water Air Soil Pollut, 1990,49: 125-138.
    Muramatsu Y., Wedepohl K.K. The distribution of iodine in the earth's crust [J]. Chemical Geology, 1998, 147: 201-216.
    Muramatsu Y, Yoshida S, Bannai T Trace experiments on the behavior of radioiodine in the soil-plant-atmosphere system [J]. J Radioanal Nucl Chem-Articles, 1995, 194: 303-310.
    Muramatsu Y, Yoshida S., Uchida S.. Iodine desorption from rice paddy soil [J]. Water Air and Soil Pollution, 1996, 86: 359-371.
    Muramatsu Y., Yoshida S. Effects of microorganisms on the fate of iodine in the soil environment [J]. Geomicrobiology, 1999,16: 85-93.
    Muramatsu Y, Yoshida S. Volatilizations of methyl-iodide from the soil-plant system [J]. Atmospheric Environment, 1995,29: 21-25.
    Mynett A., Wain R.L. Herbicidal action of iodide: effect on chlorophyll content and photosynthesis in dwarf bean Phaseolus vulgaris [J]. Weed Research, 1973, 13: 101-109.
    Mynett A., Wain R.L. Selective herbicidal activity of iodide in relation to iodide accumulation and foliar peroxidase activity [J]. Pestic Sci., 1971, 2: 238-242.
    Nicole S. Development and evaluation of an educational program to promote the use of iodinzed salt in Guatemala [J]. Nutrition Research, 1999,19(11): 1603-1612.
    Passos M.C.F., Ramos C.F., Dutra S.C.P. et al. Transfer of iodine through the milk in protein-restricted lacating rats [J]. Journal of Nutritional Biochemistry, 2001, 12: 300-303.
    Peterson S. Improved cassava-processing can help reduce iodine deficiency disorders in the Central African Republic [J]. Nutrition Research, 1995,15(6): 803-812.
    Regimbal S., Michel J., Mozurkewich W. et al. Kinetics of peroxynitric acid reactions with halides at low Ph [J]. Journal of Physical Chemistry, 2000, 104(28): 6580-6589.
    Reifenhauser W., Werner J., Heumann K.G et al. Determinations of methyl iodide in the Antarctic atmosphere and the south polar sea [J]. Atmospheric Environment, 1992,26(16): 2905-2912.
    
    Robison L.M., Sylvester P.W., Birkenfeld P. et al. Comparison of the effects of iodine and iodide on thyroid function in humans [J]. Toxicol Environ. Health Part A, 1998, 55(2): 93-106.
    
    Ross M. Welch. Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops [J]. Journal of Trace Elements in Medicine, 2005,18: 299-307.
    
    Sheppard MI, Hawkins JL. Iodine and Microbial Interactions in an Organic soil [J]. J. Environ. Radioactivity, 1995, 29(2): 91-109.
    
    Sheppard MI, Hawkins JL, Smith PA. Linearity of iodine Sorption capacities for seven soils [J]. J Environ Qual., 1996, 25: 1261-1267.
    Sheppard MI, Thibault DH. Factors affecting the soil Sorption of iodine [J]. Water, Air and Soil Pollution, 1995 , 83: 51-67.
    Sheppard S.C., Evenden W.G. Response of some vegetable crops to soil -applied halides. Can [J]. Soil Sci., 1992, 72: 555-567.
    Sheppard S.C. Interpolation of solid/liquid partition coef cients, Kd, for iodine in soils [J]. Journal of Environmental Radioactivity, 2003, 70: 21-27.
    Sheppard S.C., Motycka M. Is the akagare phenomenon important to iodine uptake by wild rice (Zizania aquatics) [J]. Journal of Environmental Radioactivity, 1997, 37(3): 339-353.
    Shinonaga T., Gerzabek M.H., Strebl F., Muramatsu Y. Transfer of iodine from soil to cereal grains in agircultural areas of Austria [J], The Science of the total environment, 2001, 267: 33-40.
    Shohei Harada, Naoshi Ichihara, Junri Arai et al. Influence of iodine excess due to viodine-containing antiseptics on neonatal screening for congenital hypothyroidism in Hokkaido prefecture, Japan [J]. Journal of the International Society of Neonatal Screening, 1994, 3: 115-123.
    Slosarkova S., Literak I., Skrivanek M. et al. Toxoplasmosis and iodine deficiency in Angora goats [J]. Veterinary Parasitology, 1999, 81: 89-97.
    
    Sunsanna Poletti, Wihelm Gruissem, Christof Sautter. The nutritional fortification of cereals [J].Current Opinion in Biotechnology, 2004,12: 162-165.
    
    Tadaaki BN, Muramatsu Y, Amachi S. Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures [J]. Chemoshphere, 2006, 24(11): 1-7.
    
    Tikhomirov F. A., Kasparov S. V., Prister B.S., et al. Role of organic matter in iodine fixation in soils [J]. Soviet Soil Science, 1980,12(1): 64-72.
    
    Truesdale V.W., Simon R, Watts A.R. On the possibility of iodide oxidation in the near-surface of the Black Sea and its implications to iodine in the general ocean [J]. Deep-Sea Research I, 2001, 48: 2397-2412.
    Umaly R.C., Poel L.W. Effects of iodine in various formulations on the growth of barley and pea plants in nutrient solution culture [J]. Ann Bot., 1971, 35: 127-131.
    Umemoto, Houston N.S., Solomons R.A. et al. Development and evaluation of an educational program to promote the use of iodized salt in Guatemala [J]. Nutrition Research, 1999, 19(11): 1603-1612.
    Upadhyay G., Singh R., Sharma R. et al. Differential action of iodine on mitochondria from human tumoral-and Extra-tumoral tissue in inducing the release of paoptogenic proteins [J]. Mitochondrion, 2002, 2: 199-210.
    Warwick P., Zhao R., Higgo J.J.W., Smith B., Williams G. M. The mobility and stability of iodine-humic and iodine-fulvic complexes through sand [J]. The Science of Total Environment, 1993,130/131: 459-465.
    Watanabe I. Tensho K. Further study on iodine toxicity in relation to "Reclamation-Akagard" disease of lowland rice [J]. Soil Science and Plant Nutrition, 1970,16(5): 192-194.
    Weng H X, Weng J K, Yong W B, et al. Capacity and degree of iodine absorbed and enriched by vegetable from soil [J]. Journal of Environmental Sciences, 2003, 15(1): 107-111.
    White PJ, Broadley M R. Chloride in soils and its uptake and movement within the plant: a review [J]. Ann Bot., 2001, 88: 967-988.
    
    Whitehead D.C. Studies on iodine in British soils [J]. Soil Sci., 1973,24: 260-270.
    Whitehead D.C. The Sorption of Iodide by soils as influenced by equilibrium conditions and soil properties [J]. Sci. Fd. Agric, 1973,24: 547-556.
    Whitehead D. C. The Sorption of iodide by soil components [J]. J. Sci. Fd Agric, 1974,25:73-79.
    Whitehead D.C. The volatilization from soils and mixtures of soil components of iodine added as potassium Iodide [J], Journal of Soil Science, 1981, 32: 97-102.
    Whitehead D.C. Uptake by perennial ryegrass of iodide, elemental iodine, and iodate added to soil as influenced by various amendments [J]. Sci Food Agric, 1975, 26: 361-367.
    Whitehead D.C. Iodine in soil profiles in relation to iron and aluminum oxides and organic matter [J]. J Soil Sci., 1978, 29: 88-94.
    Wong GT.F., Cheng X.H. The formation of iodide in inshore waters from the photochemical decomposition of dissolved organic iodine [J]. Marine Chemistry, 2001,74:53-64.
    Wong GT.F. Coupling iodine speciation to primary, regenerated or "new" production: a re-evaluation [J]. Deep-Sea Research I, 2001,48: 1459-1476.
    Yamaguchi N, Nakano, M, Tanida H, et al. Redox reaction of iodine in paddy soil investigated by field observation and the I K-Edge XANES fingerprinting method [J]. Journal of Environmental Radioactivity, 2006, 86: 212-226.
    Yang, X E.; Baligar, V.C.; Martens, D.C; Clark, R.B. Influx, transport and accumulation of Cadmium in plant species grown at different Cd(II) activities [J]. J. Environ. Sci. Health, 1995, B30(4): 569-583.
    Yoshida S, Muramatsu Y, Uchida S. Studies on the Sorption of F(iodide) and IO_3~-(iodate) onto andosols [J]. Water Air Soil Pollution, 1992, 63: 321-329.
    Yutia K., Nobusawa Y, Shibuya M., Aso S. Iodine, bromine and cholorine contents in soils and plants of Japan. I. Iodine bromine and chlorine content in soils and plants of the Basin of Miomote Rive [J]. Soil Sci.Plant Nutr., 1982, 28(3): 315-316.
    Yuita K., Akabe S., Shibuya M., Aso S. Iodine bromine and chlorine conternt in soils and plants of Japan. II [J]. Soil Sci. Plant Nutr., 1982,28(3): 499-515.
    Yuita K. Dynamic of iodine, bromine, and chlorine in soil II.Chemical forms of iodine in soils solutions [J]. Soil Sci. Plant Nutr., 1992, 38(2): 281-287.
    Yuita K., Tanaka T., Abec C. et al. Dynamics of iodine, bromine, and chlorine in soil I. Effect of moisture, temperature, and pH on the dissolution of the triad from from soil [J]. Soil Sci. Plant Nutr., 1991, 37(1): 61-73.
    Yutia K. Iodine bromine and chlorine content in soils and plants of Japan [J]. Soil Science Plant Nutr., 1992, 28: 52-63.
    Zhu YG, Huang YZ, Hu Y, Liu YX. Iodine uptake by spinach plants grown in solution culture: effects of iodine species and solution concentrations [J]. Environmental International, 2003,29: 33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700