用户名: 密码: 验证码:
冶金法提纯多晶硅过程中氮化硅涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无论是在太阳能电池行业还是半导体工业中,硅都是该领域中基础材料。由于铸造多晶硅成本低廉,目前已经取代单晶硅成为光伏市场的主要原料。多晶硅太阳能电池已经占据光伏市场的50%以上。冶金法是制备太阳能级多晶硅的一种新方法,具有成本低,污染小的优点,其制备过程中需要使用坩埚。工业中通常使用的坩埚是石英或石墨坩埚,熔融硅与坩埚接触时不可避免的产生反应粘连,同时坩埚中的杂质也会进入硅熔体中。高浓度的杂质,如C、O、Fe等将使少子寿命显著降低,影响电池性能。通常在坩埚上涂敷涂层使熔体与坩埚壁隔离,来减少反应粘连使铸锭顺利脱模,并阻止坩埚中的杂质在铸造过程中进入硅中。
     Si_3N_4由于其自扩散系数低,耐高温,化学稳定性好,通常被用来作为多晶硅铸造中的涂层材料。氮化硅涂层的制备方法很多,但通常工艺复杂,成本高。关于氮化硅涂层对多晶硅影响的研究也比较少。因此,有必要研究工艺简单成本较低的氮化硅涂层制备技术和氮化硅涂层与多晶硅性能之间的关系。本文利用扫描电镜,电子探针,少子寿命测试仪等设备,重点研究了氮化硅涂层的制备工艺与脱模效果的关系,熔炼过程中氮化硅涂层反应机制,氮化硅涂层对多晶硅中杂质、晶体结构和少子寿命的影响。
     研究结果表明:1、水,无水乙醇,PVA水溶液和PVP乙醇溶液与氮化硅粉组合可制备涂层,其中脱模效果最好的组成为:wt8%PVP乙醇溶液与60wt%Si_3N_4。不经过预处理去除PVA、PVP添加剂的氮化硅涂层更利于脱模。真空熔炼时使用惰性气体增大压强防止氮化硅涂层的分解,有利于脱模。2、温度升高氮化硅涂层的分解加剧,N扩散进入硅熔体达饱和形成新Si_3N_4晶核并长大,最终在接触面处形成由大颗粒Si_3N_4组成的连续层。3、氮化硅涂层使铸锭中杂质含量降低。氮化硅涂层能够阻止坩埚中杂质如C、O、P等进入Si熔体,同时Si_3N_4的分解和新Si_3N_4晶核的形成促进涂层附近的C、Fe、Ca杂质沉淀。SiC沉淀以Si_3N_4晶核为异质核心形成并长大。Fe杂质依附在氮化硅颗粒表面不饱和键或沉积在新Si_3N_4晶核缺陷处形成微米级FeSi_2颗粒。纳米级Fe和Ca沉积物在不均匀分布在涂层附近的SiC缺陷内。4、涂层和硅熔体内的Si_3N_4和SiC沉淀促进孪晶和非孪晶形成并阻碍晶界扩展,使晶粒细化。5、氮化硅涂层显著提高少子寿命。氮化硅涂层促进附近杂质沉淀导致铸锭距离边缘较近的位置杂质较少。同时引起晶粒细化抑制横向定向凝固,导致中心和边缘位置少子寿命高于它们之间的区域。
Silicon is one of the important fundamental materials in the modern semiconductor and solar cells industry.Currently,casting multicrystaUine silicon(mc-Si) has replaced monocrystalline silicon as the main photovoltaic materials due to its lower production cost.In the present mc-Si solar cells have occupied about two-third of the PV-market.Physical Metallurgical Method is a new method to fabricate solar grade mc-Si for its low cost and pollution.In the process of mc-Si purification by Physical Metallurgical Method,crucibles, typically graphite or quartz crucibles have been used as support of melting silicon.However, in the casting process,there are reaction adhesions on the interface of melting silicon and crucible.Moreover,high density of impurity,such as C,O,Fe,Ca,which plays a crucial role on the degradation of mc-Si solar cells performance,are usually incorporated through the contact of the melt with the crucible walls.Usually coating has been spayed on the crucible wall as release agent to avoid melting silicon contacting with the crucible wall directly, eventually decrease the reaction and impurity diffusion from crucible.
     High purity Si_3N_4 has been used as typical coating materials in the mc-Si casting process for its low self-diffusion coefficient,good high temperature resistance and chemical stability. There are kinds of methods to fabricate Si_3N_4 coating;however,most of them have high cost and complicated process.Meanwhile,at present there is less number of investigations about the effects of Si_3N_4 coating on the mc-Si performance.Therefore it is necessary to study low cost and uncomplicated method for Si_3N_4 coating and the relationships between Si_3N_4 coating and mc-Si performance.In this study,scanning electron microscope(SEM),electron probe microanalysis(EPMA),minority carrier lifetime meter and etc have been used to analyze the relationship between the releasing effect of Si_3N_4 coatings and technological parameters of the coatings,the reaction mechanism of Si_3N_4 in the casting process and the effect of Si_3N_4 coatings on the impurity,mc-Si crystalline structure and life time of minority carriers.
     The results are as follows:
     1.Four kinds of solutions,water,ethanol,PVA-water solution and PVP-ethanol solution were mixed with different ratios of Si_3N_4 powder to fabricate Si_3N_4 coatings.The Si_3N_4 coating fabricated by the 60wt%Si_3N_4 suspension liquid(8wt%PVP-ethanol solution mixed with Si_3N_4 powder) represent the best releasing molds.No pretreatment to remove PVA and PVP favor mold release Argon atmosphere decrease the decomposition of Si_3N_4 by increasing pressure then favor mold release.
     2.In the melting process,the dissolution of Si_3N_4 coating are constantly increasing with the increasing temperature and eventually continuous layer consisted by large Si_3N_4 particles forms on the interface of Si/Si_3N_4 with continuous diffusion of N from coatings into the melting silicon.
     3.Si_3N_4 coating can decrease impurity content in mc-Si.Si_3N_4 coating can prevent impurities in crucible diffusing into silicon as insulating layer and stimulate impurities(C,Fe, Ca) precipitating near the Si/Si_3N_4 interface.The new Si_3N_4 nucleus act as nucleation sites for the heterogeneous formation of SiC particles.The diffusion of Si_3N_4 and new Si_3N_4 nucleus provide microdefects for micron-size FeSi_2 particles precipitation between Si and Si_3N_4 crystalline boundaries in Si/Si_3N_4 mixed layer.Fe and Ca-rich nanoprecipitations have inhomogeneously precipitated in the new SiC microdefects in silicon phase.
     4.SiC and Si_3N_4 particles,near the coating and in the silicon ingots,stimulate formation of twin and untwined Si crystal,meanwhile they also prevent silicon grain boundary from extending,resulting in the grain refinement.
     5.Si_3N_4 coating have significantly increased the lifetime of minority carriers by decreasing impurity content.Impurity precipitating near the coating rather than diffusing into silicon further lead to declination of impurity content at the position next to the area near the coating in silicon ingots,and inhibit effect of directional solidification by promoting grain refinement.Therefore the lateral distribution of minority carriers' lifetime represent high near the edge and center area,and low in the area between edge and center area.
引文
[1]Green M A.Photovolatic principles[J].Physica E,2002,14:11-17.
    [2]Flamant G,Kurtcuoglu V,Murry J,et al.Purification of metallurgical grade silicon by a solar process[J].Solar Energy Materials and Solar Cells,2006,90:2099-2106.
    [3]Chapin D M,Fuller C S,Pearson G L.A new silicon p-n junction photocell for converting solar radiation into electrical Power[J].Appl.Phys,1954,25:676-677.
    [4]郭志球,沈辉,刘正,等.太阳电池研究进展[J].材料导报,2006,03:41-43。
    [5]Goetzberger A,Hebling C.Photovaltaic materials,past,present,future[J].Solar Energy Materials and Solar Cells,2000,62:1-19.
    [6]Kim D,Kim Y K.Characteristics of structural defects in the 240kg silicon ingot grown by directional solidification process[J].Solar energy materials & solar cells,2006,90:1666-1672.
    [7]Hamet J F,Abdelaoui R,Nouet G.Precipitation at grain boundaries in silicon[J].Materials Science and Engineering,1989,4:143-145.
    [8]邓志杰,郑安生。半导体材料[M].北京:化学工业出版社,2004.
    [9]梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,2(12):34-29.
    [10]Khattak C P,Joyee D B,Sehaid F.Production of Solar Grade(SoG) Silicon by Refining Liquid Metallurgical Grade(MG) Silicon[J].National Renewable Energy Laboratory,2001:8-12.
    [11]Takashi I,Masafumi M.Purification of metallurgical silicon for solar grade silicon by electron beam button melting[J].ISIJ international,1992,32(5):635-642.
    [12]Alemany Y,Delannoy C,Li K I.Plasma refining process to provide solar grade silicon[J].Solar Energy Materials & Solar Cells,2002,72:69-75.
    [13]Yuge N,Abe M,Hanazawa K,et al.Purification of metallurgical grade silicon up to solar grade[J].Progress in Photovoltaics,2001,9:203-209.
    [14]郑智雄.一种太阳能电池用高纯度硅及其生产方法.中国:02135841.9[P],2004.
    [15]Jorden R G.Electro-transport in solid metal system Contemp[J].Phys,1974,15(4):375-400.
    [16]Sakagueh Y,Ishizaki M,Kawahara T,et al.Production of high purity silicon by carbothermic reduction of silica using AC-arc furnace with heat shaft[J].ISIJ International,1992,32(5):643-649.
    [17]Morita K,Miki T.Thermodynamics of solar-grade-silicon refining[J].Intermetallics,2003,11:1111-1117.
    [18]#12
    [19]Wolf S D,Szlufcik J,Delannoy Y.Solar cells from upgrade metallurgical grade(UMG)and plasma purificed UMG multi-crystalline silicon substrates[J].Solar energy materials&solar cells,2002,72:49-58.
    [20]张文林,孙涛,李娟莹.电子束熔炼及其设备[J].冶金设备,2003,4(140):32-35.
    [21]Noriyoshi.Purification of silicon by directional solidification[J].Japan Inst Metals,1997,61(10):1094-1100.
    [22]雷永泉.二十一世纪新材料丛书:新能源材料[M].天津:天津大学出版社,2000:267.
    [23]阙端麟.硅材料科学与技术[M].杭州:浙江大学出版社,2000:465-471.
    [24]邓志安,郑安生.半导体材料[M].北京:化学工业出版社,2004:25-26.
    [25]H(a|¨) β ler C,H(o|¨)sf H U,Koch W,et al.Formation and annihilation of oxygen donors in multicrystalline silicon for solar cells[J].Materials Science and Engineering,2000B,71:39-46.
    [26]Werner M,Weber E R,MeHugo S,et al.Investigation microdefects in multicrystalline silicon for Photovoltaic applications[J].Diffusion and Defect Data Part B(Solid State Phenomena),1996,47-48:449-54.
    [27]林安中,王斯成.国内外太阳电池和光伏发电的进展与前景[J].太阳能学报,1999,特刊:68-74.
    [28]Karg D,Pensl G,Sehulz M,et al.Oxygen-Related Defect Centers inSolar Grade,Multicrystalline Silicon.A Resevoir of Lifetime killers[J].Phys.Stat.Sol.(b),2000:222-379.
    [29]Yatsurugi Y,Akiyama N,Endo Y,et al.Concentration,solubility,and equilibrium Distribution coefficient of nitrogen and oxygen in semiconductor silicon[J].Electrochemical Society,1974,120:975-979.
    [30]Newman R C.Light impurities and their interactions in silicon[J].Mater.Sci.&Eng.B,1996,36:1-12.
    [31]Wolf E,Schroder W,Rieffmann H,et al.The influences of carbon,hydrogen andNitrogen on the floating zone growth of four inch silicon crystals[J].Mater.Sci.&Eng.B,1996,36:209-212.
    [32]Gosele U.Current understanding of diffusion mechanisms in silicon[J].Mat.Rec.Soc.Symp.Proc.,1986,5-9:541-545.
    [33]Murin L,Markeveh Y P.Effect of carbon on thermal double donor formation in silicon[J].Mater Sci Forum,1995,196-200:1315-1320.
    [34]Kishore R,Pastol J.-L,Revel G.Growth and characterisation of polycrystalline silicon ingots doped with Cu,C,B or Al by directional solidification for photovoltaic application.Solar Energy Materials,1989,19:221-236.
    [35]吴亚萍.太阳能级多晶硅的冶金制备研究[D].大连:大连理工大学材料学院,2006.
    [36]Rizk R,Ihlal A,Pot-tier X.Evolution of electrical activity and structure of nickel Precipitates with the treatment temperature of a∑=25 silicon bicyrstal[J].Appl.Phys.,1995,77:1875-1880.
    [37]Istratov A A,Buonassisi T,McDonald R J,et al.Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length[J].Appl.phys.,2003,94:6552-6559.
    [38]MeHugo S A,Thompson A C,P(e|¨)riChaud I,et al.Direct correlation of transition metal impurities and minority carrier recombination in multicrystalline silicon[J].Appl.Phys.Lett.,1998,72:3482-3484.
    [39]张伟娜.冶金多晶硅的电学性能研究[D].大连:大连理工大学材料学院,2007.
    [40]Istratov A A,Buonassisi T,Picket MD,et al.Control of metal impurities in “dirty” multicrystalline silicon for solar eelIs[J].Materials Science and Engineering:2006,136:282-286.
    [41]Shen B,Sekiguchi T,Jablonski J,et al.Gettering of copper by bulk stacking faults and Punched-out dislocations in Czochralski-grown silicon[J].Appl.Phys.,1994,76:4540-4546.
    [42]Xi Z,Ynag D,Chen J,et al.Nickel precipitation in large-diameter Czochralski silicon[J].Physica B,2004,344:407-412.
    [43]Kittler M,eifert W,Stemmer M,et al.Interaction of iron with a grain boundary in boron-doped multieyrstalline siliconAppl[J].Phys.,1995,77:3725-3728.
    [44]Wijaranakula W.Iron precipitation at oxygen related bulk de-fects in Czochralski silicon[J].Appl.Phys.,1996,79:4450-4455.
    [45]Reiss J H,King R R,Mitchell K W.Characterization of diffusion length degradation in Czochralski silicon solar cells[J].Appl.Phys.Lett.,1996,68:3302-4.
    [46]Portier X,Ihlal A,Rizk R.Iron Silicide Formation by Precipitation in a Silicon Bicrystal[J].Phys.Status Solid A,1997,161:75-84.
    [47]Bailey J,Weber E R.Precipitation of iron in polycrystalline silicon.Phys.Status Solid A,1993,137:515-523.
    [48]Wijaranakula W.Iron precipitation at oxygen related bulk defects in Czochralski silicon[J].Appl.Phys.,1996,79:4450-4452.
    [49]Pizzini S,Snadrinelli A,Beghi M,et al.Influence of extended defects and native impurities on the electrical properties of directionally solidified polycrystalline silicon[J].Electrochem.Soc.,1988,135:155-165.
    [50]Palais 0,Yakimov E,Martinuzzi S,et al.Minority carrier lifetime scan maps applied to iron concentration mapping in silicon wafers[J].Materjals Seience and Engineering B,2002,91-92:216-219.
    [51]Kurobe K,Miura M,Hirano K,et al.Spatial distribution of minority-carrier lifetime and local concentration of impurities in multicyrstalline silicon solar cells[J].Solar Energy Materials&Solar Cells,2002,74:183-193.
    [52]袁勇,朱俊,万志翔.99.99%高纯硅坩埚的研制.中国陶瓷,2007,43(6):20-22.
    [53]Martin G,Frohberg.Thirty years of levitation melting calorimetry a balance [J].Thermochimica Acta,1999,337:7-17.
    [54]解文军,魏炳波.声悬浮研究进展[J].物理,2002,31(9):551-554.
    [55]Frost R T,Chang C W.Theory and Application of Electromagnetic Levitation[C]//Materials Processing in the Reduces Gravity Environment of Space,Proceedings of the Annual Meeting,Boston,MA,November 16-18,1981,New York and Amsterdam,North-Holland,1982:71-80.
    [56]李德林,毛协民,傅恒志.太阳能级硅的电磁悬浮熔炼[J].太阳能学报,1993,14(3):222-225.
    [57]Kaddah Nagy E L,Piwonka H.,et al.Induction Melting of Metals without a Crucible:US,No.5014769[P].1991,5,14.
    [58]温宏权,毛协民,张军,等.太阳能级硅的电磁约束感应熔炼[J].太阳能学报,1996,17(4):344-347.
    [59]冯瑞华,马廷灿,姜山,等.太阳能级多晶硅制备技术与工艺[J].新材料产业,2007,5:59-62.
    [60]韩至成.电磁冶金学[M].北京:冶金工业出版社,2001.
    [61]Arimichi M,Hisao F,Hideaki T,et al.Alloying titanium and tantalum by cold crucible levitation melting(CCLM) furnace[J].Materials Science and Engineering A,2000,280A:208-213.
    [62]FrancisDurand.Electromagnetic continuous pulling process compared to current casting processes with respect to solidification characteristics[J].Solar Energy Material &Solar Cells,2002,72:125-132.
    [63]Gilles D,Eric E,Luagier A,et al.Continuous solidification of Photovoltaic multicyrstalline silicon from an inductive cold crucible[J].Crystal Growth,1998193:230-240.
    [64]Perichuad I,Dour G,Dunard F,et al.Advantage of the cold crucible continuous casting for multicyrstalline silicon wafers and cell production[C].13th European Photovoltaic solar Energy Conf.,France:Nice,1995.
    [65]Saito T,Shimuar A,Ihcikawa S.A new directional solidification technique for polycrystalline solar grade silicon[C].Proc.15 th Photovoltaic Specialists Conference,1981:576-580.
    [66]Robert K Bernnemna.High Performance CDS Polycrystalline silicon:Challenges and Opportunities[J].Solar Energy Materials,1991,23:183-189.
    [67]杜光庭,周卫,侯悦.氮化硅涂层坩埚:中国,CN87206316[P].1987,12,30.
    [68]M·恩格勒,C·莱斯尼亚克,K·乌伊贝尔.含有氮化硅的耐久硬质涂层:中国,CN1955228[P].2006,10,20.
    [69]张军,尚羽,毛协民,等.太阳电池硅片ELCC技术用复合梯度涂层的研究[J].太阳能学报,1994,15(2):157-161.
    [70]Geun H L,Zin H L.Fabrication of Polycrystalline Si Wafer by Vacuum Casting and the Effect of Mold Coating Materials[J].Crystal Growth,2001,233(1):45-51.
    [71]Koji A,Eichiro O,Hitoshi S,et al.Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method[J].Crystal Growth,2007,308(1):5-9.
    [72]Istratov A A,Buonassisi T,Pickett M D,et al.Control of metal impurities in "dirty"multicrystalline silicon for solar cells[J].Material Science and Engineering B,2006,134(2-3):282-286.
    [73]Chaney R E,Varker C J.The Erosion of Materials in Molten Silicon[J].Electrochem.Soc.,1976,123(6):846-852.
    [74]Ravishankar P S.Liquid Encapsulated Bridgman(LEB) method for directional solidification of silicon using calcium chloride[J].Crystal Growth,1989,94(1):62-68.
    [75]Philip R C,Robert V J,Trenton N J.Preparation of reactive materials in a molten non-reactive lined crucible:US,No.2872299[P].1959-2-3.
    [76]Ciszek T F.The Capillary Action Shaping Technique and its Application[C].Grabmaier.J.Crystals-Growth,Properties,and Applications.Berlin:Springer-Verlag,1981:110-146.
    [77]Zhang F Y,Kusuhiro M.Effect of boron on the surface tension of molten silicon and its temperature coefficient[J].Journal of Colloid and Interface Science,2004,270:140-145.
    [78]Berkman,Samuel,Duffy,et al.Silicon Melting Crucible:US,No.4356152[P].1982-10-26.
    [79]Bauer E,Wei Y,Muller T,et al.Reactive crystal growth in two dimensions:Silicon nitride on Si(111)[J].Phys.Rev.B,1995,51:17891-17903.
    [80]Dufour G,Rochet F,Roulet H,et al.Contrasted behavior of Si(001)and Si(111)surfaces with respect to NH3 adsorption and thermal nitridation:a N 1s and Si 2p core level study with synchrotron radiation[J].Surf.Sci.,1994,304:33-37.
    [81]张蕾茗.化学分析法测定氮化硅中的物相[J].化学通报,1994,10:41-43.
    [82]崔进炜.二氧化硅和氮化硅薄膜的等离子汽相沉积与应用[J].半导体技术,2000,4:15-17.
    [83]唐厚舜,佘夕同.一种定向凝固生长太阳能电池用的多晶硅锭工艺:中国,CN1005625[P].1989,11,01.
    [84]崔英德,郭建维,易国斌,等.PVP的性能及其应用[J].广东化工,1999,26,(2):77-87.
    [85]杨德人.半导体硅材料[G].中国材料工程大典编委会.中国材料工程大典.北京:化学工业出版社,2006(15):36-37.
    [86]Murray J P,Flamant G,Roos C J.Silicon and Solar-grade Silicon Production by Solar Dissociation of Si_3N_4[J].Solar Energy,2006,80(10):1349-1354.
    [87]Guoping D,Lang Z,Pietro R,et al.Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon[J].Solar Energy Materials &Solar Cells,2007,91:1743-1748.
    [88]Buonassisia T,Istratova A A,Picketta M D,et al.Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon:Assessing the role of impurities in silicon nitride crucible lining material[J].Journal of Crystal Growth,2006,287:402-407.
    [89]戴永年,杨斌.有色金属材料的真空冶炼.北京:冶金工业出版社,2000.
    [90]Buonassisi T,Heuer M,Istratov A A,et al.Transition metal co-precipitation mechanisms in silicon[J].Acta Materialia,2007,55:6119-6126.
    [91]Jennings H M.Review on reactions between silicon and nitrogen[J].J.Mater.Sci.,1983,18:951-67.
    [92]Iguchi Y,Narushima T.Solubility of Oxygen,Nitrogen and Carbon in Liquid Silicon,the First International Conference on Processing Materials for Properties[C].United States:TMS,1993:437-440.
    [93]Yuan Z F,Mukai K.Effect of Boron on the Surface Tension of Molten Silicon and its Temperature Coefficient[J].Colloid and Interface Science,2004,270,1:140-145.
    [94]Schmid F,Khattak C P,Digges T G,L.Kaufman.Origin of SiC Impurities in Silicon Crystals Grown from the Melt in Vacuum.J.Electrochem.Soc.1979,126(1):935-938.
    [95]M.W.Chase,NIST.JANAF Thermochemical Tables[M].Woodbary,NY:American Institute of Physics,1998.
    [96]Heine V,Cheng C,Needs R J.The preference of silicon carbide for growth in the metastable cubic form[J].Am.Ceram.Soc.1991,74:2630-2663.
    [97]Bauer J,Breitenstein O,Rakotoniaina J P.Electronic activity of SiC precipitates in multicrystalline solar silicon[J].Phys.Star.Sol.,2007,204,(a):2190-2195.
    [98]Bauer J,Breitenstein O,Becker M,et al.Electrical investigations on SiC precipitates found in block-cast solar silicon,in Proceedings of the Seventh NREL Workshop on Crystalline Silicon Solar Cells and Modules:Materials and Processes[C],Vail,USA,2007:233-236.
    [99]Nahm K S,Kim K C,.Lim K Y.Growth and characterization of SiC/SiNx/Si structures[J].Electrochem.Soc.,1998,148:G132.
    [100]C.V.Hari Rao,H.E.Bates,K.V.Ravi,Electrical Effects of SiC Inclusions in EFG Silicon Ribbon Solar Cells[J].J.Appl.Phys.1976,47:2614-2620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700