用户名: 密码: 验证码:
激光重熔等离子喷涂纳米氧化锆热障涂层组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代航空航天工业的发展,常规热障涂层已经不能满足高温热端部件日益提高的性能要求。因此研究工作者开始将纳米技术、激光重熔表面处理技术与等离子喷涂技术结合起来,期望获得具有更好性能的热障涂层。
     本文采用大气等离子喷涂纳米氧化锆(ZrO_2-8%Y_2O_3)团聚粉末制备了纳米氧化锆热障涂层,并利用连续CO_2激光对其进行重熔处理。以常规热障涂层作为比较对象,系统地研究了纳米氧化锆热障涂层和激光重熔涂层的组织结构、物相组成和性能特点(抗热冲击性能、耐摩擦磨损性能、高温稳定性能)。
     纳米氧化锆热障涂层组织结构及其性能试验结果分析表明:纳米氧化锆热障涂层展现出独特的纳米-微米复合结构,主要由柱状晶和未熔融或部分熔融纳米颗粒组成。非平衡四方相是纳米氧化锆热障涂层的主要物相,涂层不含有单斜相。和常规热障涂层相比,纳米氧化锆热障涂层拥有更好的抗热冲击性能。这主要得益于其相对致密的结构以及微裂纹、纳米晶粒、小孔径孔隙的应力缓释作用。纳米氧化锆热障涂层高温稳定性能性能试验结果表明,涂层晶粒度随着服役温度和服役时间的增加而增加,但是仍保持纳米结构;涂层物相组成不随服役环境的变化而变化。因此纳米氧化锆热障涂层拥有很好的高温稳定性能。纳米结构涂层的耐高温摩擦磨损性能优于常规热障涂层。
     激光重熔试验结果显示,随着激光重熔工艺参数的变化,重熔涂层很容易产生“凹坑”、“涂层剥落”、“气孔”等缺陷。但是通过优化激光重熔工艺参数是可以获得质量良好、无缺陷的激光重熔涂层。随着激光比能量的逐渐增加,涂层组织结构由单一的柱状晶逐渐变为柱状晶和等轴晶的复合结构。激光重熔涂层的X射线衍射结果证实了重熔涂层的组织分析结果。激光重熔表面处理可以显著提高热障涂层的抗热冲击性能,表面等轴晶对外界腐蚀介质的封闭作用、断面柱状晶和表面网状微裂纹的热应力缓释机制,是拥有复合结构的重熔涂层展现出最优抗热冲击性能的主要原因。
     通过以上试验分析可以得出,将纳米技术和激光重熔表面处理技术与等离子喷涂技术结合起来制备热障涂层是提高热障涂层性能的非常有前景的工艺方法。
It is gradually difficult for conventional thermal barrier coatings (TBCs) to satisfy the increasing requirements for the performance of the high temperature components with the development of modern aeronautic and space industry. So the nanometer technology and laser glazing are combined with atmospheric plasma spraying in order to prepare TBCs with better performance.
     In the thesis the nanostructured zirconia TBCs were manufactured by atmospheric plasma spraying using the nanostructured zirconia agglomerated powders, and the CO_2 laser beam with the continuous wave was applied to the laser glazing of nanostructured TBCs. And the microstructures, phase composition and properties (thermal shock resistance, friction and wear property and high temperature stability) of nanostructured TBCs and as-glazed TBCs were systematically investigated compared to conventional TBCs.
     The experimental results of microstructures and properties of the nanostructured TBCs indicated that the nanostructured TBCs exhibited a unique complex microstructure consisting of columnar grains and non-melted or partial melted nanosized particles. XRD analysis showed that the metastable tetragonal phase was the major predominant phase of the nanostructured TBCs without the presence of monoclinic phase. The nanostructured TBCs possessed better thermal shock resistance than conventional TBCs. This phenomenon was ascribed to the relatively densified coating, microcracks, nanosized grains and fine porosity which can effectively release the thermal stress. And the thermal stress was the main reason leading to the failure of nanostructured TBCs. The results of the high temperature stability of nanostuctured TBCs demonstrated that the grain size of the coatings increased with the increasing testing temperature and time, but the grain size was still lower than 100nm; and the phase composition of the coatings didn't change with the different temperature and time. So the nanostructured TBCs had better high temperature stability in terms of the change tendency of grain size and phase composition. The nanostructured TBCs can improve the wear property of the TBCs compared to the conventional coatings.
     The experimental results of laser glazing demonstrated that laser glazing was so sensitive to the processing parameters. The surface of the as-glazed coatings exhibited different defects such as surface color change, craters, porosity, exfoliation if the processing parameters couldn't be properly adjusted. But the defects-free as-glazed coatings can be prepared through the optimization of the laser glazing conditions. SEM observation indicated that the microstructure of the as-glazed coatings changed from single columnar grains to a combination of columnar grains in the fracture and equiaxed grains on the surface with the increase of laser energy density. The results of XRD analysis were consistent with the SEM examination. Laser glazing can notalbly enhance the life-time of TBCs with the possibility to double the number of cycles compared to the nanostructured TBCs. The two main reasons for the improvement of thermal shock resistance were to: (i) effectively decrease the permeability of the corrosion medium to the bond coat by equiaxed grain on the surface; (ii) relax the thermal stress extensively by the columnar grain and net-microcracks and increase the strain compliance of the as-glazed coatings.
     So it can be pointed out that the hybrid process that the nanometer technology and laser glazing are combined with atmospheric plasma spraying to prepare TBCs has been revealing a high potential for the improvement of TBCs properties.
引文
[1]刘纯波,林锋,蒋显亮.热障涂层的研究现状与发展趋势[J].中国有色金属学报,2007,17(1):1-13.
    [2]林锋,蒋显亮.热障涂层的研究进展[J].功能材料,2003,34(3):254-261.
    [3]Maurice Gell.Application opportunities for nanostructured materials and coatings[J].Materials Science and Engineering,1995,A204:246-251.
    [4]Ping Wu,Hongrnei Jin,Yi Li.Correlation of chemical element properties and additive behaviors of ternary zinc compounds[J].Calp had,2002,26(1):55-62.
    [5]郭铁波,周细应,林文松等.纳米热喷涂技术的研究现状与展望[J].表面技术,2003,32(4):1-3.
    [6]梁志芳,李午申,王迎娜.热喷涂制备纳米涂层的研究现状与展望[J].焊接学报,2003,24(6):94-98.
    [7]Xin Wang,Ping Xiao,et al.Laser processing of yttria stabilized zirconia/alumina coatings on Fecralloy substrates[J].Surface & Coatings Technology,2004,187:370-376.
    [8]H.L.Tsai,P.C.Tsai.Performance of laser-glazed plasma-sprayed (ZrO_2-12wt.%Y_2O_3)/(Ni-22wt.%Cr-10wt.%Al-1wt.%Y) thermal barrier coatings in cyclic oxidation tests[J].Surface & Coatings Technology,1995,71:53-59.
    [9]江志强,席守谋,李华伦.激光重熔等离子喷涂陶瓷涂层的研究与发展[J].材料工程,1999,20(1):46-48.
    [10]A.G.Evans,et al.Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5):505-553.
    [11]曹学强编著.热障涂层材料[M].科学出版社,北京:2007年.
    [12]刘志,周洪.热障涂层研究进展[J].河海大学常州分校校报,2006,20(3):9-13.
    [13]Murray G T.Hand Book of Materials Selection for Engineering Applications.New York:Marcel Dekker,1997:89-101.
    [14]W.B.Gong et al.Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings[J].Surface & Coatings Technology,2006,201:3109-3115.
    [15]Czech N,Schimitiz F,Stamm W.Improvement of MCrAlY coatings by addition of rhenium[J].Surface & Coatings Technology,1994,68-69:17-21.
    [16]J.R.Nicholls,K.J.Lawson et al.Methods to reduce the thermal conductivity of EB-PVD TBCs[J].Surface & Coatings Technology,2002,151-152:383-391.
    [17]郝兵,李成刚.表面涂层技术在航空发动机上的应用[J].航空发动机,2004,30(4):38-40.
    [18]R.S.Lima,A.Kucuk,C.C.Berndt.Integrity of nanostructured partially stabilized zirconia after plasma spraying processing[J].Materials Science and Engineering,2001,A313:75-82.
    [19]周斌,王全胜等.纳米氧化锆涂层晶粒度与隔热性能的关系[J].材料保护,2006,39(3):1-4.
    [20]Bo Liang,Chuanxian Ding.Phase composition of nanostructured zirconia coatings deposited by air plasma spraying[J].Surface & Coatings Technology,2005,191:267-273.
    [21]R.S.Lima,A.Kucuk,C.C.Berndt.Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zriconia coatings[J].Surface & Coatings Technology,2001,135:166-172.
    [22]M.Gell.Thermalphysical properties and thermal cycling behavior of plasma sprayed nanostructured zirconia coatings[J].Materials Science and Engineering,2005,A303:104-115.
    [23]吕艳红等.纳米氧化锆热障涂层隔热行为研究[J].中国表面工程,2006,19(1):24-27.
    [24]Bo Liang,Chuanxian Ding.Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J].Surface &Coatings Technology,2005,197:185-192.
    [25]Huang Chen,Soowohn Lee,et al.Evaluation of unlubricated wear properties of plasma-sprayed nanostructured and conventional zirconia coatings by SRV tester[J].Wear,2006,260:1053-1060.
    [26]陈传忠,雷延权等.等离子喷涂-激光重熔陶瓷涂层存在问题及改进措施[J].材料科学与工艺,2002,10(4):431-435.
    [27]江志强,席守谋,李华伦.等离子喷涂陶瓷涂层封孔处理的现状与展望[J].兵器材料科学与工程,1999,22(3):56-60.
    [28]S.Ahmaniemi,et al.Thermal cycling resistance of modified thick thermal barrier coatings[J].Surface & Coatings Technology,2005,190:378-387.
    [29]张罡,梁勇.激光制备陶瓷热障涂层的研究和发展[J].沈阳工业学院学报,2000, 19(1):1-7.
    [30]张永康主编.激光加工技术[M].化学工业出版社,北京,2004年.
    [31]王爱华,谢长生等.激光技术改善等离子喷涂陶瓷层性质的研究与进展[J].激光技术,1995,19(2):124-129.
    [32]陈国锋等.激光重熔处理对含Al、Ti、TiO_2等离子喷涂热障涂层组织的影响[J].金属热处理,1999,9:10-12.
    [33]Sang Ok Chwa,Akira Ohmori.Microstructures of ZrO2-8wt.%Y203 coatings prepared by a plasma laser hybrid spraying technique[J].Surface & Coatings Technology,2002,153:304-312.
    [34]C.Batista,A.Portinha,et al.Surface laser-glazing of plasma-sprayed thermal barrier coatings[J].Applied Surface Science,2005,247:313-319.
    [35]Guy Antou,Ghislain Montavon,et al.Modification of thermal barrier coating architecture by in situ laser remelting[J].Journal of the European Ceramic Society,2006,26:3583-3587.
    [36]C.Batista,A.Portinha,et al.Morphological and microstructural characterization of laser-glazed plasma-sprayed thermal barrier coatings[J].Surface & Coatings Technology,2006,200:2929-2937.
    [37]陈国锋,冯钟潮,梁勇.激光重熔处理工艺对等离子喷涂热障涂层组织的影响[J].激光杂志,1999,20(6):53-55.
    [38]C.Sreedhar,G.Santhanakrishnan,et al.Effect of processing parameters on the laser glazing of plasma-sprayed alumina-titania ceramic[J].Journal of Materials Processing Technology,2001,114:246-251.
    [39]冯志刚,殷一贤,邹至荣.等离子-激光复合涂层质量控制研究[J].激光杂志,1995,16(3):118-122.
    [40]张罡,武颖娜等.激光重熔工艺参数对热障涂层热震性能的影响[J].激光技术,2002,26(5):334-337.
    [41]Pi-Chuen Tsai,Chen-Sheng Hsu.High temperature corrosion resistance and microstructural evaluation of laser-glazed plasma-sprayed zirconia/MCrAlY thermal barrier coatings[J].Surface & Coatings Technology,2004,183:29-34.
    [42]Z.Liu.Crack-free surface sealing of plasma sprayed ceramic coatings using an excimer laser[J].Applied Surface Science,2002,186:135-139.
    [43]X.Cao,M.Jahazi,et al.A review of laser welding techniques for magnesium alloys[J].Journal of Materials Processing Technology,2006,171:188-204.
    [44]陈彦宾编著.现代激光焊接技术[M].科学出版社,北京,2006年.
    [45]乌晓燕,戴嘉维,李戈扬.韧性基体上硬质涂层的扫面电镜截面样品制备方法[J].理化检验.物理分册,2007,43(10):512-514.
    [46]W.Q.Wang,D.Q.Sun,et al.Microstructural feature,thermal shock resistance and isothermal oxidation resistance of nanostructured zirconia coatings[J].Materials Science and Engineering,2006,A424:1-5.
    [47]Zhou Hong,Li Fei,et al.Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying[J].Transactions of Nonferrous Metals Society of China,2007,17:389-393.
    [48]Wang Zhen-Bo,Zhou Chun-Gen,et al.Effect of thermal treatment on the grain growth of nanostructured YSZ thermal barrier coatings prepared by air plasma spraying[J].Chinese Journal of Aeronautics,2004,17(2):119-123.
    [49]Chungen Zhou,Na Wang,Huibin Xu.Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J].Materials Science and Engineering,2007,A452-453,569-574.
    [50]吕艳红,王全胜,吴子健.纳米氧化锆热障涂层热震性能研究[J].材料保护,2006,39(7):9-11.
    [51]汤伟杰.高速列车制动盘失效分析与材料逆向设计[D].西南交通大学硕士论文,2007.06.
    [52]Na Wang,Chungen Zhou,et al.Heat treatment of nanostructured thermal barrier coating[J].Ceramics International,2007,33:1075-1081.
    [53]Guy Antou,Ghislain Montavon,et al.Microstructures of partially stabilized zirconia manufactured via hybrid plasma spray process[J].Ceramics International,2005,31:611-619.
    [54]李志远,钱乙余,张九海等编著.先进连接方法[M].机械工业出版社,北京,2000年.
    [55]Guy Antou,Ghislain Montavon,et al.Modification of ceramic thermal spray deposit microstructures implementation in situ laser remelting[J].Surface and Coatings Technology,2003,172:279-290.
    [56]Bo Liang,Chuanxian Ding,et al.Phase composition and stability of nanostructured 4.7 wt.%yttria-stabilized zirconia coatings deposited by atmospheric plasma spraying[J]. Surface and Coatings Technology, 2006,200: 4549-4556.
    
    [57] J.F. Li, H. Liao, et al. Improvement in wear resistance of plasma sprayed yttria stabilized zirconia coating using nanostructured powder[J]. Tribology International, 2004,37: 77-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700