用户名: 密码: 验证码:
极端降雨诱发山地公路地质灾害风险评价及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国幅员辽阔,地形复杂多样,山地面积约占全国土地总面积的2/3以上。山地具有相对复杂的地质结构,因此往往是地质灾害的易发区。伴随着全球气候变化,“继续强降雨”、“大暴雨”、“持续干旱后降雨”等极端气象频繁出现,由此诱发的地质灾害给山地公路的通行带来了巨大困难,如何应对极端天气诱发的地质灾害对山区公路交通的影响,已成为我国山地公路维护与保通亟需解决的问题。基于此,笔者认为当前情况下迫切需要结合山地公路的工程实际,开展主要干线公路的地质灾害风险评价和区划研究工作,从而为建立公路地质灾害监测网络、制定应急措施并保障生命和财产安全提供工作基础。
     本文的撰写以西部交通建设科技项目“三峡库区极端气候衍生公路灾害监测预警技术研究”为支撑,依托课题组对重庆市国省干线公路地质灾害相关调查资料,研究探索了一套切实可行的、服务于山地公路等大型线性工程的地质灾害风险评价理论与方法体系,并应用于重庆市国省干线公路的滑坡、崩塌地质灾害风险评价。通过本文的研究,得到如下成果:
     ①以重庆市国省干线公路为例进行山地公路地质灾害实地调研,总调研里程9346.84Km,编录历史灾害点1695处,潜在灾害点3283处;对山地公路地质灾害的发育类型及破坏模式进行了辨识,认为滑坡灾害与崩塌灾害是山地公路地质灾害的主要类型,其破坏模式包括碎屑流渐进式滑坡、崩积层滑坡、砂泥岩、页岩互层崩塌和陡倾砂岩、泥岩、灰岩互层崩塌等四类。
     ②对山地公路地质灾害孕育环境地质表征因素进行识别,分别从地形地貌、地层岩性、斜坡类型、地质构造、水文地质条件及植被覆盖等方面研究了山地公路滑坡、崩塌地质灾害的发育规律,并初步划分出各单因素条件下地质灾害危险性等级。
     ③历史及潜在灾害点的分布规律一定程度上影响未来山地公路地质灾害的发育,本文以重庆市公路地质灾害为例,对249个国省干线路段的滑坡、崩塌地质灾害从数量分布密度和规模分布密度两个方面进行专门研究,得出了相应的分布规律,并进行了初步的等级划分。
     ④综合运用多种统计分析方法研究了山地公路地质灾害与极端降雨的相关性。分别拟合了诱发山地公路滑坡、崩塌地质灾害的累积有效降雨量计算公式,并以此作为极端降雨事件的识别模型,并通过Logistic回归分析构建了山地公路地质灾害预测模型,同时给出了两种数学模型在风险评价中的应用方法。
     ⑤山地公路地质灾害危险性评价的目的在于探讨评价区域内各种地质灾害危险性程度。本文对危险性评价的原理进行了阐述,确定了危险性评价的基本步骤,构建了评价指标体系和基于可拓学与模糊理论的综合集成方法的评价模型,最后以重庆市国省干线公路地质灾害为例进行了危险性评价。
     ⑥在前人研究的基础上重新定义了山地公路地质灾害的易损性,即易损性用于描述特定灾害类型对承灾体进行损毁或破坏的直接效应,它表征了承灾体和灾害之间的相互作用程度,本质上是承灾体遭受破坏时表现出的固有属性;另一方面,针对某种特定灾害类型,易损性间接衡量人类社会为抗击灾害而采取防控措施、设置防灾工程的效能,是承灾体被动防控和人类社会主动防控而付出直接或间接投入的综合。
     ⑦山地公路地质灾害的易损性评价不同于危险性评价,本文应用基于观测值K-均值聚类的方法对山地公路地质灾害的易损性进行了研究,通过虚设聚类中心划分了易损性等级,并对重庆市国省干线公路滑坡、崩塌灾害易损性进行了区划。
     ⑧在对山地公路地质灾害复杂系统进行分析的基础上,详细阐述了山地公路地质灾害风险管理系统,提出了风险线评价的理念,构建了山地公路地质灾害风险线评价指标体系,同时对指标体系内诸要素进行了定义性描述。指出宜采用综合集成方法对地质灾害进行风险评价,运用风险矩阵图的进行各路段风险值的测算与评价,为解决风险矩阵图直观性较差的问题,应用ARCGIS的图显功能对风险进行了区划。
China has a vast, complex and varied terrain, of which the mountainous area takes up about 2 / 3 or more. Mountain has a relatively complex geological structure, resulting in prone areas of geological hazards. With global climate change, the frequent extreme weather such as "continued heavy rainfall", "heavy rain" and "rain after continued drought," happened frequently, which induced geological disasters, giving rise to great difficulties in pass of mountain roads. Therefore, how to deal with effects of these geological disasters on mountain road traffic has become a problem to be solved desideratedly for the maintenance and unimpeded communication of mountain road. Based on this, the author believes that it is, under the current circumstances, an urgent need to perform a research, combined with practical engineering situation of mountain highways, on the risk assessment and zoning of geological hazards in main trunk roads, of which the purpose is to build a monitoring network used for road geological disasters and hence provide the basis work for taking emergency measures to protect life and property.
     This dissertation is supported by the western transportation construction projects, Three Gorges reservoir area of extreme weather derivatives highway disaster monitoring and early warning technology. Relying on the investitation materials from the research group author belonging to of Chongqing-related geological hazards in national and provincial trunk highway, the study explored a set of practical, geological disaster risk assessment theory and methodology, which is able to services in mountain highway projects and other large linear engineerings, and applied to risk assessment of geological hazards such as landslide and collapse occurred in national and provincial trunk highway in Chongqing. Through this study, obtained were the following results:
     ①The national and provincial trunk highway in Chongqing as an example for field research of geological disasters mountain road, with a total length of 9346.84 research, catalog the historical point of 1695 disaster, potential disaster points 3283; on mountain road types and the development of geological hazards were identified failure modes that the landslide and collapse hazard is the main mountain road types of geological hazards, and its failure modes include progressive landslide debris flows, colluvium landslide, sandstone and mudstone, shale landslides and steep sandstone, mudstone, limestone cross layer collapse four categories.
     ②On mountain highway geologic hazard characterization of factors that gave birth to identify environmental geology, respectively, from topography, lithology, slope type, geological structure, hydrogeological conditions and vegetation cover aspects of the mountain road landslide, collapse of geological disasters, development law, Preliminary division and under the conditions of each single factor geological hazard level.
     ③History and the distribution of potential disaster points to a certain extent affect the future development of geological disasters in mountain roads, this road geological disasters in Chongqing, for example, of the 249 national and provincial trunk roads of landslides, avalanches distribution of geological disasters in the number density and size from the density of two specialized research, obtained the corresponding distribution, and a preliminary classification.
     ④Comprehensive use of various statistical analysis methods of the mountain highway geologic hazard associated with extreme rainfall. Mountain roads were fitted induced landslides, avalanches geological disasters formula cumulative effective rainfall and extreme rainfall events as the identification model and Logistic regression analysis was constructed through the mountain highway geologic hazard prediction model, and gives two kinds of models in the risk evaluation method.
     ⑤Mountain highway geologic hazard risk evaluation is to investigate the geological evaluation of the region the degree of hazard. In this paper, the principle of risk assessment are described to determine the basic steps of risk assessment, and evaluation index system was constructed based on extension theory and fuzzy comprehensive evaluation model of integration method, and finally to national and provincial trunk highways Chongqing Geological Disaster risk assessment carried out as an example.
     ⑥On the basis of previous studies to redefine the mountain road the vulnerability of geological disasters, the vulnerability used to describe a particular type of Disaster in disaster for the direct effects of damaged or destroyed, it is characterized disaster bodies and disasters The interaction between the degree of hazard-affected bodies is essentially destroyed when the intrinsic properties shown; the other hand, for a particular type of disaster, an indirect measure of the vulnerability of human society for the prevention and control measures taken by the disaster, set against disaster engineering effectiveness, prevention and control is passive and Disaster in the prevention and control of human society take the initiative to pay directly or indirectly involved in the synthesis.
     ⑦Mountain highway vulnerability assessment of geological hazards is different from the risk assessment, this paper observations on K-means clustering method on mountain roads the vulnerability of geological disasters have been studied by the level of vulnerability and use significant feature in Figure ARCGIS vulnerability was zoning.
     ⑧Based on analysis of the complex system of geological disasters in mountain highways, the detailed risk management system of geological disasters in mountain highways was expatiated, the concept of risk line evaluation was proposed, the index system of line evaluation was constructed, and factors of the index system were definitively described. The comprehensive integratation approach was advised to be applied to risk assessment of geological disasters, the risk matrix figure was suggested to calculated and evaluate risk values of the various sections, and for solving the problem of poor intuitive application of risk matrix figure, the risk of ARCGIS was ultilized to zone vulnerability.
引文
[1]冯文凯.库岸公路边坡稳定性风险分析[D].成都:成都理工大学, 2005.
    [2]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都:成都理工大学, 2005.
    [3] Schuiling .R .D..Geochemical engineering:some thoughts on a new research field[J]. Applied Geochemistry. 1990,15(5):251-262.
    [4]刘衡秋,朱志刚,何维彬.地质灾害危险性评估工作发展现状及若干技术问题探讨[J].中国地质灾害与防治学报,2008,19(4):127-129.
    [5]李媛.区域降雨型滑坡预报预警方法研究[D].北京:中国地质大学, 2005.
    [6]文海家.基于GIS的滑坡灾变智能预测系统及应用研究[D].重庆大学,2004.1.
    [7]秦四清,张悼元等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993. 12.
    [8]苏强.基于DEM的黄土滑坡危险性评价研究[D].北京:中国地质大学, 2006.
    [9]王萌,乔建平.贡献权重模型在区域滑坡危险性评价中的应用[J].中国地质灾害与防治学报,2010,21(1):1-6.
    [10] Goodman R E, Gen-hua Shi. Block Theory and its Application to Rock Engineering. New York: Prentice Hall Inc, 1985.
    [11] Shi Gen-hua. Discontinuous deformation analysis: A new numerical model for the static and dynamics of block systems. Berkely: Dep. of Civi1 Eng., University of Calif. August 1988.
    [12]杨军.广西梧州市万秀区区域降雨型滑坡危险性区划及降雨临界值研究[D].桂林:桂林工学院, 2007.
    [13]杜军.基于三维影像数据的震后次生地质灾害风险评估[D].合肥:中国地质大学, 2010.
    [14]徐新艳.基于GIS的滑坡灾害危险性评价研究[D].南京:南京师范大学, 2007.
    [15]伍四明,李日.国万县滑坡群稳定性的模糊数学分析[J].地质灾害与环境保护.1994,55(2):45-53.
    [16]孙明华.关于模糊综合评判结果的等级划分与排序[J],北京工业大学学报,1994, 20 (1):73-79.
    [17]邵顺妹,邹敏.古浪—海原地区滑坡分布规律的模糊综合评判[J].地震学刊,1994,(1): 1-6.
    [18]夏元友,李新平,朱瑞赓.基于人工神经网络的边坡稳定性工程地质评价方法.岩土力学,1996, 17 (3 ): 27-33.
    [19]谢全敏,朱瑞赓.岩体边坡稳定性灰色聚类空间预测方法,金属矿山,1997, 252(6):1-5.
    [20]陈亚宁.灾害损失评估的灰色聚类分析,西北大学学报,1999, 29(6):551-555.
    [21]吴向阳.边坡工程岩体质量的灰色聚类评价,安徽地质, 1999, 9(3) 228-235.
    [22]张厚美,吴何洪.岩石力学特性关系的探讨,中国海上油气,1999, 11(3): 26-34.
    [23]陈顺良.基于梯形灰类白化函数的聚类分析,矿冶工程,2000, 20 (1): 8-11.
    [24]罗先启,寇国祥.基于ANN的大石板滑坡区地下水位非线性预测.三峡大学学报,2001,23(2):104-108.
    [25]吕培印.工神经网络方法在海州矿边坡不稳定区圈定中的应用.岩石力学与工程学报,2002, 21(10):1490-1493.
    [26]谢全敏,夏元友.危岩块体稳定性的综合评价方法分析.岩土力学,2002, 23(6): 775-781.
    [27]马跃平,宁淑平,李晓玲等.应用灰色聚类方法评价边坡稳定性,内蒙古煤炭经济,2004, (2):78-80.
    [28]蔡雪峰,朱燕,何孝贵.北京地铁暗挖施工技术的灰色聚类评估分析,土木工程学报,2004,37(12):91-96.
    [29]朱庆杰,马亚杰,陈艳华.基于神经网络的区域地壳稳定性评价,岩土工程学报,2005,27(9):1105-1109.
    [30]张春山,吴满路,张业成.地质灾害风险评价方法及展望[J].自然灾害学报.203,12(1):96-103.
    [31]王卫东.基于GIS的区域公路地质灾害管理与空间决策支持系统研究[D].长沙:中南大学, 2009.
    [32]宋光齐.沐川县黄丹滑坡变形成因的再认识及防治方案[J].四川地质学报, 2002,(02):106-110.
    [33]朱良峰,殷坤龙.基于GIS技术的区域地质灾害信息分析系统研究[J].中国地质灾害与防治学报,2001, 12 (3).
    [34]单新建,叶洪,李掉芬,陈国光.基于GIS的区域滑坡危险性预测方法与初步应用[J].岩石力学与工程学报,2002, (10).
    [35]周翠英,林春秀,刘柞秋,等.基于GIS技术的区域性滑坡发生概率分析[J] .岩石力学与工程学报,2004, 23 (6) : 911-914.
    [36]王志旺,廖勇龙,李端有.基于逻辑回归法的滑坡危险度区划研究[J].地下空间与工程学报,2006, 2 (8):1451-1454.
    [37] Wieczork.GF. Evaulating Danger Landslide Caralogue Mape[J]. Bulletion of the Assocination of Engineering Gelogists. 1984. (1):337-342.
    [38] Ellen S .D.et.al. Landslide. Floods and Native Effcts of the Storm of Januay 1982. in the San Francisco Bay Region [Z]. California. V.S.S. 1988.3-5.
    [39]舒斯特R.T.等.滑坡的分析与防治[M].北京:中国铁道出版社,1987.
    [40] Gupta P,Anbalagan R. Slope stability of Their Dam Reservoir Area,India,using landslide hazard zonation(LHZ) mapping[J].Quarterly Journal of Eng Geology,1997,30:27-26.
    [41] Aleotti P., Baldelli P.,Polloni G, et al. Hydrogeological risk assessment of the Po river basin(Italy)[Z]. Landslides in research, theory and practice, Thomas Telford,London,2000:13-18.
    [42] Pachauri A K,Gupta P V,Chander R. Landslide zoning in a part of the Garhwal Himalayas[J].Environmental Geology, 1998,36:3-4 .
    [43] Aleotti P,Chowdhury R.Landslide hazard assessmentaummary review and new perspectives[J].Bull Eng Geol Env,1999,58:21-44.
    [44]黄润秋,许向宁,唐川,向喜琼.地质环境评价与地质灾害管理[M].北京:科学出版社,2008.
    [45] Uromeihy A,Mahdavifar M R. Landslide hazard zonation of the Khorshrostam area,Iran[J].Bulletin of Engineering Geology and the Environment,2000, 58:207-213.
    [46] Uromeihy A,Mahdavifar M R. Reply to Discussion on"Landslide hazard zonation of the Khorshrostam area,Iran" by Uromeihy A and Mahdavifar M R[J].Bull Eng Geol Environ,2001,58:207-213.
    [47] Candan Gokceoglu. Discussion on "Landslide hazard zonation of he Khorshrostam area, Iran" by Uromeihy A and Mahdavifar M R, Bull Eng Geol Environ,58:207-213[J].Bulletin of Engineering Geology and the Environment, 2001,60:79-80.
    [48]乔建平.滑坡减灾理论与实践[M].北京:科学出版社,1997.
    [49]唐川,周矩,朱静.云南崩塌滑坡危险度分区的模糊综合分析法[J],水土保持学报,1994,8(4): 48-54.
    [50]付延玲.用聚类分析、模糊综合评判评价地质环境质量[J],煤田地质与勘探,1999, 27(6):47-50.
    [51]杨建军,谢振乾,郑宁平.模糊聚类分析在西安市区域地壳稳定性评价中的应用[J],地质力学学报,2004, 10(1):57-64.
    [52]胡亚东.黄河积石峡水电站库岸地质灾害研究[D],成都理工大学,2004.
    [53]唐红梅,陈洪凯,唐芬等.重庆库区松散土体滑坡危险性分区及评价[J].灾害学,2004,19(1):1-6.
    [54]乔晓霞.基于GIS的复杂山区高速公路沿线地质灾害危险性评价研究[D].西安:长安大学,2006.
    [55]陈雷.陕西公路主要地质灾害分区与评价[D].西安:长安大学,2009.
    [56]刘玉杰.基于GIS技术的陕南地区高速公路滑坡灾害危险性评价研究[D].西安:长安大学,2009.
    [57]许遐祯,潘文卓,缪启龙.江苏省龙卷风灾害易损性分析[J].气象科学,2010, 30(2) :208-213.
    [58]周利敏.灾后重建中的非营利组织与非正式参与途径[J].大连理工大学学报(社会科学版),2010, 31(2) :58-62.
    [59]赵卫权.自然灾害社会易损性评价指标体系研究[D].重庆:重庆师范大学,2008.
    [60]朱强男.大连市海底地质灾害易损性评价研究[D].青岛:青岛大学,2010.
    [61]李宏.自然灾害的社会经济因素影响分析[J].中国人口.资源与环境,2010, 20(11):136-142.
    [62]钱永波.强震区城镇泥石流灾害风险评价方法与体系研究[D].成都:成都理工大学,2009.
    [63]史培军.区域自然灾害系统研究[C].北京:北京师范大学.2003.
    [64]姜彤,许朋柱.自然灾害研究中的社会易损性评价[C].中国科学院院刊.1996.
    [65]郭强.片论中国自然灾害的社会科学研究[J].天中学刊,1999.14(1):38-43
    [66]蒋勇军,况明生,匡鸿海等.区域易损性分析、评估及易损度区划——以重庆市为例[J].灾害学,2001,16(3):59-65.
    [67]毛德华,王立辉.湖南城市洪涝易损性诊断与评估[J].长江流域资源与环境,2002,11(1):89-94.
    [68]郭跃.灾害易损性研究的回顾与展望[J].灾害学,2005,20(4):90-94.
    [69]刘光旭,吴文祥,张绪教.昆明市东川区泥石流风险性评价研究[J].灾害学,2009,39(3):450-454.
    [70]殷杰,尹占娥,许世远.上海市灾害综合风险定量评估研究[J].中国地质灾害与防治学报,2008,19(3):29-35.
    [71]石莉莉,乔建平.基于GIS和贡献权重迭加方法的区域滑坡灾害易损性评价[J].灾害学,2009,24(3):44-48.
    [72]梅海,张纪勋.兰州市地质灾害易损性评价[J].南水北调与水利科技,2010,8(2):103-107
    [73] Ayalew,L. The effect of seasonal rainfall on landslides in the Highland of Ethiopia. Bull Eng Geol Env(1999)58: 9~19.
    [74]殷坤龙,张桂荣.地质灾害风险区划与综合防治对策[J].安全与环境工程,200310(1):32-35.
    [75]高华喜.滑坡灾害风险区划与预测研究综述[J].灾害学,2010,25(2):124.128.
    [76]方世跃.滑坡预测预报[D].兰州:兰州大学,2006.
    [77]汪璇.基于GIS和计算智能的烤烟生态适宜性评价[D].重庆,西南大学,2009.
    [78]李业强·重庆市主城区空气中氡浓度调查与评价[D].成都,成都理工大学,2010.
    [79]叶正伟.重庆市洪涝灾害研究[D].重庆.西南师范大学,2001.
    [80]刘效雨.重庆市山洪灾害的初步研究[D].重庆.西南大学,2009.
    [81] Lumb. Effectof rainstormon slope stability[J]. Symon Hong Kong soils. Hong Kong. 1962: 73~87.
    [82] E. W. Brand, J. Pre mchitt and H. B. Philipson. Relantionship between rainfall and landslides in Hong Kong, Proc. 4th Int. Symp. Landslides. Torono. 1984,(1):377~384.
    [83] Glade T.,Crozier,M. and Smith.Applying probability termination to refine landslide triggering rainfall thresholds using empirical decedent daily rainfall model". Pure and Applied Geophysics 157: 1059~1079.
    [84] Glade T. Modeling landslide-triggering rain falls in different regions of New Zealand the soilwater status model. Zeitschrift fiir or phologie NE. 122. 63~84.
    [85] Glade T .Modeling landslide triggering rainfall thresholds at a range of complexities. In: Proc of the VIII International Symposium on Landslides, Cardiff vol. 2,Telford, London, 633~640.
    [86] Wilson, R. C . &Wieczorek, GF. ,1995. Rainfall thresholds for the initi-ation of debris Allow at La Honda, California .Environmental and Engine-Bring Geoscience 11, 11~27.
    [87] Ayalew,L. The effect of seasonal rainfall on landslides in the Highland of Ethiopia. Bull Eng Geol Env(1999)58: 9~19.
    [88]杜榕恒等.长江三峡库区滑坡与泥石流研究[M].四川科学技术出版社,1991.
    [89]李晓.重庆地区的强降雨过程与地质灾害的关系[J].中国地质灾害与防治学报,1995,6(3) :24~32.
    [90]林孝松.滑坡与降雨研究[J].地质灾害与环境保护,2001,12 (3) :2~7.
    [91]李媛,朱晓冬,杨冰.滑坡泥石流与降雨关系研究动态,典型地区突发性地质灾害时空预警示范区建设进展材料之一,中国地质环境监测院,2002: 16~28.
    [92]杨顺泉.灾发性地质灾害防灾预警系统方案研究[J].中国地质灾害与防治学报,2002,13(2):110.
    [93]殷坤龙,张桂荣,龚日祥,王孔忠.基于Web-GIS的浙江省地质灾害实时预警预报系统设计[J].水文地质工程地质,2003,N0.3:19~22.
    [94]周国兵,马力,廖代强.重庆市山体滑坡气象条件等级预报业务系统[J].应用气象学报, 2003,14(1):122~124.
    [95]谢剑明,刘礼领,殷坤龙等.浙江省滑坡灾害预警预报的降雨阀值研究[J].地质科技情报,2003, 22 (4):100~101.
    [96]张友谊.不同降雨条件下峡口滑坡稳定性研究[D].西南交通大学,2007.7 .
    [97]殷跃平.中国滑坡防治工程理论与实践[J].水文地质工程地质,1998,25(1): 5~9.
    [98]王发读.浅层堆积物滑坡特征及其与降雨的关系初探[J].水文地质工程地质,1995(1):20~23.
    [99]柳源.滑坡临界暴雨强度[Jl.水文地质工程地质,1998,3: 43~45.
    [100]单九生,刘修奋,魏丽,等.诱发江西滑坡的降水特征分析[J].气象,2004,30(1):13-17.
    [101]姚学祥,徐晶,薛建军,等.基于降水量的全国地质灾害潜势预报模式[J].中国地质灾害防治学报.2005.16(4):97-106.
    [102]解传银.地质灾害空间危险性评价综述[J].铁道科学与工程学报.2011,8(1):97-102.
    [103]谷秀芝.公路泥石流危险性评价方法与系统[D].重庆:重庆交通大学,2010.
    [104]沈芳,黄润秋,苗放,等.区域地质环境评价与灾害预测的GIS技术[J].山地学报,1999,17(1):338-342.
    [105]张俊峰.天山公路地质灾害危险性评价与决策支持系统设计与实现[D].成都:成都理工大学,2008.
    [106]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报.2001.28(1):89-92.
    [107] P.M.Atkinson, R.Massari.Generalised susceptibility to landsliding in the central linear modeling of Apennines, Italy [J]. Computers&Geosciences, 1998, 24 (4):373-385.
    [108] Saro Lee,Kyungduck Min. Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental Geology[M].2001,40:1095-1113.
    [109] Gregory C, Ohlmacher, John C. Davis. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J].Engineering Geology,2003,69:331-343.
    [110] ] Forster, Alan. The assessment of landslide hazard potential as a guide to land use and planning in the South Wales Coalfield[J].National Museum of Wales, November 2001,24:81-87.
    [111]伍四明,李曰国.万县滑坡群稳定性的模糊数学分析[J].地质灾害与环境保护,1994,5(2):
    [112] CuzzeLLi F.Carrara A,Cardinali M,et al.Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study,Central Italy Geomorphology, 1999[J],31(3):181-261.
    [113] Clerici A,Perego S,Tellini C,et al.A GIS-based autom at ed procedure for landslide susceptibility mapping by the conditional analysis method.Environmental Geology[J],2006,50(6):941-961.
    [114]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中理工大学出版社,2000:205-211.
    [115]李建华.岩坡稳定性的层次模糊综合评价法[J].贵州工学院学院报,1992,21(4):27~36.
    [116]姚春梅,刘洪亮.模糊数学综合评判法在矿山地质灾害危害程度评价中的应用[J].中国地质灾害防治学报,1998,9(3):47-54.
    [117]李克钢,侯克鹏,李旺.指标动态权重对边坡稳定性的影响研究[J],岩土力学2009,30(2):493~498.
    [118]鲁道洪.基于AHP的模糊综合评判在公路地质灾害的危险性评价[J].四川地质学报2009,29(3):356~400.
    [119]张喜平,柳立群,赵雪芹.丘陵型水库地质灾害危险性模糊综合评判[J].地质灾害与环境保护,2010,21(1):41~46.
    [120]谢全敏,夏元友著,滑坡灾害评价及其治理优化决策新方法[M].武汉:华中理工大学出版社,2008:55-56.
    [121] CHEN H J,LIU S H. Slope failure characteristics and stabilization methods[J]. CanadianGeoteclmical Journal, 2007,44(4): 377-391.
    [122]张永兴,陈云,文海家,等.边坡灾害风险评估系统研究及应用[J].重庆建筑大学学报,2008,30(1):30~34.
    [123]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2005:88~100.
    [124]汪培庄,韩立岩.应用模糊数学[M].北京:北京经济学院出版社,1989:105~112.
    [125]张卫中,陈从新,张敬东.改进的AHP及其在地灾易发程度分区中的实践[J].土木建筑与环境工程,2009,31(2):85~91.
    [126]聂洪峰,祁生文,孙进忠,等.重庆市区域稳定性层次分析模糊综合评价[J].工程地质学报,2002,10(4):409~415.
    [127]荆洪英,张利,闻邦椿.基于层次分析法的产品设计质量权重分配[J].东北大学学报(自然科学版), 2009,30(5):712~715.
    [128]薛凯喜,刘东燕,赵宝云,等.降雨诱发公路滑坡灾害危险性评价动态权重系统[J].地球与环境, 2011,39(1):557~563.
    [129]安永林,彭立敏,吴波,等.隧道坍方突发性事件风险可拓法综合评估[J].中南大学学报(自然科学版),2011,42(2):514-521.
    [130] Davis E H,Gunn M J,Mair R J,et al.The stability of shallow tunnels and underground openings in cohesive material[J].Geotechnique,1980,30(4):397-416.
    [131] Lee I M,Nam S W.The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J].Tunnels andUnderground Space Technology,2001,16(1):31-40.
    [132] Lee I M,Nam S W,Jae H A.Effect of seepage force on tunnel face stability[J].Canadian Geotechnical Journal,2003,40(2):342-350.
    [133]张勤,华佩,张晋.改进AHP-灰色关联分析的给水厂排泥水处理工艺优选模型[J].土木建筑与环境,2010,32(3):133-139.
    [134] ] SAATY T L. There is no mathematical validity for using fuzzy number crunching in the analytic hierarchy process[J]. Journal of Systems Science and Systems Engineering, 2006,15(4):457-464.
    [135] Miyanoshita T. Economic evaluation of combined treatment for sludge from drinking water and sewage treatment plants in Japan[J].Journal of Water Supply and Technology-AQUA, 2009,58(3):221-227.
    [136] YANG F.Integrated Geographic Information Systems-Based Suitability Evaluation of Urban Land Expansion:A Combination of Analytic Hierarchy Process and GreyRelational Analysis [J]. Environmental Engineering Science,2009,26(6):1025-1032.
    [137]高克昌,崔鹏,赵纯勇等.基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J].岩石力学与工程.2006,25(5):991~997.
    [138]喻浪平.城市道路边坡风险分析及评价[D].长沙:中南大学,2007.
    [139]汪敏,刘东燕.滑坡灾害风险分析中的易损性及破坏损失评价研究[J].工程勘察,2001.30(4):6-13
    [140]张虹.组件式滑坡易损性点评估系统开发[D].重庆:重庆师范大学,2004.
    [141]谢全敏.滑坡灾害风险评价及其治理决策方法研究[D].武汉:武汉理工大学,2004.
    [142]汪敏.滑坡灾害风险分析系统理论及在港渝地区应用研究[D].重庆:重庆大学,2001.
    [143]范艳辉,许洪国.道路交通事故财产损失评价及计量模型[J].统计与决策,2007.20(1):24-25.
    [144]马逸麟,梅丽辉,何伟相,等.鄱阳湖水患区危险性分区评价[J].地质灾害与环境保护,2010,21(1):36-41.
    [145]王琰,殷坤龙,陈丽霞.三峡库区下土地岭滑坡风险分析研究[J].人民黄河,2010,32(9):115-117.
    [146] Kenned Y J, EberhartR C. Particle swarmI optimization[C].Proc IEEE Int ConfonNeuralNetworks.NJ: IEBE Service Center, 1995: 1942-1948.
    [147]马逢时.MINITAB统计分析教程[M].北京:中国人民大学出版社,2007.
    [148]马林,何桢等.六西格玛管理(第二版)[M] .北京:中国人民大学出版社,2004.
    [149]张梁.地质灾害风险评价理论与方法[J].中国地质矿产经济,1996,10(4):40-46.
    [150]冯文凯.库岸公路边坡稳定性风险分析[D].成都:成都理工大学,2005.
    [151]王鹏.水麻路危岩危险性风险评价及防治[D].重庆:重庆交通大学,2008.
    [152]周惊慧.西气东输工程地质灾害风险评估[D].天津:天津大学重庆交通大学,2007.
    [153]金晓媚,刘金韬.地质灾害灾情评估系统[J].水文地质工程地质,1998,10(4):40-46.
    [154]陈成名.西南山区城镇地质灾害易损性评价理论与实践[D].成都:成都理工大学,2010.
    [155]张春山.黄河上游地区地质灾害形成条件与风险评价研究[D].北京:中国地质科学院,2003.
    [156]张春山,吴满路,张业成.地质灾害风险评价方法及展望[J].自然灾害学报,2003,10(4):40-46.
    [157]齐洪亮.公路路基地质灾害评价及防治对策研究[D].西安:长安大学,2008.
    [158]吕远强.安康—旬阳—蜀河公路沿线地质灾害危险性评价研究[D].西安:长安大学,2005.
    [159]高宇.基于GIS的黄土地区滑坡危险性评价研究[D].西安:长安大学,2005.
    [160]马寅生,张业成,张春山,等.地质灾害风险评价的理论与方法[J].地质力学学报,2004,10(1):8-19.
    [161]张立明.三峡工程库区地质灾害易损性评价与区划研究[D].长沙:中南大学,2008.
    [162]唐春.大关县地质灾害风险评价与防治对策研究[D].昆明:昆明理工大学,2007.
    [163]黄兆荣.基于GIS的地质灾害风险评价研究——以福州尚干地区为例[D].福州:福州大学,2005.
    [164]宋超.采空塌陷风险评价方法研究[D].北京:中国地质科学院,2008.
    [165]刘希林,苏鹏程.四川省泥石流风险评价[J].灾害学,2004,19(2):25-31.
    [166] Zhu A X. Mapping soil landscape as spatial continua: the neural network approach [J]. Water Resources Research,2000, 36(3): 663-677.
    [167] ARP5150.Safety Assessment of Transport Airplanes in Commercial Service[S].SAE,2003.
    [168] Richman A,MacLean LC.Reducing analysis paralysis for rare events in large databases:Automated risk assessment and trend monitoring[C].Proceedings of the 24th International System Safety Conference,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700