用户名: 密码: 验证码:
卤化氧铋基复合光催化材料的制备及其降解环境污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术是一种绿色高级氧化技术,在环境污染治理领域和能源开发方面有着广泛的研究和应用。提高可见光利用效率和开发高效、高稳定性能的光催化材料已经成为光催化领域研究的热点问题。寻找合适的方法来提高光催化材料中光生电子和空穴的分离效率是获得高效光催化剂的关键。本文围绕卤化氧铋基复合光催化材料的制备及其在可见条件下光催化降解环境污染物这一研究中心,对卤化氧铋基体光催化材料进行修饰改性,旨在提高光生载流子的分离效率,从而增强光催化材料的可见光催化活性。并通过多种表征手段对材料的组成、结构进行分析,研究杂化材料光催化性能的变化规律。重点研究修饰改性材料的引入对基体微区结构影响规律及其光催化效率变化的原因。并对杂化材料的光催化机理进行分析研究。本文具体的研究内容和取得的研究成果主要体现在以下几个方面:
     1.以溴化1-十六烷基-3-甲基咪唑反应型离子液体为反应源,分别在乙二醇和乙醇体系中,采用溶剂热制备g-C3N4/BiOBr复合杂化光催化材料。通过XRD、SEM、TEM、EDS、BET、DRS等方法对复合材料进行微观结构的表征分析。研究结果表明,反应型离子液体不仅起到溶剂和模板的作用,还作为溴源参与BiOBr球状和花状结构材料的合成,离子液体对复合材料三维结构的形成起到重要的调控作用。固体紫外漫反射的研究结果表明g-C3N4/BiOBr复合材料在紫外可见光区的吸收比BiOBr单体材料强,具有更窄的禁带宽度。可见光照射条件下g-C3N4/BiOBr复合材料光催化降解罗丹明B性能研究发现,不同质量含量g-C3N4的复合材料具有不同光催化活性,在乙二醇体系中合成的质量比为1%g-C3N4/BiOBr复合材料具有最高的光催化活性,可见光照射150min,罗丹明B (RHB)基本被完全降解降解。而在乙醇体系中制备得到的质量比为3%的g-C3N4/BiOBr复合材料具有最高的光催化活性,g-C3N4/BiOBr复合材料的可见光光催化活性远优于单体BiOBr的性能。自由基捕获实验结果显示,复合材料降解污染物的过程是以空穴氧化为主。研究表明,g-C3N4/BiOBr复合材料的高活性主要归因于g-C3N4和BiOBr之间的相互协同作用(由此产生的窄禁带宽度、较小的粒径及强光吸收等)。g-C3N4的存在使得复合材料具有更好的电子和空穴的分离能力。
     2.还通过氯化1-十六烷基-3-甲基咪唑反应型离子液体,运用溶剂热法制备得到g-C3N4/BiOC1杂化材料。通过XRD、SEM、TEM、EDS、BET、 DRS等方法对杂化材料进行表征分析。研究结果表明,在复合材料制备过程中,反应型离子液体不仅起溶剂、反应源和模板剂的作用,同时对复合材料中BiOC1层状结构的形成有关键作用。光催化实验研究显示,可见光照射条件下g-C3N4/BiOCl杂化材料对罗丹明B有较好的光催化活性,而甲基橙(MO)光催化降解效果较差,表明合成的光催化材料具有选择性。质量比为1%g-C3N4/BiOCl杂化材料具有最高的光催化活性,可见光照射90min, RhB基本被降解。g-C3N4的引入,可增强杂化材料的光吸收范围,提高其比表面积,有利于光生载流子的分离,从而能够明显提升光催化性能。
     3.以反应型金属基离子液体[Omim]FeCl4为前驱体,在乙二醇体系中采用一步法原位合成Fe/BiOC1微球光催化材料。运用XRD、XPS、DRS、 SEM-EDS、BET等表征手段对材料进行表征。XPS分析说明,光催化剂中Fe以Fe3+形式存在于光催化剂材料中,Fe/BiOC1材料比表面积达到64.3m2/g。在H2O2作用下,25分钟后Fe/BiOC1微球光催化材料光催化降解RhB和MB降解率分别达到73%和97%,Fe/BiOC1微球光催化材料的光催化降解能力明显高于单体BiOC1微球材料。表明Fe的引入明显有助于RhB降解率的提升,Fe的存在可能会和H202在光照条件下形成光芬顿反应。
     4.以反应型离子液体[C16mim]Br为反应源,在乙二醇体系中合成Pt/BiOBr微球状光催化材料。通过XRD、SEM、TEM、EDS、BET、DRS等方法对复合材料进行微观结构的表征分析。研究结果表明,反应型离子液体起到溶剂、模板剂作用,同时对Pt/BiOBr材料微球状结构的形成起到调控作用。乙二醇不但作为溶剂存在于反应中,同时在反应中起还原剂,将氯铂酸还原为金属Pt纳米粒子。高分辨透射电镜显示组装成微球的片中,晶面的晶格间距为0.132nm,对应于Pt晶体的[220]晶面,表明金属Pt较好的分散于BiOC1微球表面。光催化降解罗丹明B的研究表明,在可见光照射下掺杂量为0.5%的Pt/BiOBr材料具有最好的光催化活性。其原因是掺杂的金属Pt具有良好的电子捕获功能,能及时的将跃迁进入导带光生电子与空穴分离,抑制光生电子与空穴复合,因此,有助于光催化降解反应的进行。
     5.还通过氯化1.辛基.3.甲基咪唑反应型离子液体MWCNT/BiOC1复合光催化材料。通过XRD、SEM、TEM、EDS、BET、DRS等方法对复合材料进行微观结构的表征分析。SEM显示,球状结构MWCNT/BiOC1材料是由不规则BiOC1纳米片自组装生成,组成微球的纳米片表面有大量MWCNT均匀分散附着在BiOC1片的表面。TEM分析显示,MWCNT附着、嵌入和交织在组成BiOC1的纳米片上。这种结构促进了MWCNT/BiOC1材料的电子传导和迁移的能力,促进了光催化效率的提高。实验证明,在掺杂量为0.1%MWCNT/BiOC1光催化剂作用下,30minRhB降解率82%,60min几乎降解完全。
Photocatalytic technology is a kind of green advanced oxidation technology, which had extensive study and application in environmental pollutant treatment and energy development. Visible-light-driven photocatalysts with high activity and stability had become a hot topic in the research field of photocatalysis. It was necessary to exploit right way to enhance the photo-generated electron-hole separation. In this paper, it was focused on the synthesis of BiOX-based composite visible-light-driven photocatalysts. BiOX was modified to enhance the separation rate of photo-generated electron-hole. The aim of this paper was also to obtain the information of the structure analyzed by various characterization techniques, as well to explain the relationship between the structure of the photocatalysts and photocatalytic activities. The photocatalytic mechanism of hybrid material was also discussed. In this paper, the research content and the achievements were mainly embodied in the following aspects:
     1. g-C3N4/BiOBr composite photocatalysts have been synthesized through solvothermal process in the presence of reactable ionic liquid1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmet-Teller (BET) and diffuse reflectance spectroscopy (DRS). The results indicated that ionic liquid [C16mim]Br played the role of solvent, reactant and template at the same time in the reactive process. The results of DRS analysis showed that the g-C3N4/BiOBr composite materials had significant optical absorption in the visible region and narrow energy gap. Moreover, the photocatalytic activities of g-C3N4/BiOBr composite structures were evaluated on the degradation of rhodamine B (RhB) under visible light irradiation. The photocatalytic activities of g-C3N4/BiOBr composite structures were found to depend largely on the g-C3N4content. In the ethylene glycol system, the optimum g-C3N4loading was found to be1wt%under visible light, respectively. RhB was completely mineralized for150min by g-C3N4/BiOBr in visible light irradiation, respectively. In the ethanol system, the optimum g-C3N4loading was found to be3wt%under visible light, respectively. The degradation rate in the case of the g-CsN4/BiOBr composite materials was higher than that of pure BiOBr and g-C3N4, respectively. The results of free radical trapping experiments showed that degradation process of composite material is mainly to hole oxidation process. The relationship between the structure of the photocatalyst and the photocatalytic activities were also discussed in details, it can be assumed that the enhanced photocatalytic activities of g-C3N4/BiOBr composite photocatalysts could be ascribed to a synergetic effect, including the energy band structure, the smaller particle size and light absorbance. The g-C3N4of g-C3N4/BiOBr composite photocatalysts was superior for the transfer of photogenerated electrons and holes, thereby improving the photocatalytic efficiency dramatically.
     2. g-C3N4/BiOCI microspheres composite photocatalysts have been synthesized through EG-assisted solvothermal process in the presence of reactable ionic liquid1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl). The as-prepared samples were characterized by XRD、SEM、TEM、EDS、BET、DRS. During the reactive process, ionic liquid [C16mim]Cl act as solvent, reactant and template at the same time, and also has a control action on the formation of microspheres. Moreover, the photocatalytic activities of g-C3N4/BiOCI composite photocatalysts on the degradation of rhodamine B (RhB) and methyl orange (MO) under visible light irradiation were evaluated. The results assumed that g-C3N4/BiOCI showed high photocatalytic activity for degradation of RhB and low photocatalytic activity for degradation of MO. It is indicated that the as-prepared sample has selective catalytic capacity. Experiments showed that the catalyst1%g-C3N4/BiOCl possessed the highest photocatalytic activity, after irradiation for90min, RhB were photodegraded completely. The introduction of g-C3N4can increase the light absorption range of the composite photocatalyst, improve its specific surface area, enhance the separation efficiency of the light-generated carriers, thus significantly enhance the performance of the photocatalytic activity.
     3. Fe/BiOCl microspheres composite photocatalysts have been synthesized through EG-assisted solvothermal process in the presence of reactable ionic liquid ([Omim]FeCl4). The as-prepared samples were characterized by XRD、SEM、TEM、EDS、BET、DRS etc. XPS analysis showed that Fe element existed in form of Fe3+in the photocatalyst, BET analysis showed that the specific surface area of the photocatalyst was about64.3m2/g. In the presence of H2O2,73%and97%of RhB and MB were photodegraded by Fe/BiOC1microspheres after irradiation for30min, which was higher than the photocatalytic activity of pure BiOCI in the same experimental condition. The result showed that it is benefit to enhance the photocatalytic activity by introducing Fe. During the reaction process, optical fenton reaction might be occurred in the presence of Fe and H2O2.
     4. Composite photocatalysts Pt/BiOBr microspheres have been synthesized through EG-assisted solvothermal process in the presence of reactable ionic liquid1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br).The as-prepared samples were characterized by XRD、SEM、TEM、EDS、BET、DRS etc.During the reactive process, ionic liquid [C16mim]Br act as solvent, reactant and template at the same time,and also has a control action on the formation of microspheres.EG work as solvent and reductant during the reactive process,deoxidizing chloroplatinic acid to Pt Nano-particle. HRTEM demonstrate that during the tablets which assembly into microspheres, the surface of the crystal lattice spacing of0.132nm,corresponding to the Pt crystal [220] crystal plane, indicating that the Pt metal preferably dispersed in BiOBr microsphere surface.Photocatalytic studies have shown that doping amount of0.5%Pt/BiOBr material has the best photocatalytic activity by degradate rhodamine B under visible light irradiation. The reason is that the doped metal Pt has good ability of electron capture,it can timely separate the holes and photogenerated electrons in the conduction band (CB),which restrain the recombination of photo-generated electrons and holes. Therefore, it contribute to the conduct of photocatalytic degradation reaction.
     5. Composite photocatalysts MWCNT/BiOCl have been synthesized through EG-assisted solvothermal process in the presence of reactable ionic liquid1-octyl-3-methylimidazole chloridize.The as-prepared samples were characterized by XRD、SEM、TEM、EDS、BET、 DRS etc.SEM shows that MWCNT/BiOCl spherical structure material is self-assembled generated by irregular BiOCl nanoflake and a lot of MWCNT uniform disperse on the surface of BiOCI nanoflake. TEM analysis revealed that the MWCNT attached, embedded and interwoven on the suface of BiOCl nanosheets. This structure develop the the ability of electron conductivity and migrate of MWCNT/BiOCl material, promoting the efficiency of the photocatalytic. Experiments show that82%of RhB was photodegraded by the catalyst0.1%MWCNT/BiOCl after irradiation for30min. After further irradiation for60min,the intermediates were photodegraded completely.
引文
[1]刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社,2005
    [2]Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238,37-38
    [3]Bard A J. Design of semiconductor photoelectrochemical systems for solar energy conversion[J]. J. Phys. Chem.,1982,86,172-177
    [4]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contain. Toxicol.,1976,16,697-701
    [5]Frank S N, Bard A J. Semiconductor electrodes.12. Photoassisted oxidations and photoelectrosythesis at polycrystalline TiO2 electrodes[J]. J. Am. Chem. Soc.,1977,99,4667-4675
    [6]Sano T T, Negishi N, Koike K, Takeuchi K, Matsuzawa S. Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand[J]. J. Mater.Chem.,2004,14,
    380-384 [7] Wei W, Dai Y, Guo M, Zhu Y T, Huang B B. Density Functional Theory Study of Ag Adsorption on SrTiO3 (001) Surface[J]. J. Phys. Chem. C,2010,114,10917-10921
    [8]Liu Z, Sun D D, Guo P, Leekie J O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano. Lett,2007,7,1081-1085
    [9]肖羽堂,马程.光催化净化空气研究进展[J].现代化工,2007,27,15-18
    [10]孔令丽,钟顺和,柳荫.Cu/Ni02Mo03/Si02光催化C02与CH3OH合成碳酸二甲酯的反应性能[J].催化学报,2005,26,917-922
    [11]马晓敏,王怡中.二氧化钛光催化氧化杀菌的研究及进展[J].环境污染治理技术与设备,2002,3,15.19
    [12]杜建东,张倩.混凝土路面砖路面生态效益研究新进展[J].混凝土与水泥制品,2008,4,52-57
    [13]Khalil L B, Mourad W E, Rophael M W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination[J]. Appl. Catal. B,1998,17,267-273
    [14]Graetzel M. Photoelectrochemical cells[J]. Nature,2001,414,338-344
    [15]Alfano O M, Bahnemann, D Cassano A E, Dillert R, Goslich R. Photocatalysis in water environments using artificial and solar light..[J]. Catal. Today,2000,58,199-230
    [16]Marta I L. Heterogeneous photocatalysis:Transition metal ions in photocatalytic systems[J]. Appl. Catal. B:Environ,1999,23,89-114
    [17]Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J]. Appl. Catal. B,1997,14,55-68
    [18]Brillas E, Mur E, Sauleda R, Sanchez L, Peral J, Domenech X, Casado J. Aniline mineralization by AOPs:anodic oxidation, photocatalysis, electro-Fentonand photoelectro-Fenton processes[J]. Appl. Catal. B, 1998,16,31-42
    [19]Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment[J]. Chem Rev.,1993, 93,671-698
    [20]Spadaro J T, Isabelle L, Renganathan V. Hydroxyl radical mediated degradation of azo dyes:evidence for benzene generation[J]. Environ Sci Technol.,1994,28,1389-1393
    [21]Chen C Y. Photocatalytic degradation of azo dye reactive orange 16 by TiO2[J]. Water, Air, Soil Pollut., 2009,202,335-342
    [22]Zhang Y, Wan J, Ke Y. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange[J]. J. Hazard. Mater.,2010,177,750-754
    [23]Ao Y, Xu J, Fu D, Yuan C. A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light[J]. J. Hazard. Mater.,2009,167,413-417
    [24]Asilturk M, Sayilkan F, Arpac E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation[J]. J. Photochem. Photobiol. A:Chem.,2009,203,64-71
    [25]Liang C, Liu C, Li F, Wu F. The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension[J]. Chem. Eng. J.,2009,147,219-225
    [26]Luan J, Zhao W, Feng J, et al. Structural photophysical and photocatalytic properties of novel Bi2AlVO7[J]. J. Hazard. Mater.,2009,164,781-789
    [27]Sun S M, Wang W Z, Xu H L, Zhou L, Shang M, Zhang L. Bi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven Photocatalysis[J]. J. Phy. Chem. C,2008,112,17835-17843
    [28]Huang J H, Ding K N, Wang X C, Fu X Z. Nanostructuring cadmium germanate catalysts for photocatalytic oxidation of benzene at ambient conditions[J]. Langmuir,2009,25,8313-8319
    [29]Wang W D, Huang F Q, Liu C M, Lin X P, Shi J L. Preparation, electronic structure and photocatalytic activity of the ln2Ti05 photocatalyst[J]. Mater. Sci. Eng. B,2007,139,74-80
    [30]Wu S, Cao H, Yin S, Liu X, Zhang X. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals[J]. J. Phys. Chem. C,2009,113,17893-17898
    [31]Rauf M A, Ashraf S S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution[J]. Chem. Eng. J.,2009,151,10-18
    [32]Zhao J C, Chen C C, Ma W H. Photocatalytic degradation of organic pollutants under visible light irradiation[J]. Top. Catal.,2005,35,269-278
    [33]Yang J, Chen C, Ji H, Ma W, Zhao J. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation:photoelectrocatalytic study by TiO2-film electrodes[J]. J. Phys. Chem. B,2005,109, 21900-21907
    [34]Chen C C, Ma W H, Zhao J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J], Chem. Soc. Rev.,2010,39,4206-4219
    [35]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J]. J Phys Chem.,1994,98, 13669-13679
    [36]Paola A D, Garcia-Lopez E, Ikeda S, Marci G, Ohtani B, Palmisano L. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2[J]. Catal Today., 2002,75,87-93
    [37]吴树新,马智,秦永宁,齐晓周,梁珍成.掺杂纳米Ti02光催化性能的研究[J].物理化学学报,2004,20,138-143
    [38]Ranjit K T, Willner I, Bossmann S H, Braun A M. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid [J]. Environ. Sci. Technol.,2001,35,1544-1549
    [39]_Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,2001,293,269-271
    [40]D'Arienzo M, Scotti R, Wahba L, Battocchio C, Bemporad E, Nale A, Morazzoni F. Hydrothermal N-doped TiO2:Explaining photocatalytic properties by electronic and magnetic identification of N active sites[J]. Appl. Catal. B,2009,93,149-155
    [41]Li H, Zhang X, Huo Y, Zhu J. Supercritical preparation of a highly active S-Doped TiO2 photocatalyst for methylene blue mineralization[J]. Environ. Sci. Technol.,2007,41,4410-4414
    [42]于爱敏,武光军,严晶晶,郑春明,章福祥,杨雅莉,关乃佳.水热法合成可见光响应的B掺杂Ti02及其光催化活性[J].催化学报,2009,30,137-141
    [43]薛峰,王玲,薛建军,包祖国,陶海军,曹志斌.CdS修饰Ti02纳米管阵列的制备及光催化性能研究[J].稀有金属材料与工程,2009,38,1238.1241
    [44]徐芬,查玉平,王国秀,王艳,李家麟.纳米TiO2-Cu2O复合材料可见光催化杀伤人宫颈肿瘤细胞研究[J].化学学报,2009,67,957-963
    [45]李莉,马禹,曹艳珍,张文治,郭伊荇.纳米复合光催化剂TiO2-ZrO2的制备、表征及其光催化活 性[J].化学通报,2009,6,529-533
    [46]陈崧哲,张彭义,祝万鹏,刘福东.可见光响应光催化剂研究进展[J].化学进展,2004,16,613.619
    [47]Hagfeldt A. Laser induced photocurrent transients and capacitance measurements on nanocrystalline TiO2 electrodes[J]. Sol. Energy Mater. Sol. Cells.,1995,38,339-341
    [48]VinodgoPal K, Kamat P V. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films[J]. Sol. Energy Mater. Sol. Cells.,1995,38,401-410
    [49]Bard J. Photoelectrochemistry [J]. Science 1980,207,139-144.
    [50]Sinha A S K, Saha N, Arora M K, Upadhyay S N. Preparation of egg-shell type Al2O3-supported US photocatalysts for reduction of H2O to H-2[J] Catalysis Today,2001,1-3,297-305
    [51]Zhou W, Lin L J, Wang W J, Zhang L L, Wu Q, L J H, Guo L. Hierarchial mesopoorous hematite with "electron-transport channels" and its improved performances in photocatalysis and lithium ion batteries[J]. J. Phys. Chem. B,2011,115,7126-7133
    [52]Tian Y, Huang G F,Tang L J, Xia M G, Huang W Q, Ma Z L. Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres[J]. Mater. Lett.,2012,83,104-107
    [53]Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A. Mechano-catalytic overall water splitting[J]. Chem. Commun.,1998,2185-2186
    [54]Hara M, Konodo T, Komoda M, Ikeda S, Kondo J N, Domen K, Hara M, Shinohara K, Tanaka A. Cu2O as a photocatalyst for overall water splitting under visible light irradiation[J]. Chem. Commun.,1998, 357-358
    [55]Wood B J, Wise H, Yolles R S. Selectivity and stoichiometry of copper oxide in propylene oxidation[J], J. Catalys.,1969,15,355-362
    [56]Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D. ZnS nanostructures:From synthesis to applications[J]. Prog. Mater. Sci.,2011,56,175-287
    [57]Barzegar M, Habibi-Yangjeh A, Behboudnia M. Ultrasonic-assisted preparation and characterization of CdS nanoparticles in the presence of a halide-free and low-cost ionic liquid and photocatalytic activity[J], J. Phys. Chem. Solids,2010,71,1393-1397
    [58]Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles[J]. J. Colloid Interface Sci.,2001,244,262-265
    [59]Cheng Z G, Wang S Z, Wang Q, Geng B Y. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst[J]. CrystEngComm,2010,12,144-149
    [60]Harris C, Kamat P V. Photocatalytic Events of CdSe Quantum Dots in Confined Media. Electrodic Behavior of Coupled Platinum Nanoparticles[J], ACS Nano,2010,4,7321-7330
    [61]Ishikawa A, Takata T, Matsumura T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation[J]. J. Phys. Chem. B,2004,108,2637-2642.
    [62]West C, Mokaya R. Nanocasting of high surface area mesoporous Ga2O3 and GaN semiconductor materials[J]. Chem. Mater.,2009,21,4080-4086
    [63]Kominami H, Oki K, Kohno M, Onoue S I, Kera Y, Ohtani B. Novel solvothermal synthesis of niobium(V) oxide powders and their photocatalytic activity in aqueous suspensions[J]. J. Mater. Chem., 2001,11,604-609
    [64]Takahara Y, Kondo J N, Takata T, Lu D L, Domen K. Mesoporous tantalum oxide characterization and photocatalytic activity for the overall water decomposition[J]. Chem. Mater.,2001,13,1194-1199
    [65]单雯妍,白雪峰.多元金属硫化物光催化剂的制备及应用[J].化学与黏合,2009,31,35-38
    [66]Xu X, Lu R J, Zhao X F, Xu S L, Lei X D, Zhang F Z, Evans D. G. Fabrication and photocatalytic performance of a ZnxCd1-xS solid solution prepared by sulfuration of a single layered double hydroxide precursor[J]. Appl. Phys. B,2011,102,147-156
    [67]Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H-2 evolution from aqueous solutions under visible light irradiation[J]. Chem.Commun.,2002,2,1958-1959
    [68]Rossella F, Galinetto P, Trepakov V, Badalyan A G, Samoggia G. Impurity effects and charge transport in ABO(3) single crystal oxides:photorefractivity-oriented and bbasic studies[J]. Ferroelectr.,2008,367, 111-119
    [69]Atanu D, Thtsumi I, Hiroyasu N. An amperometric solid-state gas sensor using a LaGaO3-based perovskite oxide electrolyte for detecting hydrocarbon in exhaust gas. A bimetallic anode for improving sensitivity at low temperature [J]. Chem. Mater.,2004,16,5198-5204
    [70]Hariharan R, Venkatasubramanian A, Gopalan P. Solid-state synthesis and characterization of Ca-substituted YA1O3 as electrolyte for solid oxide fuel cells[J]. J. Solid State Electrochem.,2010,9, 1657-1666
    [71]Oshikiri M, Boero M, Ye J H, Zou Z G, Kido G. Electronic structures of promising photocatalysts InMO4(M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region[J]. J Chem Phys.,2002,117,7313-7318
    [72]Zou Z G, Ye J H, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature,2001,414,625-627
    [73]Zou Z G, Ye J H, Arakawa H. Photocatalytic behavior of a new series of In0.8Mo.2Ta04(M= Ni, Cu, Fe) photocatalysts in aqueous solutions[J]. Catal Lett.,2001,75,209-213
    [74]Wang D, Zou Z, Ye J. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation[J]. Chem. Phys. Lett.,2003,373,191-196
    [75]Lou X, Jia X, Xu J, Liu S, Gao Q. Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal[J]. Mater. Sci. Eng., A,2006,432,221-225
    [76]Lv W, Liu B, Qiu Q, Wang F, Luo Z, Zhang P, Wei S. Synthesis, characterization and photocatalytic properties of spinel CUAl2O4 nanoparticles by a sonochemical method[J]. J. Alloys Compd.,2009,479, 480-483
    [77]唐新德,叶红齐,马晨霞,刘辉.烧绿石型复合氧化物的结构、制备及其光催化性能[J].化学进展,2009,21,2100-2114
    [78]Wu J J, Li J T, Lue X J, Zhang L L, Yao J J, Zhang F X, Huang F Q, Xu F F. A one-pot method to grow pyrochlore H4Nb207-octahedron-based photocatalyst[J] J.Mater. Chem.2010,20,1942-1946
    [79]Luan J F, Zou Z G, Lu M H. Growth, structural and photophysical properties of Bi2GaTaO7[J]. J. Cryst. Growth.,2004,273,241-247
    [80]Stoltzfus M W, Woodward P M, Seshadri R, Klepeis J, Bursten B. Structure and bonding in SnWO4, PbWO4, and BiVO4:lone pairs vs inert pairs[J]. Inorg. Chem.,2007,46,3839-3850
    [81]Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+with 6s(2) configuration and d(0) transition metal ions[J]. Chem. Lett.,1999,28,1103-1104
    [82]Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal. Lett.,2004,92,53-56
    [83]谢立进.铋系复合氧化物纳米晶光催化材料的制备及表征.青岛:中国海洋大学硕士论文,2006
    [84]Zhang C, Zhu Y F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater.,2005,17,3537-3545
    [85]Shang M, Wang W Z, Sun S M, Zhou L, Zhang L. Bi2WO6 nanocrystals with high photocatalytic activities under visible light[J]. J. Phys. Chem. C,2008,112,10407-10411
    [86]Wu J, Duan F, Zheng Y, Xie Y, Synthesis of Bi2WO6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity[J]. J. Phys. Chem. C,2007,111,12866-12871
    [87]Fu H B, Pan C S. Synthesis,characterization and Photoeatalytic Properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts[J]. Mater. Res. Bull.,2007,42,696-706
    [88]Fu H B, Zhang L W, Yao W Q. Photoeatalytie properties of nanosized Bi2WO6 catalystssynthe sized via a hydrothermal proeess[J]. Applied Catalysis. B,2006,66,100-110
    [89]Xiao Q, Zhang J, Xiao C, Tan X K. Photocatalytic degradation of methylene blue over Co3O4/Bi2 WO6 composite under visible light irradiation[J]. Catal. Commun.,2008,9,1247-1253
    [90]Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Synergetic Effect of Bi2WO6 Photocatalyst with C60 and Enhanced Photoactivity under Visible Irradiation[J]. Environ. Sci. Technol.,2007,41,6234-6239
    [91]Fu H B, Zhang S C, Xu T G, Zhu Y F, Chem J M. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products[J]. Environ. Sci. Technol,2008,42,2085-2091
    [92]Tokunage, Kato H, Kudo A. Selective preparation of monoelinieand tetragonal BiVO4 with seheelite strueture and their photoeatalytie properties[J]. J.Chem.Mater.,2001,13,4624-4628
    [93]Kohtani S, Koshiko M, Kudo A. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator[J]. Appl. Catal. B,2003,46,573-586
    [94]Kohtani S, Tomohiro M, Tokumura K, Nakagaki R. Photooxidation reac-tions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts[J]. Appl. Catal. B,2005,58,265-272
    [95]Zhang X, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Selective synthesis and visi-ble-light photocatalytic activities of BiVO4 with different crystalline phases[J]. Mater. Chem. Phys.,2007,103, 162-167
    [96]Xie B P, Zhang H X, Cai P X,Qiu G L, Xiong Y. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visiblelightirradiation[J]. Chemosphere,2006,63, 956-963
    [97]Xu H, Li H, Wu C, Yan Y S, Shu H M. Preparation, characterization and photocatalytic activity of transition metal-loaded BiVO4[J]. Mater. Sci. Eng. B,2008,147,52-56
    [98]Xu H, Wu C, Li H, Chu J Y, Song G S, Xu Y G, Yan Y S. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts[J]. Appl. Surf. Sci.,2009,256,597-602
    [99]李二军,陈浪,章强.铋系半导体光催化材料[J].化学进展,2010,22,2282-2289
    [100]Hou J G, Jiao S Q, Zhu H M, Kumar R V. Bismuth titanate pyrochlore microspheres:directed synthesis and their visible light photocatalytic activity[J]. J. Solid State Chem.,2011,184,154-158
    [101]Bian Z F, Ren J, Zhu J, Wang S H, Lu Y F, Li H X. Self-assembly of BixTi1-xO2 visible photocatalyst with core-shell structure and enhanced activity[J]. Appl. Catal. B,2009,89,577-582
    [102]Zhou J K, Zou Z G, Ray A K, Zhao X S. Preparation and characteriza-tion of Ppolycrystalline bismuth titanate Bi12TiO20 and its photo-catalytic properties under visible light irradiation[J]. Ind. Eng.Chem. Res., 2007,46,745-749
    [103]许效红,姚伟峰,张寅等.钛酸秘系化合物的光催化性能研究[J].化学学报,2005,63,5-10
    [104]魏平玉,杨青林,郭林.卤氧化铋化合物光催化剂[J].化学进展,2009,21,1734-1741
    [105]Zheng Y, Duan F, Chen M Q, Xie Y. Synthetic Bi2O2CO3 nanostructures:Novel photocatalyst with controlled special surface exposed[J]. J. Mol. Catal. A,2010,317,34-40
    [106]Li L S, Cao R G, Wang Z J, Li J J, Qi L M. Template synthesis of hierarchical Bi2E3(E=S, Se, Te) core-shell microspheres and their electrochemical and photoresponsive properties[J]. J. Phys. Chem. C,2009, 113,18075-18081
    [107]Su W Y, Wang J A, Huang Y X, Wang W J, Wu L, Wang X X, Liu P. Synthesis and catalytic performances of a novel photocatalyst BiOF[J]. Scripta Mater.,2010,62,345-348
    [108]Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Appl. Catal., B,2006,68,125-129
    [109]Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. J. Hazard. Mater.,2009,167,803-809
    [110]Xiao X, Zhang W D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity[J]. J. Mater. Chem.,2010,20,5866-5870
    [111]Kijima N, Matano K, Saito M, Oikawa T, Konishi T, Yasuda H, Sato T, Yoshimura Y. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst[J]. Appl. Catal. A,2000,206, 237-244
    [112]Zhao L J, Zhang X C, Fan C M, Liang Z H, Han P D. First-principles study on the structural, electronic and optical properties of BiOX (X=C1, Br, I) crystals[J]. Physica B,2012,407,3364-3370
    [113]Deng Z T, Chen D, Peng B, Tang F Q. From bulk metal Bi to two-dimensional well-crystallized BiOX (X= Cl, Br) micro-and nanostructures:Synthesis and characterization[J]. Cryst. Growth Des.,2008,8, 2995-3003
    [114]Peng H L, Chan C K, Meister S, Zhang X F, Cui Y. Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport[J]. Chem. Mater.,2009,21, 247-252
    [115]Berlincourt D. Piezoelectric ceramic compositional development[J]. J. Acoust. Soc. Am.,1992,91, 3034-3040
    [116]Burch R, Chalker S, Loader P, Thomas J M, Ueda W. Investigation of ethene selectivity in the methane coupling reaction on chlorine-containing catalysts[J]. Appl. Catal., A,1992,82,77-90
    [117]Chen L, Yin S F, Huang R, Zhou Y, Luo S L, Au C T. Facile synthesis of BiOCl nano-flowers of narrow band gap and their visible-light-induced photocatalytic property[J]. Catal. Commun.,2012,23,54-57
    [118]Zhao K, Zhang X, Zhang L Z. The first BiOI-based solar cells[J]. Electrochem. Commun.,2009,11, 612-615
    [119]Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q. A novel BiOCl film with flowerlike hierarchical structures and its optical properties[J]. Nanotechnology,2009,20,275702
    [120]Huang W L, Zhu Q S. Electronic structures of relaxed BiOX (X= F, Cl, Br, I) photocatalysts[J]. Comput. Mater. Sci.,2008,43,1101-1108
    [121]Huang W L, Zhu Q S. Structural and electronic properties of BiOX (X= F, Cl, Br, I) considering Bi 5f states[J]. Comput. Mater. Sci.,2009,46,1076-1084
    [122]Huang W L, Zhu Q S. DFT calculations on the electronic structures of BiOX (X= F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states[J]. J. Comput. Chem.,2009,30,183-190
    [123]Xiao X, Hao R, Liang M, Zuo X X, Nan J M, Li L S, Zhang W D. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A[J]. J. Hazard. Mater.,2012,233-234,122-130
    [124]Xiao X, Zhang W D. Hierarchical Bi7O9I3 micro/nano-architecture:facile synthesis, growth mechanism, and high visible light photocatalytic performance[J]. RSC Adv.,2011,1,1099-1105
    [125]刘晓霞,樊彩梅,王韵芳,王雅文,张小超,梁镇海.花球状BiOC1薄膜的低温制备及其光催化性能[J]中国科学:化学,201,8,1145-1151
    [126]Zhang X, Ai Z H, Jia F L, Zhang L Z. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X= Cl, Br, I) Nanoplate Microspheres[J]. J. Phys. Chem. C, 2008,112,747-753
    [127]Chang X F, Huang J, Cheng C, Sui Q, Sha W, Ji G B, Deng S B, Yu G. BiOX (X= Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source:Characterization and catalytic performance [J]. Catal. Commun.,2010,11,460-464
    [128]Henle J, Simon P, Frenzel A, Scholz S, Kaskel S. Nanosized BiOX (X=C1, Br,1) Particles Synthesized in Reverse Microemulsions[J]. Chem. Mater.,2007,19,366-373
    [129]Zhang J, Shi F J, Lin J, Chen D F, Gao J M, Huang Z X, Ding X X, Tang C C. Self-Assembled 3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst[J]. Chem. Mater.,2008,20,2937-2941
    [130]Zhang L, Cao X F, Chen X T, Xue Z L. BiOBr hierarchical microspheres:Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties[J]. J. Colloid Interface Sci., 2011,354,630-636
    [131]Thomas J M, Ueda W, Williams J, Harris K D M. New families of catalysts for the selective oxidation of methane[J]. Faraday Discuss Chem. Soc.,1989,87,33-45
    [132]Williams J, Jones R H, Thomas J M, Kent J. A comparison of the catalytic performance of the layered oxychlorides of bismuth, lanthanum and samarium in the conversion of methane to ethylene[J]. Catal. Lett., 1989,3,247-256
    [133]Wang C H, Shao C L, Liu Y C, Zhang L N. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning[J]. Scripta Mater.,2008,59,332-335
    [134]Chen F, Liu H Q, Bagwasi S, Shen X X, Zhang J L. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation[J]. J. Photochem. Photobiol., A,2010,215,76-80
    [135]Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y. One-Dimensional BiPO4 Nanorods and Two-Dimensional BiOCl Lamellae:Fast Low-Temperature Sonochemical Synthesis,Characterization, and Growth Mechanism[J]. Inorg. Chem.,2005,44,8503-8509
    [136]Tian Y, Guo C F, Guo Y J, Wang Q, Liu Q. BiOCl nanowire with hierarchical structure and its Raman features[J]. Appl. Surf. Sci.,2012,258,1949-1954
    [137]Michel C R, Contreras N L L, Martinez-Preciado A H. Gas sensing properties of nanostructured bismuth oxychloride[J]. Sensor Actuat B-Chem,2011,160,271-277
    [138]Deng H, Wang J W, Peng Q, Wang X, Li Y D. Controlled Hydrothermal Synthesis of Bismuth Oxyhalide Nanobelts and Nanotubes[J]. Chem. Eur. J.2005,11,6519-6524
    [139]Gondal M A, Chang X F, Yamani Z H. UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution[J]. Chem. Eng. J.,2010,165,250-257
    [140]An H Z, Du Y, Wang T M, Wang C, Hao W C, Zhang J Y. Photocatalytic properties of BiOX (X= Cl, Br, and I)[J]. Rare Metals,2008,27,243-250
    [141]Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y. Pascal Brault Synthesis and photocatalytic properties of BiOCl nanowire arrays[J]. Mater. Lett.,2010,64,115-118
    [142]Wu S J, Wang C, Cui Y F, Hao W C, Wang T M. Pascal Brault BiOCl nano/microstructures on substrates:Synthesis and photocatalytic properties[J]. Mater. Lett.,2011,65,1344-1347
    [142]Jiang J, Zhao K., Xiao X Y, Zhang L Z. Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets[J]. J. Am. Chem. Soc.,2012,134, pp 4473-4476
    [144]Shi Z Q, Wang Y, Fan C M, Wang Y F, Ding G Y. Preparation and photocatalytic activity of BiOCl catalyst[J]. Trans. Nonferrous Met. Soc. China,2011,21,2254-2258
    [145]Wang Y, Shi Z Q, Fan C M, Hao X G, Ding G Y, Wang Y F. Synthesis of BiOCl photocatalyst by a low-cost, simple hydrolytic technique and its excellent photocatalytic activity[J]. Int. J. Miner. Metall. Mater.,2012,19,467-472
    [146]Armelao L, Bottaro G, Maccatoc C, Tondello E. Bismuth oxychloride nanoflakes:Interplay between composition-structure and optical properties[J]. Dalton Trans.,2012,41,5480-5485
    [147]Qamara M, Yamani Z H. Bismuth oxychloride-mediated and laser-induced efficient reduction of Cr(Ⅵ) in aqueous suspensions[J]. Appl. Catal., A,2012,439-440,187-19
    [148]Huo Y N, Zhang J, Miao M, Jin Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances[J]. Appl. Catal., B,2012,111-112,334-341
    [149]Yu Z Y, Detlef B, Ralf D, Song L, Lu L Q. Photocatalytic degradation of azo dyes by BiOX (X= Cl, Br)[J]. J. Mol. Catal. A:Chem.,2012,365,1-7
    [150]Xia J X, Yin S, Li H M, Xu H, Xu L, Xu Y G. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton Trans., 2011,40,5249-5258
    [151]Xu J, Meng W, Zhang Y, Li L, Guo C S. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway[J]. Appl. Catal., B,2011,107,355-362
    [152]Feng Y C, Li L, Li J W, Wang J F, Liu L. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J]. J. Hazard. Mater.,2011,192,538-544
    [153]Li G F, Qin F, Yang H, Lu Z, Sun H Z, Chen R. Facile Microwave Synthesis of 3D Flowerlike BiOBr Nanostructures and Their Excellent CrVI Removal Capacity[J]. Eur. J. Inorg. Chem.2012,2012,2508-2513
    [154]Xiao P P, Zhu L L, Zhu Y C, Qian Y T. Room-Temperature Synthesis of BiOBr Sub-Microflowers and Their Photocatalytic Properties[J]. J. Nanosci. Nanotechnol.,2012,12,2008-2013
    [155]Zhang D Q, Wen M C, Jiang B, Li G S, Yu J C. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment[J]. J. Hazard. Mater.,2012,211-212,104-111
    [156]Chang X F, Huang J, Tan Q Y, Wang M, Ji G B, Deng S B, Yu G. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation[J]. Catal. Commun.,2009,10,1957-1961
    [157]Fang F, Chen L, Wu L M. Syntheses, Morphologies and Properties of BiOI Nanolamellas and BiSI Nanorods[J]. Chinese J. Struct. Chem.,2009,28,1399-1406
    [158]Ye L Q, Tian L H, Peng T Y, Zan L. Synthesis of highly symmetrical BiOI single-crystal nanosheets and their{001} facet-dependent photoactivity[J]. J. Mater. Chem.,2011,21,12479-12484
    [159]Yu C L, Fan C F, Yu J C, Zhou W Q, Yang K. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation[J]. Mater. Res. Bull.,2011,46,140-146
    [160]Luz A, Feldmann C. Phase-transfer assisted synthesis of BiOI nanoplatelets, quantum-confined color and selective modification of surface conditioning[J]. Solid State Sciences 2011,13,1017-1021
    [161]Song L M, Zhang S J, Wei Q W. Porous BiOI Sonocatalysts:Hydrothermal Synthesis, Characterization, Sonocatalytic, and Kinetic Properties[J]. Ind. Eng. Chem. Res.,2012,51,1193-1197
    [162]Ge S X, Zhao K, Zhang L Z. Microstructure-dependent photoelectrochemical and photocatalytic properties of BiOI[J]. J Nanopart Res,2012,14,1015-1026
    [163]Lei Y Q, Wang G H, Song S Y, Fan W Q, Pang M, Tang J K, Zhang H J. Room temperature, template-free synthesis of BiOI hierarchical structures:Visible-light photocatalytic and electrochemical hydrogen storage properties[J]. Dalton Trans.,2010,39,3273-3278
    [164]Hao R, Xiao X, Zuo X X, Nan J M, Zhang W D. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres[J]. J. Hazard. Mater.,2012, 209-210,137-145
    [165]Ren K X, Zhang K, Liu J, Luo H D, Huang Y B, Yu X B. Controllable synthesis of hollow/flower-like BiOI microspheres and highly efficient adsorption and photocatalytic activity[J]. CrystEngComm,,2012,14, 4384-4390
    [166]Xia J X, Yin S, Li H M, Xu H, Yan Y S, Zhang Q. Self-Assembly and Enhanced Photocatalytic Properties of BiOI Hollow Microspheres via a Reactable Ionic Liquid[J]. Langmuir 2011,27,1200-1206
    [167]Wang Y N, Deng K J, Zhang L Z. Visible Light Photocatalysis of BiOI and Its Photocatalytic Activity Enhancement by in Situ Ionic Liquid Modification[J]. J. Phys. Chem. C,2011,115,14300-14308
    [168]Wang R J, Jiang G H, Wang X H, Hu R B, Xi X G, Bao S Y, Zho Y, Tong T, Wang S, Wang T, Chen W X. Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres[J]. Powder Technology,2012,228,258-263
    [169]Parea B, Sarwana B, Jonnalagadda S B. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition[J]. Appl. Surf. Sci.,2011,258, 247253
    [170]Yu C L, Yu J C, Fan C F, Wen H R, Hu S J. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation[J]. Mater. Sci. Eng., B,2010,166,213-219
    [171]Yu C L, Cao F F, Shu Q, Bao Y L, Xie Z P, Yu J C, Yang K. Preparation, Characterization and Photocatalytic Performance of Ag/BiOX (X=C1, Br, I) Composite Photocatalysts[J]. Acta Phys. Chim. Sin., 2012,28,647-653
    [172]Shamaila S, Sajjad A K L, Chen F, Zhang J L. WO3/BiOCl, a novel heterojunction as visible light photocatalyst[J]. J. Colloid Interface Sci.,2011,356,465-472
    [173]Xiong W, Zhao Q D, Li X Y, Zhang D K. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity[J]. Catal. Commun.,2011,16,229-233
    [174]Zhang L, Wang W Z, Zhou L, Shang M, Sun S M. Fe3O4 coupled BiOCl:A highly efficient magnetic photocatalyst[J]. Appl. Catal., B,2009,90,458-462
    [175]Cao J, Xu B Y, Lin H L, Luo B D, Chen S F. Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B[J]. Catal. Commun.,2012,26,204-208
    [176]Chang X F, Yu G, Huang J, Li Z, Zhu S F, Yu P F, Cheng C, Deng S B, Ji G B. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy[J]. Catal. Today,2010,153,193-199
    [177]Cheng C, Ni Y H, Ma X, Hong J M. AgBr nanoparticles-improved photocatalytic property of BiOBr nanosheets[J]. Mater. Lett.,2012,79,273-276
    [178]Su M H, He C, Zhu L F, Sun Z J, Shan C, Zhang Q, Shu D, Qiu R L, Xiong Y. Enhanced adsorption and photocatalytic activity of BiOI-MWCNT composites towards organic pollutants in aqueous solution[J]. J. Hazard. Mater.,2012,229-230,72-82
    [179]Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y. One-Step Synthesis of the Nanostructured Agl/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances[J]. Langmuir,2010, 26,6618-6624
    [180]Zhang X, Zhang L Z, Xie T F, Wang D J. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures[J]. J. Phys. Chem. C,2009, 113,7371-7378
    [181]Li Y Y, Wang J S, Yao H C, Dang L Y, Li Z J. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities[J]. Catal. Commun.2011,12,660-664.
    [182]Chen L, Yin S F, Luo S L, Huang R, Zhang Q, Hong T, Au P C T. Bi2O2CO3/BiOI Photocatalysts with Heterojunctions Highly Efficient for Visible-Light Treatment of Dye-Containing Wastewater[J]. Ind. Eng. Chem. Res.2012,51,6760-6768
    [183]Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S. Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts[J]. Phys. Chem. Chem. Phys.,2012,14,10572-10578
    [184]Ai Z H, Ho W K, Lee S C. Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites[J]. J. Phys. Chem. C,2011,115,25330-25337
    [185]Zhang X M, Chang X F, Gondal M A, Zhang B, Liu Y S, Ji G B. Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light[J]. Appl. Surf. Sci.,2012,258,7826-7832
    [186]Song S Y, Gao W, Wang X, Li X Y, Liu D P, Xing Y, Zhang H J. Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity[J]. Dalton Trans.,2012,41, 10472-10476
    [187]Fu J, Tian Y L, Chang B B, Xi F N, Dong X P. BiOBr-carbon nitride heteroj unctions:synthesis, enhanced activity and photocatalytic mechanism[J]. J. Mater. Chem.,2012,22,21159-21166
    [188]Keller E, Kramer V. A strong deviation from Vegard's rule:X-ray powder inves-tigations of the three quasi-binary phase systems BiOX-BiOY (X, Y= Cl, Br, I)[J]. Z. Naturforsch.,60b,2005,1255-1263.
    [189]Jia Z F. Wang F M, Xin F, Zhang B Q. Simple Solvothermal Routes to Synthesize 3D BiOBrxl1-x Microspheres and Their Visible-Light-Induced Photocatalytic Properties[J]. Ind. Eng. Chem. Res.,2011,50, 6688-6694
    [190]Wang W D, Huang F Q, Lin X P, Yang J H. Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI[J]. Catal. Commun.,2008,9,8-12
    [191]Cao J, Xu B Y, Lin H L, Luo B D, Chen S F. Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal[J]. Chem. Eng. J.,2012, 185-186,91-99
    [192]Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Composition Dependence of the Photocatalytic Activities of BiOCl1-xBrx Solid Solutions under Visible Light[J]. Chem. Eur. J.,2011,17, 9342-9349
    [193]Li T B, Chen G, Zhou C, Shen Z Y, Jin R C, Sun J X. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances [J]. Dalton Trans.,2011,40,6751-6758
    [194]Cao J, Xu B Y, Luo B D, Lin H L, Chen S F. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties [J]. Catal. Commun.,2011,13,63-68
    [195]Walden P. Molecular weights and electrical conductivity of several fused salts[J]. Bull. Acad. Imper. Sci.,1914,8,405-422
    [196]Wilks J S, Zaworwrwtko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. J. Chem. Soc. Chem. Commun.,1992,13,965-967
    [197]Maqsood A M, Mohd A H, Firdosa N. Ionic liquids in supported liquid membrane technology [J]. Chem. Eng. J.,2011,171,242-254
    [198]Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation[J]. J. Am. Chem. Soc.,2004,126,3026-3027
    [199]Kim K S, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids[J]. Langmuir,2004,20,556-560
    [200]Kim K S, Demberelnyamba N D, Yeon S W, Choi S, Cha J H, Lee H. One-phase preparation of palladium nanoparticles using thiol-functionalized ionic liquid[J]. Korean J. Chem. Eng.,2005,22,717-720
    [201]Tatumi R, Fujihara H. Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid[J]. Chem. Commun.,2005,1,83-85
    [202]Gao S Y, Zhang H J, Wang X M, Mai W P, Peng C Y, Ge L H. Palladium nanowires stabilized by thiol-functionalized ionic liquid:seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction[J]. Nanotechnolology,2005,16,1234-1237
    [203]Zhao D B, Fei Z F, Geldbach T J, Scopelliti R, Dyson P J. Nitrile-functionalized pyridinium ionic liquids:Synthesis, characterization, and their application in carbon-Carbon coupling reactions[J]. J. Am. Chem. Soc.,2004,126,15876-15882
    [204]Fei Z F, Zhao D B, Pieraccini D, Ang W H, Geldbach T J, Scopelliti R, Chiappe C, Dyson P J. Development of nitrile-functionalized ionic liquids for C-C coupling reactions:Implication of carbene and nanoparticle catalysts[J]. Organometallics,2007,26,1588-1598
    [205]Chiappe C, Pieraccini D, Zhao D B, Fei Z F, Dyson P J. Remarkable anion and cation effects on Stille reactions in functionalised ionic liquids[J]. Adv. Synth. Catal.,2006,348,68-74
    [206]Wang Z J, Zhang Q X, Kuehner D, Ivaska A, Niu L. Green synthesis of 1-2 nm gold nanoparticles stabilized by amine-terminated ionic liquid and their electrocatalytic activity in oxygen reduction[J]. Green Chem.,2008,10,907-909
    [207]Kim K S, Choi S, Cha J H, Yeon S H, Lee H. Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids[J]. J. Mater. Chem.,2006,16,1315-1317
    [208]Choi S, Kim K S, Yeon S H, Cha J H, Lee H, Kim C J, Yoo ID. Fabrication of silver nanoparticles via self-regulated reduction by 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate[J]. Korean J. Chem. Eng.,2007,24,856-859
    [209]Dinda E, Si S, Kotal A, Mandal T K. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium[J]. Chem. Eur. J.,2008,14, 5528-5537
    [210]Roucoux A, Schulz J, Patin H. Reduced Transition Metal Colloids:A Novel Family of Reusable Catalysts[J]. Chem. Rev.,2002,102,3757-3778
    [211]Migowski P, Dupont J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids[J]. Chem. Eur. J.,2007,13,32-39
    [212]Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound promoted C-C bond formation:Heck reaction at ambient conditions in room temperature ionic liquids[J]. Chem. Commun.,2001,17,1544-1545
    [213]Dupont J, Fonseca G S, Umpierre A P, Fichtner P F P, Teixeira S R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc.,2002,124,4228-4229
    [214]Fonseca G S, Umpierre A P, Fichtner P F P, Teixeira S R, Dupont J. The use of imidazolium ionic liquids for the formation and stabilization of Ir-0 and Rh-0 nanoparticles:Efficient catalysts for the hydrogenation of arenes[J]. Chem. Eur. J.,2003,9,3263-3269
    [215]Bruss A J, Gelesky M A, Machado G, Dupont J. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins[J]. J. Mol. Catal. A,2006,252,212-218
    [216]Scheeren C W, Machado G, Teixeira S R, Morais J, Domingos J B, Dupont J. Synthesis and Characterization of Pt(O) Nanoparticles in Imidazolium Ionic Liquids[J]. J. Phys. Chem. B,2006,110, 13011-13020
    [217]Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini C. C, Chauvin Y, Chaudret B, Basset J. M. Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles:effect of the temperature and stirring[J]. J. Mater. Chem.,2007,17,3290-3292
    [218]Durand J, Teuma E, Malbosc F, Kihn Y, Gomez M. Palladium nanoparticles immobilized in ionic liquid:An outstanding catalyst for the Suzuki C-C coupling[J] Catal. Commun.,2008,9,273-275
    [219]Migowski P, Machado G, Texeira S R, Alves M C M, Morais J, Traverse A, Dupont J. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids[J]. Phys. Chem. Chem. Phys., 2007,9,4814-4821
    [220]Singh P, Kumari K, Katyal A, Kalra R, Chandra R. Copper Nanoparticles in Ionic Liquid:An Easy and Efficient Catalyst for Selective Carba-Michael Addition Reaction[J]. Catal. Lett.,2009,127,119-125
    [221]An J, Wang D S, Luo Q Z, Yuan X Y. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid[J]. Mater. Sci. Eng. C,2009,29, 1984-1989
    [222]Redel E, Thomann R, Janiak C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors[J]. Chem. Commun.,2008,15, 1789-1791
    [223]Redel E, Kramer J, Thomann R, Janiak C. Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene[J]. J. Organomet. Chem.,2009,694,1069-1075
    [224]Iida M, Baba C, Inoue M, Yoshida H, Taguchi E, Furusho H. Ionic Liquids of Bis(alkylethylenediamine)silver(I) Salts and the Formation of Silver(O) Nanoparticles from the Ionic Liquid System[J]. Chem. Eur. J.,2008,14,5047-5056
    [225]Ding K L, Miao Z J, Liu Z M, Zhang Z F, Han B X, An G M, Miao S D, Xie Y. Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process[J]. J. Am. Chem. Soc., 2007,129,6362-6363
    [226]Zheng W j,Liu X D, Yan Z Y, Zhu L J. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4[J]. ACS Nano,2009,3,115-122
    [227]Zhu H G, Huang J F, Pan Z W, Dai S. Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors[J]. Chem. Mater.,2006,18,4473-4477
    [228]Zhou X, Xie Z X, Jiang Z Y, Kuang Q, Zhang S H, Xu T, Huang R B, Zheng L S. Formation of ZnO hexagonal micro-pyramids:a successful control of the exposed polar surfaces with the assistance of an ionic liquid[J]. Chem. Commun.,2005,44,5572-5574
    [229]Li Z H, Gessner A, Richters J P, Kalden J, Voss T, Kubel C, Taubert A. Hollow zinc oxide mesocrystals from an ionic liquid precursor (ILP)[J]. Adv. Mater.,2008,20,1279-1285
    [230]Taubert A, Uhlmann A, Hedderich A, Kirchhoff K. CuO Particles from Ionic Liquid/Water Mixtures: Evidence for Growth via Cu(OH)2 Nanorod Assembly and Fusion[J]. Inorg. Chem.,2008,47,10758-10764
    [231]Li H, Liu R, Zhao R X, Zheng Y F, Chen W X, Xu Z D. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids[J].Cryst. Growth Des.,2006, 6,2795-2798
    [232]Wang Y, Maksimuk S, Shen R, Yang H. Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid[J]. Green Chem.,2007,9,1051-1056
    [233]Li N, Dong B, Yuan W L, Gao Y, Zheng L Q, Huang Y M, Wang S L. ZrO2 nanoparticles synthesized using ionic liquid microemulsion[J]. J. Dispersion Sci. Technol.,2007,28,1030-1033
    [234]Zou D B, Xu C, Luo H, Wang L, Ying T K. Synthesis of CO3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature [J]. Mater. Lett.,2008,62,1976-1978
    [235]Li Z X, Li L L, Yuan Q, Feng W, Xu J, Sun L D, Song W G, Yan C H. Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation[J]. J. Phys. Chem. C,2008,112,18405-18411
    [236]Li L L, Zhang W M, Yuan Q, Li Z X, Fang C J, Sun L D, Wan L J, Yan C H. Room temperature ionic liquids assisted green synthesis of nanocrystalline porous SnO2 and their gas sensor behaviors[J]. Cryst. Growth Des.,2008,8,4165-4172
    [237]Chen L J, Zhang S M, Wu Z S, Zhang Z J,,Dang H X. Preparation of PbS-type PbO nanocrystals in a room-temperature ionic liquid[J]. Mater. Lett.,2005,59,3119-3121
    [238]Liu H T, He P, Li Z Y, Sun D Z, Huang H P, Li J H, Zhu G Y. Crystalline vanadium pentoxide with hierarchical mesopores and its capacitive behavior[J]. Chem. Asian J.,2006,1,701-706
    [239]Zhang F B, Li H L. Synthesis of hollow carbon microspheres in ionic liquids and their electrochemical capacitance characteristics[J]. Mater. Chem. Phys.,2006,98,456-458
    [240]Lee J S, Wang X Q, Luo H M, Baker G A, Dai S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liqui'ds[J]. J. Am. Chem. Soc.,2009,131,4596-4597
    [241]Paraknowitsch J P, Zhang J, Su D S, Thomas A, Antonietti M. ionic liquids as precursors for nitrogen-doped graphitic carbon[J]. Adv. Mater.,2010,22,87-92
    [242]Takanori F, Takuzo A. Ionic liquids for soft functional materials with carbon nanotubes[J]. Chem. Eur. J.,2007,13,5048-5058
    [243]Park H, Yang S H, Jun Y S, Hong W H, Kang J K. Facile route to synthesize large-mesoporous gamma-alumina by room temperature ionic liquids[J]. Chem. Mater.,2007,19,535-542
    [244]Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M= Bi, Sb) nanorods using an ionic liquid[J]. J. Phys. Chem. B,2005,109,4361-4364
    [245]Taubert A. CuCl nanoplatelets from an ionic liquid-crystal precursor[J]. Angew. Chem. Int. Ed.,2004, 43,5380-5382
    [246]Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides[J]. Chem. Mater.,2006,18,3162-3168
    [247]Du J M, Liu Z M, Li Z H, Han B X, Huang Y, Zhang J L. Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid[J]. Micropor. Mesopor. Mater.,2005,83,145-149
    [248]Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon J M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications[J]. Chem. Mater.,2009,21, 1096-1107
    [249]Cao S W, Zhu Y J, Cheng G F, Huang Y H. ZnFe2O4 nanoparticles:Microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol[J]. J. Hazard. Mater.,2009,171,431-435
    [250]Ma L, Chen W X, Li H, Xu Z D. Synthesis and characterization of MoS2 nanostructures with different morphologies via an ionic liquid-assisted hydrothermal route Mater[J]. Chem. Phys.,2009,116,400-405
    [251]Zhao X L, Wang C X, Hao X P, Yang J X, Wu Y Z, Tian Y P, Tao X T, Jiang M H. Synthesis of PbS nanocubes using an ionic liquid as the solvent[J]. Mater. Lett.,2007,61,4791-4793.
    [252]Xu C, Wang L, Zou D B, Ying T K. Ionic liquid-assisted synthesis of hierarchical CuS nanostructures at room temperature[J]. Mater. Lett.,2008,62,3181-3184
    [253]Liu X D, Ma J M, Peng P, Zheng W J. One-Pot Hydrothermal Synthesis of ZnSe Hollow Nanospheres from an Ionic Liquid Precursor[J]. Langmuir,2010,26,9968-9973
    [254]Jiang Y, Zhu Y J, Cheng G F. Synthesis of Bi2Se3 nanosheets by microwave heating using an ionic liquid[J]. Cryst. Growth Des.,2006,6,2174-2176
    [255]Sun Y, Zheng W J. Ultrathin SmVO4 nanosheets:ionic liquid-assisted hydrothermal synthesis, characterization, formation mechanism and optical property[J]. Dalton Trans.,2010,39,7098-7103
    [256]Li F T, Liu Y, Sun Z M, Liu R H, Kou C G, Zhao Y, Zhao D S. Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids[J]. Mater. Lett.,2011,65,406-408
    [257]Li H, Duan X C, Ma J M, Zheng W J. A controllable ionic liquid-assisted hydrothermal route to prepare CoCO3 crystals and their conversion to porous CO3O4[J]. Cryst. Res. Technol.,2012,47,25-30
    [258]Ai Z H, Ho W K, Lee S C, Zhang L Z. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light[J]. Environ. Sci. Technol. 2009,43,4143-4150
    [259]Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009,8,76-80
    [260]Chen X F, Zhang J S, Fu X Z, Antonietti M, Wang X C. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light[J]. J. Am. Chem. Soc.,2009,131,11658-11659
    [261]Ge L, Han C C, Liu J, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange[J].Appl.CatalB., Environ.,2011,108,100-107
    [262]Sun L I, Zhao X, Jia C J, Zhou Y X, Cheng X F, Li P, Liu L and Fan W L, Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction:investigation based on experimental and theoretical studies[J] J. Mater. Chem.,2012,22,23428-23438
    [263]Xia J X, Yin S, Li H M, Xu H, Xu L, Xu Y G. Enhanced photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton Trans.,2011,40, 5249-5258.6
    [264]Cui Y J, Ding Z X, Fu X Z, and Wang X C. Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis[J]. Angew. Chem. Int. Ed. 2012,51,1-6
    [265]Xia J X, Zhang J, Yin S, Li H M, Xu H, Xu L, Zhang Q. Advanced visible light photocatalytic properties of BiOCl micro/nanospheres synthesized via reactable ionic liquids[J]. J. Physic.Chem. Solid.. In press
    [266]Lei Y Q, Wang G H, Song, S Y,Fan, W Q, Zhang, H J. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J], Crystengcomm.,2009,11,1857-1862
    [267]Wang Y, Shi Z Q, Fan C M, Hao X G, Ding G Y, Wang Y F. Synthesis of BiOCl photocatalyst by a low-cost, simple hydrolytic technique and its excellent photocatalytic activity[J], Int J Min Met Mater,2012, 19.467-472
    [268]Xiong J Y, Cheng G, Li G F, Qin F, Chen R. Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance[J], Rsc Advances,2011,1,1542-1553
    [269]Yu C L, Zhou W Q, Yu J C. Rapid Fabrication of BiOCl(Br) Nanosheet with High Photocatalytic Performance via Ultrasound Irradiation[J], Chinese. J. Inorg. Chem,2011,27,2033-2038
    [270]Mu Q H, Zhang Q H, Wang H Z, Li Y G. Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties[J], J. Mater. Chem.,2012,22,16851-16857
    [271]Nishikawa M, Mitani Y, Nosaka Y. Photocatalytic Reaction Mechanism of Fe(Ⅲ)-Grafted TiO2 Studied by Means of ESR Spectroscopy andChemiluminescence Photometry[J], J. Phys. Chem. C,2012,116, 14900-14907
    [272]Wu Q, Ouyang J J, Xiea K P, Sun L, Wang M Y, Lin C J. Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotubearray photocatalysts[J], J. Hazard. Mater.,2012,199,410-417
    [273]Huang K Q, Chen L, Liao M X, Xiong J W. The Photocatalytic Inactivation Effect of Fe-Doped TiO2 Nanocomposites on Leukemic HL60 Cells-Based Photodynamic Therapy [J], Int J Photoenergy[J],2012, DOI:10.1155/2012/367072 In press
    [274]Rodriguez E M, Fernandez G, Alvarez P M, Beltran F J. TiO2 and Fe (Ⅲ) photocatalytic ozonation processes of a mixture of emergent contaminants of water[J], Water Res.,2012,46,152-166
    [275]Pallabi G, Jatindra N G. Evaluating the potential of a new titania precursor for the synthesis of mesoporous Fe-doped titania with enhanced photocatalytic activity[J], Mater. Res. Bull.,2012,47, 2077-2084
    [276]Lin C J, LiouY H, Zhang Y C, Chen C L, Dong C L, Chen S Y, D. Stucky G. Mesoporous Fe-doped TiO2 sub-microspheres with enhanced photocatalytic activity under visible light illumination[J], Appl. Catal., B,2012,127,175-181
    [277]Xiong W, Zhao Q D, Li X Y, Zhang D K. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity[J], Catal. Commun.,2011,16,229-233
    [278]Xu H, Yan J, Xu Y G, Song Y H, Li H M, Xia J X, Huang C J, Wan H L. Novel visible-light-driven AgX/graphite-like C3N4 (X= Br, I) hybrid materials with synergistic photocatalytic activity[J], Appl. Catal., B,2013,129,182-193
    [279]Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y. Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation[J]. J. Phys. Chem. B,2006,110,20211-20216
    [280]Jiang Z, Yang F, Yang G, Kong L, Jones M.O, Xiao T, Edwards P.P. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J], J. Photochem. Photobiol., A:Chem.2010,212,8-13
    [281]Lee J, Choi W. Photocatalytic reactivity of surface platinized TiO2:substrate specificity and the effect of Pt oxidation state [J], J. Phys. Chem. B,2005,109,7399-7406
    [282]activities of Pt/TiO2 vanish under low light intensity [J], Catal.Today,2006,111,259-265
    [283]Zhao W, Chen C C, Li X Z, Ma W H, Zhao J C. Photodegradation of sulorhodamine-B dye in platinum as a functional co-catalyst [J]. J. Phys. Chem. B.,2002,106,5022-5028
    [284]Wang S H, Lee M C, Choi W. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles:kinetics and mechanism[J], Appl.Catal., B,2003,46,49-63
    [285]Vorontsov A V, Savinov E N, Zhen S J. Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation [J], J. Photochem. Photobiol. A:Chem.,1999, 125,113-117
    [286]Lin C H, Lee C H, Chao J H, Kuo C Y, Cheng Y C, Huang W N, Chang H W, Shih M K. Photocatalytic generation of H2 gas fromneat ethanol over Pt/TiO2 nanotube [J], Catal. Lett.,2004,98,61-65
    [287]Sato Y, Koizumi M, Miyao T, Naito S. The CO-H2 and CO-H2O reactions over TiO2 nanotubes filled with Pt metal nanoparticles [J], Catal. Today,2006,111,164-170
    [288]Yu K P, Yu W Y, Ku M C, Liou Y C, Chien S H. Pt/titania-nanotube:a potential catalyst for CO2 adsorption and hydrogenation [J], Appl. Catal., B,2008,84,112-118
    [289]Thompson T L, Yates J T. Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes[J], Chem. Rev.,2006,106,4428-4453
    [290]Elghniji K, Atyaoui A, Livraghi S, Bousselmi L, Giamello E, Ksibi M. Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination[J], J. Alloys Compd.,2012,541,421-427
    [291]Xu A, Gao Y, Liu H. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles[J], J. Catal.2002,207,151-157
    [292]Zhang T, Oyama T, Horikoshi S, Hidaka H, Zhao J, Serpone N. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight[J], Sol. Energy Mater. Sol. Cells,2002,73,287-303
    [293]Yu J G, Zhang L J, Cheng B, Su Y R. Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania[J]. J. Phys. Chem. C,2007,111,10582-10589
    [294]Wang C, Shao C, Liuc Y, Zhang L. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning[J], Scripta Mater.,2008,59,332-335
    [295]Wu S, Wang C, Cui Y, Wang T, Huang B, Zhang X, Qin X, Brault P. Synthesis and photocatalytic properties of BiOCl nanowire arrays[J], Mater. Lett.,2010,64,115-118
    [296]Chen F, Liu H, Bagwasi S, Shen X, Zhang J. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation[J], J. Photochem.Photobiol. A:Chem.,2010,215,76-80
    [297]Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J], Appl. Catal. B:Environ.,2006,68,125-129
    [298]Su M, He C, Zhu L, Sun Z, Shan C, Zhang Q, Shu D, Qiu R, Xiong Y. Enhanced adsorption and photocatalytic activity of BiOI-MWCNT composites towards organic pollutants in aqueous solution[J], J. Hazard. Mater.,2012,30,229-230
    [299]Kongkanand A, Kamat P V. Electron storage in single wall carbon nanotubes:Fermi level equilibration in semiconductor-SWCNT suspensions[J], ACS Nano,2007,1,13-21
    [300]Samadi-Maybodi A, Azizi S N, Pourali S M, Tilami S E. Framework-Substituted Bismuth Zeolite-P: Synthesis and Characterization[J], Z. Anorg. Allg. Chem.,2012,638,214-219
    [301]Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J], J. Catal.2009,262,144-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700