用户名: 密码: 验证码:
钛合金激光合金化表面改性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金的高比强度和优异的耐腐蚀性能使它成为制造汽轮机低压末级叶片的理想材料。水蚀是造成汽轮机叶片失效的主要原因之一。在钛合金叶片表面制备耐水蚀保护涂层是解决水蚀问题的有效方法。本文对Ti-A1-N体系材料进行了热力学分析,模拟分析了激光合金化涂层熔池的温度场,制备了TiN/Ti3A1和TiN/A1激光合金化复合涂层,并探讨了激光工艺参数对物相及物相含量、涂层的质量、硬度和耐磨性的影响,研究了涂层的形成机制和磨损机制。本文的主要研究内容有以下几个方面:
     (1)采用物质吉布斯自由能函数法计算了以Ti6A14V为基体材料,激光合金化过程中Ti-Al-N体系的吉布斯自由能的变化ΔG,分析了TiN增强相形成的可行性。结果表明,TiN在系统中形成的吉布斯自由能最低,是首要生成产物,可形成具有陶瓷增强相的复合涂层。
     (2)综合考虑材料的物性参数、辐射对流散热、相变潜热等随温度变化的因素,建立了以Ti6A14V为基体的等离子喷涂预置涂层激光合金化连续移动三维温度场有限元模型。利用ABAQUS软件,模拟分析了激光合金化过程中的温度场分布,研究了激光工艺参数对温度场的影响。结果表明,试样表面最高峰值温度位置偏离了光斑中心,处于激光光斑中心的后侧。熔池宽度方向的温度梯度在熔池中心为零,随着远离熔池中心温度梯度先上升,在接近熔池边缘时下降;而在熔池深度方向,温度梯度的最大值在激光合金化表层,成单减变化。随着激光功率的增加、扫描速度的降低,熔池表面的峰值温度、熔池深度和熔池宽度均增加。随着激光功率的提高,熔池宽度方向和深度方向的温度梯度均相应增加,而激光扫描速度对温度梯度的影响不明显。熔池表面最高温度的模拟结果与估算公式计算的结果吻合较好。实际熔池的深度和计算熔池的深度,在较低激光功率和较高扫描速度时吻合较好。
     (3)首次采用等离子喷涂A1涂层和激光氮化结合的工艺在Ti6A14V表面成功制备了TiN/Ti3Al金属基复合涂层。分析了不同工艺条件下复合涂层的物相组成、显微组织特征及其形成机制。结果表明,激光功率增加时,A1N和TiAl3转变为TiN和Ti3A1。激光功率的增加、扫描速度的降低、氮气流量的增加,都会使复合涂层中TiN的含量增加;同时,激光合金化涂层的厚度和均匀性具有相同的趋势。复合涂层中的增强相TiN的生长机制为溶解-析出机制,TiN形核时为等轴的球状粒子,在凝固过程中,涂层底部的显微组织以胞(柱)状树枝晶为主,涂层的中部为球形的或椭球形的胞状晶体组织,涂层上部呈现的是胞状晶、胞状树枝晶和树枝晶。激光合金化涂层的晶粒的大小随着激光功率的增加、扫描速度的增加及氮气流量的减小而减小。TiN/Ti3Al金属基复合涂层的形成机制:首先在熔池表面化合生成A1N,熔池和基体材料交界面化合生成TiAl3;然后发生置换反应[Ti]+AlN→TiN+[Al]及化合反应生成TiN;最后在凝固过程中TiN先析出,而后析出Ti3A1。
     (4)首次采用同步送粉、送气的工艺方法在Ti6Al4V表面成功制备了无裂纹的TiN/Al金属基复合涂层。分析了不同工艺条件下复合涂层的物相组成及其形成机制。结果表明,复合涂层的物相由IN、Al和TiAl3转变为TiN和A1。物相的组成由Ti-Al-N体系中的扩散物质浓度梯度、激光熔池的温度梯度及存在时间所决定。随着激光功率的增加、激光扫描速度的降低和氮气流量的增加,复合涂层中TiN含量增加。在TiN/Al金属基复合涂层的中部物相为TiN和Ti3Al。TiN/Al金属基复合涂层的形成机制为在熔池表面化合生成TiN,在凝固过程中TiN首先析出,而后弥散均匀分布于A1或Al+TiAl3、 Ti3Al。
     (5)对激光合金化复合涂层进行了硬度测试和磨损试验,考察了激光工艺参数对硬度和耐磨性能的影响。试验结果表明,随着激光功率的增加、激光扫描速度的降低、氮气流量的增加,激光合金化复合涂层的硬度增加,涂层的磨损质量失重降低。TiN/Ti3Al和TiN/Al复合涂层的最大硬度分别为基体材料硬度的3倍和4倍。TiN/Ti3Al和TiN/Al复合涂层的耐磨损性能分别为基体材料的4倍和6-8倍。研究还揭示了Ti6Al4V基体材料和激光合金化复合涂层的磨损机制,基体材料磨损为磨粒磨损和粘着磨损。激光合金化复合涂层的磨损主要是磨粒磨损,表现为显微切削和TiN硬质相的剥落。
Titanium Alloy is good for the last stage blade of a steam turbine because of its high specific strength and excellent corrosion resistance. Liquid impact erosion is one of the major causes of the turbine blade failures. It is a feasible solution with an erosion resistant coating on the blade surface to prevent from the liquid impact. In present study, a thermodynamic evaluation is carried out by Gibbs function on a Ti-Al-N system. To simulate the temperature field in the molten pool when laser surface alloying. The composite coating of TiN/Ti3Al and TiN/Al is prepared by laser processing, and the effects of laser processing parameters are investigated on phases, phase contents, and the quality, hardness and wear resistance of the coating. This research also focuses on the formation and wear mechanism of the coating. The main contents and conclusions are as follows:
     (1) Gibbs function is employed in the calculation of the variations of the Gibbs free energy△G in reactions of the Ti-Al-N system when laser alloying with Ti6Al4V substrate to analyze the feasibility of formation of reinforcement phases TiN. The results show that Gibbs free energy from TiN is the lowest, and TiN is the primary generated product in the system, which then forms the composite coating with ceramic reinforcement phase.
     (2) Considering the thermophysical performance parameters of material, radiation, convection and the latent heat, a3-D finite element model of transient temperature filed is built up for laser surface alloying on Ti6Al4V with presetting of plasma sparing Al coating. ABAQUS is used to analyze the temperature distribution during the laser alloying and the effect of laser technology parameters on temperature fields. The analysis shows that the peak temperature of the sample surface deviates from the center of the laser spot to the backside. In the direction of width, the temperature gradient is zero at the center of the molten pool, and the gradient first rises away from the center, but falls while approaching the edge of the pool. In the direction of depth, the highest gradient exists at the surface, then falls while approaching the bottom. With the increase of the laser power and the decrease of the scanning speed, the peak temperature on the surface of the molten pool, the pool depth and width all increase. The increase of the laser power also leads to the increase of the temperature gradient in both the width direction and the depth direction, while the change of scanning speed exerts no distinctive impacts. The result of the peak temperature of the molten pool from simulation matches the result from estimate formula. The actual depth of the molten pool well matches the calculated depth when the laser power is low and the scanning speed is high.
     (3) It is the first time that the continuous CO2laser is used in laser nitriding on the surface of Ti6Al4V with presetting of plasma coating to prepare the metal matrix composite coating TiN/Ti3Al. The phase composition, microstructure and formation mechanism of the composite coating are analyzed with different processing conditions. Results show that AlN and TiAl3are converted to and Ti3Al with the increase of laser power. Then, The TiN contents in the composite coating share the same tendency as the thickness and uniformity of the composite coating with the increase of laser power, the decrease of scanning speed, the increase of the nitrogen flow rate. The growing mechanism of the reinforcement phase TiN in the composite coating is dissolution-precipitation. TiN is equiaxed spherical particle at nucleation, then, the microstructure at the bottom of the coating is mainly cellular (columnar) dendrite when solidification. Meanwhile, it is spherical or ellipsoid cell structure in the middle, and cell structure, cellular dendrite and dendrite on the top of the coating. The size of the particles decreases with the increase of laser power, increase of the scanning speed and the decrease of nitrogen flow rate. The formation mechanism of metal matrix composite coating TiN/Ti3Al is as follows:AlN is formed at the surface of the molten pool, TiAl3is formed at the interface of the molten pool and the substrate, and then replacement reaction of [Ti]+AlN→TiN+[Al] takes place and TiN is formed by synthesis reaction. TiN is first precipitated in the solidification process, and Ti3Al is precipitated last.
     (4) Synchronic powder feeding and gas feeding technique is used for the first time to successfully prepare crack-free metal matrix composite coating of TiN/Al. The phase structure and formation mechanism of the composite coating with different techniques are analyzed. Results show that with increase of the laser power, decrease of the scanning speed and increase of the nitrogen flow rate, the phases of TiN、Al and TiAl3in the composite coating are converted into TiN and Al. The formation of phase is determined by the concentration gradient of the diffused matter, the temperature gradient of the molten pool and the duration of existence. The increase of the laser power, the decrease of the scanning speed and the increase of the nitrogen flow rate result in the increase of TiN concentration in the composite coating. Phases in the middle of the metal matrix composite coating of TiN/Al are TiN and Ti3Al. The formation mechanism of the metal matrix composite coating of TiN/Al is as follows:TiN is formed by synthesis reaction at the surface of the molten pool, then TiN is precipitated first in the process of solidification. TiN then is diffused evenly into Al or Al+TiAl3or Ti3Al.
     (5) Hardness and wear test is implemented on the laser alloying composite coating and the impact of laser parameters on hardness and wear resistance is recorded and analyzed. The results show that the increase of laser power, the decrease of scanning speed, the increase of nitrogen flow rate lead to the increase in hardness and wear mass loss of the coating. The maximum hardness of TiN/Ti3Al composite coating and TiN/Al composite coating is3times and4times of that of their substrates respectively. The wear resistance of TiN/Ti3Al composite coating and TiN/Al composite coating is4times and6-8times of that of their substrates respectively. The study of the wear mechanism of the substrate of Ti6A14V and the laser alloying composite coating shows that abrasive wear and adhesive wear occur to the substrate, while micro-ploughing and peeling of TiN reinforcement occur to the composite coating.
引文
[1]Ebara R, Corrosion fatigue crack initiation in 12% chromium stainless steel. Material Science and Engineering,2007, A468-470(15):109-113.
    [2]Turnbull A. Current understanding of environment-induced cracking of steam turbine steels. Corrosion,2008,54(5):420-438.
    [3]秦人骥,揭念柱.大容量汽轮机末级动叶片防水蚀工艺分析.发电装备,2009,23(3):198-200.
    [4]徐滨士,马世宁,梁秀兵等.纳米粉体材料与表面工程.材料导报,2001,15(11):7-9.
    [5]陈晓林.钛合金表面织构与等离子渗氮处理及其生物摩擦特性研究.南京:南京理工大学.2008.
    [6]赵新,金杰,姚建铨.激光表面改性技术的研究与发展.光电子激光.2000,11(3):324-328.
    [7]肖爱红,邱长军,李学兵.激光表面改性技术及其应用综述.机械制造,2006,499(44):59-61.
    [8]肖红军.激光表面改性.表面技术,2005,34(5):10-12.
    [9]李伟等.激光冲击强化技术的发展和应用.激光与光电子学进展,2008,45(12):15-19.
    [10]应小东,李午申.激光表面改性技术及国内外发展现状.焊接,2003(1):5-8.
    [11]何利舰,张小农.钛及钛合金的表面处理技术新进展.上海金属,2005,27(3):39-45.
    [12]王福贞,马文存.气相沉积应用技术.北京:机械工业出版社.2007.
    [13]关春龙,李圭,郝晓东.电子束物理气相沉积技术及其应用现状展.上海:中国科学院上海冶金研究所.2000.
    [14]李健,韦习成.物理气相沉积技术的新进展.材料保护,2000,33(1):91-94.
    [15]Abdel S A, Lugscheider E, Bobzin K, et al. PVD oxide coatings for the use in thixoforming of steel. Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites.2004
    [16]冷永祥,黄楠,孙鸿等.真空弧源沉积类金刚石薄膜及其性能研究.功能材料,2003,34(2):229-233.
    [17]Dorner A, Schurer C, Reisel G, et al. Diamond-like carbon-coated Ti6A14V:influence of the coating thickness on the structure and the abrasive wear resistance. Wear,2001, 249:489-497.
    [18]胡传忻,宋幼慧.涂层技术原理及应用.北京:化学工业出版社.2000
    [19]潘晓龙.钛合金表面电弧离子镀?TiAlN涂层的耐高温性能.稀有金属材料与工程.2008,37(s4):598-601.
    [20]Stallard J, Poulat S, Teer D G. The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester. Tribology International, 2006,39 (2):159-163.
    [21]冷崇燕,周荣.氮离子注入TiNi形状记忆合金表面改性.中国有色金属学报,2006,16(3):412-416.
    [22]冷永祥,孙鸿,徐禄祥,等.等离子体浸没离子注入和沉积技术制备TiN薄膜研究.真空科学与技术,2003,23(4):295-297.
    [23]王钧石.钛合金等离子体源离子注入表面改性.稀有金属,2006,30(5):582-585.
    [24]陈飞.钛合金表面辉光离子渗铝耐蚀性.稀有金属材料与工程,2008,37(10):1844-1846.
    [25]Hill B W, Barron J H, Ochoa O O. Material and structural assessment of thermal spray composites. Journal of Thermoplastic Composite Materials,1999,12(4):257-275.
    [26]Abdullah H, Hertter M, Thompson S G. New approach for thermal spray process control with an artificial neurd network in aero-engines. World Automation Congress 2004 Proceedings.2004,16:329.
    [27]李崇桂,田伟,杨勇,等.TC4钛合金表面等离子喷涂Al2O3-13wt% TiO2涂层及激光重熔研究.材料热处理学报,2007,28(B08):228-232.
    [28]Xue L, Islam M, Koul A K, BibbyI M, Wallace W. Laser Gas Nitriding of Ti-6A1-4V Part 1:Optimization of the Process. Advanced Performance Material.1997,4 (1): 25-47.
    [29]Chen X K, Wu G, Wang R, Guo W T, Yang J P, Cao S Z. Laser nitriding of titanium alloy in the atmosphere environment. Surface and Coating Technology.2007,201 (9-11):4843-4846.
    [30]张春华,张松,文效忠等.Ti6Al4V合金的激光气体氮化.光电子.激光.2004,15(8):946-950.
    [31]汪洪海,郑启光,陶星之等.大功率C02激光原位直接反应合成TiN/Ti复合材料的研究.复合材料学报,1999,16(1):111-116.
    [32]B.S. Yilbas, C. Karatas, Uslan, O. Keles, I.Y. Usta, M. Ahsan. CO2 laser gas assisted nitriding of Ti-6A1-4V alloy. Applied Surface Science,2006,252:8557-8564.
    [33]Schaaf P, Laser nitriding of metals, Progress in Materials Science,2002; 47(1):1-161.
    [34]Man H C, Bai M, Cheng F T. Laser diffusion nitriding of Ti-6A1-4V for improving hardness and wear resistance. Applied Surface Science,2011,258(1):436-441.
    [35]Yue T M, Yu J K, Mei Z, et al. Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement. Materials Letters,2002,52(3):206-212.
    [36]Razavi RS, Salehi M, Ramazani M, et al., Corrosion behaviour of laser gas nitride 43 Ti-6A1-4V in HCl solution. Corrosion Science,2009,51(10):2324-2329.
    [37]Biswas A, Li L, Chatterjee UK, et al., Mechanical and electrochemical properties of laser surface nitrided Ti-6Al-4V. Scripta Materialia,2008,59(2):239-242.
    [38]Razavi RS, Salehi M, Monirvaghefi M, et al., Corrosion behaviour of laser gas nitride Ti-6Al-4V alloy in nitric acid solution. Journal of Materials Processing Technology, 2008,203(1-3):315-320.
    [39]Man H C, Cui Z D, Yue T M, et al. Cavitation erosion behavior of laser gas nitrided Ti and Ti6A14V alloy. Materials Science and Engineering:A,2003,355(1):167-173.
    [40]Perez P. Influence of nitriding on the oxidation behaviour of titanium alloys at 700℃. Surface and Coatings Technology,2005,191(2):293-302.
    [41]Altus E, Konstantino E, Optimum laser surface treatment of fatigue damaged Ti-6Al-4V alloy. Materials Science and Engineering,2001,A302(1):100-105.
    [42]Santos EC, Morita M, Shiomi M, Laser gas nitriding of pure titanium using CW and pulsed Nd:YAG lasers. Surface and Coatings Technology,2006,201(3-4):1635-1642.
    [43]崔振铎,杨贤金,朱胜利,等.金属钛激光气体氮化层组织及表面特征.材料工程,2004,4(3):6-12.
    [44]Cui Z D, Zhu S L, Man H C, et al. Microstructure and wear performance of gradient Ti/TiN metal matrix composite coating synthesized using a gas nitriding technology. Surface and Coatings Technology,2005,190(2):309-313.
    [45]Yilbas B S, Khalid M, Shuja S Z. Laser Assisted Nitriding of Ti-6A1-4V Alloy: Metallurgical and Electrochemical Properties. Chemical engineering & technology, 1999,22(10):871-876.
    [46]Mridha S, Baker T N. Effects of nitrogen gas flow rates on the microstructure and properties of laser-nitrided IMI318 titanium alloy (Ti-4V-6Al). Journal of Materials Processing Technology,1998,77(1):115-121.
    [47]Hu C, Xin H, Watson L M, et al. Analysis of the phases developed by laser nitriding Ti6A14V alloys. Acta materialia,1997,45(10):4311-4322.
    [48]Jiang P, He X L, Li X X, et al. Wear resistance of a laser surface alloyed Ti-6Al-4V alloy. Surface and Coatings Technology,2000,130(1):24-28.
    [49]Xin H, Mridha S, Baker T N. The effect of laser surface nitriding with a spinning laser beam on the wear resistance of commercial purity titanium. Journal of materials science, 1996,31(1):22-30.
    [50]Tian Y S, Chen C Z, Chen L X, et al. Crack-free wear resistance coatings produced on pure titanium and Ti-6Al-4V by laser nitriding. Surface review and letters,2005, 12(05n06):741-744.
    [51]Mridha S, Baker T N. Crack-free hard surfaces produced by laser nitriding of commercial purity titanium. Materials Science and Engineering:A,1994,188(1): 229-239.
    [52]Abboud J H, Fidel A F, Benyounis KY, Surface nitriding of Ti-6A1-4V alloy with a high power CO2 laser. Optics & Laser Technology,2008; 40(2):405-414.
    [53]Hu C, Baker T N. The importance of preheat before laser nitriding a Ti-6Al-4V alloy. Materials Science and Engineering:A,1999,265(1):268-275.
    [54]Islam MU, An overview of research in the fields of laser surface modification and laser machining at the integrated manufacturing technologies institute. NRC, Advanced Performance Materials,1996; 3(2):215-238.
    [55]Xin H, Watson L M, Baker T N, Surface analytical studies of a laser nitrided Ti-6Al-4V alloy:a comparison of spinning and stationary laser beam modes. Acta Materialia,1998; 46(6):1949-1961.
    [56]Xuan F Z, Cao L Q, Wang Z D, Tu S T. Laser surface nitriding of Ti6A14V alloy coupled with an external stress field. Journal of Materials Research,2010; 25(2): 344-349.
    [57]Perez M G, Harlan N R, Zapirain F, et al., Laser nitriding of an intermetallic TiAl alloy with a diode laser. Surface and Coatings Technology,2006; 200(16-17):5152-5159.
    [58]Fu Y Q, Batchelor A W, Laser nitriding of pure titanium with Ni, Cr for improved wear performance. Wear,1998; 214(1):83-90.
    [59]杨玉玲,刘常升,张多等.激光熔覆-激光气体氮化方法制取TiCN-TiN复合熔覆层.东北大学学报,2007,28(9):1289-1292.
    [60]陈莉,黄凤晓,赵宇.不同熔覆材料对送粉激光熔覆层组织性能的影响.铁合金,2005,1(36):30-32.
    [61]李俊昌.激光热处理优化控制研究.北京:冶金工业出版社,2001.
    [62]沈德久,廖波,王玉林.同轴送粉对激光熔覆组织的细化作用.应用激光,2002,3(22):290-292.
    [63]陈传忠,张亮.激光熔覆陶瓷及其复合涂层的材料体系.激光技术,2002,2(26):123-128.
    [64]孙荣禄,雷贻文.TC4合金表面TiN陶瓷激光熔覆层的组织和耐磨性能.天津工业大学学报,2007,26(4):57-59.
    [65]Yilbas B S, Hashmi M S J. Laser treatment of Ti-6A1-4V alloy prior to plasma nitriding. Journal of Materials Processing Technology,2000,103(2):304-309.
    [66]Sha C K, Lin J C, Tsai H L. The impact characteristics of Ti-6A1-4V plates hardfacing by laser alloying NiAl+ZrO2 powder. Journal of Materials Processing Technology,2003, 140(1):197-202.
    [67]邵德春,李鑫.激光表面合金化提高钛合金高温抗氧化性能的研究.中国激光,1997,24(3):281-285.
    [68]Molian P A, Hualun L. Laser cladding of Ti-6A1-4V with BN for improved wear performance. Wear,1989,130(2):337-352.
    [69]Zhang S, Wu W T, Wang M C, et al. In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6A14V. Surface and Coatings Technology,2001,138(1):95-100.
    [70]Garcia I, De la Fuente J, De Damborenea J J. (Ti, Al)/(Ti, Al) N coatings produced by laser surface alloying. Materials letters,2002,53(1):44-51.
    [71]Guo B G, Zhou J S, Zhang S T, et al. Microstructure and tribological properties of in situ synthesized TiN/Ti3Al intermetallic matrix composite coatings on titanium by laser cladding and laser nitriding. Materials and Science Engineering:A,2008,480(1-2): 404-410.
    [72]张晓伟,刘洪喜,蒋业华,等.激光原位合成TiN/Ti3Al基复合涂层.金属学报,2011,47(8):1086-1093.
    [73]席明哲,虞钢.连续移动三维瞬态激光熔池温度场数值模拟.中国激光,2004,31(12):1527-1532.
    [74]高昕,宋宙模.Ti表面脉冲激光氮化成膜温度场的数值模拟.激光杂志,2000,21(2):62-63.
    [75]曾大文,谢长生.复合涂层激光熔池温度场及流场的数值模拟.激光技术,2000,24(6):370-374.
    [76]Roy S, Modest M F. CW laser machining of hard ceramics-I. Effects of three-dimensional conduction, variable properties and various laser parameters. International journal of heat and mass transfer,1993,36(14):3515-3528.
    [77]Yilbas B S, Shuja S Z, Hashmi M S J. A numerical solution for laser heating of titanium and nitrogen diffusion in solid. Journal of materials processing technology,2003,136(1): 12-23.
    [78]Hoche D, Rapin G, Schaaf P. FEM simulation of the laser plasma interaction during laser nitriding of titanium. Applied Surface Science,2007,254(4):888-892.
    [79]Hoche D, Muller S, Rapin G, et al. Marangoni convection during free electron laser nitriding of titanium. Metallurgical and Materials Transactions B,2009,40(4):497-507.
    [80]季惠明.无机材料化学.天津:天津大学出版社.2007.
    [81]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社.2002.
    [82]Kattner U R, Lin J C, Chang Y A. Thermodynamic assessment and calculation of the Ti-Al system. Metallurgical Transactions A,1992,23(8):2081-2090.
    [83]李文,张瑞林.Ti-Al系的相图及金属间化合物.材料导报,1995,9(4):14-18.
    [84]王衍行,林均品,贺跃辉,等.元素粉末Ti与A1反应机理的研究进展.材料导报,2007,21(1):83-85.
    [85]Wriedt H A, Murray J L. The N-Ti (Nitrogen-Titanium) System. Bulletin of alloy phase diagrams,1987,8(4):378-388.
    [86]Zhecheva A, Sha W, Malinov S, et al. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface and Coatings Technology,2005,200(7):2192-2207.
    [87]葛志明.钛的二元系相图.北京:国防工业出版社.1977.
    [88]Han Y S, Kalmykov K B, Dunaev S F, et al. Solid-state phase equilibria in the Titanium-Aluminum-Nitrogen system. Journal of phase equilibria and diffusion,2004, 25(5):427-436.
    [89]汤爱涛.用钛铁矿制备基Ti(C,N)复合材料的组织控制和工艺优化.重庆:重庆大学,2004.
    [90]Zheng Q, Reddy R G. Mechanism of in situ formation of AlN in Al melt using nitrogen gas. Journal of materials science,2004,39(1):141-149.
    [91]Niyomwas S. Synthesis of porous composite by selfpropagating high temperature synthesis of TiO2-B2O3-Al system. EPD Congress 2007[C]//The Annual Meeting of The Minerals, Metal & Materials Society (TMS), Orlando, FL, USA.2007:261-170.
    [92]Wang W E, Kim Y S, Hong H S. Characterization of the vanadium-nitrogen system with nitrogen pressure isobars. Journal of alloys and compounds,2000,308(1): 147-152.
    [93]Graetz J, Reilly J J, Johnson J, et al. X-ray absorption study of Ti-activated sodium aluminum hydride. Applied Physics Letters,2004,85(3):500-502
    [94]Brandes E A, Brook G B. Smithells metals reference book. Oxford: Butterworth-Heinemann,1992.
    [95]黄奇良,潘伟,胡忠.氮化铝陶瓷表面钛金属化的研究.材料导报,2002,16(2):66-68.
    [96]Abboud J H, West D R F. Micro structures of titanium-aluminides produced by laser surface alloying. Journal of materials science,1992,27(15):4201-4207.
    [97]高爱兵.送粉式激光合金化温度场的有限元模拟.浙江工业大学,2010.
    [98]武传松.焊接熟过程数值分析.哈尔滨工业大学出版社.1990.
    [99]刘高腆.温度场的数值模拟.重庆大学出版社,1990.
    [100]Masubuchi K. Prediction and control of residual stresses and distortion in welded structures. Welding Research Abroad,1997,43:2-16.
    [101]马浩.压片预置式激光合金化涂层温度场及应力场仿真研究.南京航空航天大学,2009.
    [102]刘志东,陈勇,朱军,等.45钢喷射电镀Ni层激光重熔温度场数值模拟及其性能研究.应用激光,2007,27(2):104-109.
    [103]高爱兵.送粉式激光合金化温度场的有限元模拟.浙江工业大学,2010.
    [104]伊鹏,刘衍聪,石永军,等.铸铁表面激光熔凝行为及温度场数值模拟.焊接学报,2011,32(8):81-84.
    [105]雷贻文,孙荣禄,唐英.钛合金表面激光合金化TiC/NiCrBSi涂层温度场有限元模拟.材料科学与工艺,2011,19(6):100-105.
    [106]赵洪运,舒凤远,张洪涛,等.基于生死单元的激光合金化温度场数值模拟.焊接学报,2010,31(5):81-84.
    [107]赵丹,刘志东,田宗军,等.钛合金表面激光重熔高温抗氧化涂层温度场仿真.热处理技术与装备,2007,28(6):23-28.
    [108]Lei Y, Sun R, Lei J, et al. A new theoretical model for high power laser clad TiC/NiCrBSiC composite coatings on Ti6A14V alloys. Optics and Lasers in Engineering,2010,48(9):899-905.
    [109]彭善德.钛合金激光搭接焊及数值模拟.华中科技大学,2006.
    [110]王金友葛志明周彦邦.航空用钛合金.上海科学技术出版社.1985.
    [111]Wood R A, Favor R J.钛合金手册.科学技术文献出版社重庆分社.1983.
    [112]刘振东,陈文武,李剑锋,等.氧碘化学激光辐照纯铝的温度场数值模拟.激光与光电子学进展,2008,45(9):47.
    [113]桂如胜.高斯激光辐照下分层材料的温度分布研究.苏州大学,2008.
    [114]李德元,张义顺,董晓强.等离子-MIG焊接起弧过程.焊接学报,2007,28(11):89-92.
    [115]秦颖,吴爱民,邹建新,等.强流脉冲电子束轰击产生表面熔坑的数值模拟研究.材料热处理学报,2003,24(1):85-89.
    [116]赵明,武传松,陈茂爱.焊接热过程数值分析中相变潜热的三种解决方案.焊接学报,2006,27(9):55-58.
    [117]史平安.相变潜热对铍材激光钎焊熔池内流场和温度场动态行为的影响.热加工工艺,2009,38(23):1-5.
    [118]程广萍,李明喜,何宜柱,等.激光熔覆层温度场和应力场的数值模拟.热处理,2009,24(4):49-53.
    [119]张松,张春华,张宁,等.6061铝合金表面激光合金化温度场的模拟与验证.焊接学报,2007,28(10):1-4.
    [120]郭华锋,周建忠,胡增荣.金属粉末激光烧结温度场的三维有限元模拟.工具技术,2006,40(11):13-18.
    [121]王东生,田宗军,沈理达,等.钛合金表面激光重熔等离子喷涂MCrA1Y涂层温度场数值模拟.应用激光,2007,27(6):444-449.
    [122]王东生,田宗军,沈理达,等.TiAl合金表面激光重熔复合陶瓷涂层温度场数值模拟及组织分析[J].中国激光,2009,36(1):224-230.
    [123]Eskin S, Zahavi J, Berner A. CO2-Laser nitriding as a result of Ti coating modification in a nitrogen atmosphere.1. Features of nitriding process. Lasers in Engineering,1995, 4(2):85-96.
    [124]Senthil Selvan J, Subramanian K, Nath A K, et al. Laser boronising of Ti-6Al-4V as a result of laser alloying with pre-placed BN. Materials Science and Engineering:A,1999, 260(1):178-187.
    [125]Selvan J S, Subramanian K, Nath A K, et al. Hardness, microstructure and surface characterization of laser gas nitrided commercially pure titanium using high power CO2 laser. Journal of materials engineering and performance,1998,7(5):647-655.
    [126]郭纯,周健松,陈建敏.钛表面激光熔覆原位制备Ti5Si3涂层结构及摩擦学性能.无机材料学报,2012,27(9):970-976
    [127]刘江龙,邹至荣,苏宝嫆.高能束热处理.北京:机械工业出版社,1997
    [128]Liu Z, Zhang X, Xuan F, et al. Effect of laser power on the microstructure and mechanical properties of TiN/Ti3Al composite coatings on Ti6Al4V. Chinese Journal of Mechanical Engineering,2013,26(4):714-721.
    [129]Biswas A, Li L, Maity T K, et al. Diode laser assisted surface nitriding of Ti-6A1-4V: properties of the nitrided surface. Metallurgical and Materails Transactions A,2009, 40(12):3031-3037.
    [130]Yu H, Sun F, Zhang J. Laser and plasma nitriding of titanium using CW-CO2 laser in the atmosphere. Current Applied Physics,2009,9(1):227-233.
    [131]Liu Z D, Zhang X C, Xuan F Z, et al. In situ synthesis of TiN/Ti3Al intermetallic matrix composite coatings on Ti6A14V alloy. Materials & Design,2012,37:268-273.
    [132]Zhang X C, Liu Z D, Xu J S, et al. Synthesis of TiN/Ti3Al composite coatings on Ti6A14V alloy by plasma spraying and laser nitriding. Surface and Coatings Technology, 2013,228(s1):s107-s110.
    [133]Liu Y M, Xiu Z Y, Wu G H, et al. Study on Ti fiber reinforced TiAl3 composite by infiltration-in situ reaction. Journal of materials science,2009,44(16):4258-4263.
    [134]洪蕾,吴钢.激光制造技术基础.北京:人民交通出版社,2008.
    [135]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2002.
    [136]李健,尹莉,李文戈,等.激光反应熔覆碳化物陶瓷涂层温度场的有限元模拟.机械工程材料,2012,6:025.
    [137]曾大文,谢长生.激光熔覆熔池二维准稳态流场及温度场的数值模拟.金属学报,1999,35(6):604-610.
    [138]吕维洁,张小农,张荻,等.原位合成TiC/Ti基复合材料增强体的生长机制.金属学报,1999,35(5):536-540.
    [139]李俊刚,尹冬松,金云学TiN/Ti复合材料的熔铸法制备及微观组织.特种铸造及有色合金,2005,25(5):319-321.
    [140]王振廷,郑维,周晓辉.原位合成TiN增强Ni基复合涂层的组织与性能.焊接学报,2011,32(3):93-96.
    [141]丁元柱,梁刚.钛合金表面氩弧熔覆原位合成TiB2-TiN显微组织与形成机理.材料开发与应用,2012(4):69-72.
    [142]王家金.激光加工技术.北京:中国计量出版社,1992.
    [143]杨玉玲,董丹阳.材料的激光表面改性技术及应用.北京:化学工业出版社,2013.
    [144]高义民.金属凝固原理.陕西:西安交通大学出版社,2010.
    [145]郑孝义,丛大志,李欣,等.氮电弧制备陶瓷表面TiN相形态及生长机制.焊接学报,2011,32(12):29-32.
    [146]Carpene E, Schaaf P. Mass transport mechanisms during excimer laser nitriding of aluminum. Physical Review B,2002,65(22):224111.
    [147]Martin R, Kampe S L, Marte J S, et al. Microstructure/processing relationships in reaction-synthesized titanium aluminide intermetallic matrix composites. Metallurgical and Materials Transactions A,2002,33(8):2747-2753.
    [148]王衍行,林均品,贺跃辉,等.元素粉末Ti与A1反应机理的研究进展.材料导报,2007,21(1):83-85.
    [149]Che H Q, Fan Q C. Microstructural evolution during the ignition/quenching of pre-heated Ti/3Al powders[J]. Journal of Alloys and Compounds,2009,475(1): 184-190.
    [150]Sugahara Y, Sugimoto K I, Takagi H, et al. The formation of SiC-AIN solid solution by the carbothermal reduction process of montmorillonite. Journal of materials science letters,1988,7(7):795-797.
    [151]Kartavykh A V, Tcherdyntsev V V, Zollinger J. TiAl-Nb melt interaction with AlN refractory crucibles. Materials Chemistry and Physics,2009,116(1):300-304.
    [152]Majumdar J D. Laser gas alloying of Ti-6Al-4V. Physics procedia,2011,12:472-477
    [153]Liu Y, Liu C T, George E P, et al. The Soret effect in bulk metallic glasses. Intermetallics,2007,15(4):557-563.
    [154]Holstein W L. The roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon. Journal of catalysis,1995,152(1):42-51.
    [155]刘常升,陈岁元.铸态y-TiAl合金的激光气相渗氮组织.金属热处理,2001(4):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700