用户名: 密码: 验证码:
主动磁力轴承的嵌入式控制系统设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动磁力轴承(简称磁力轴承)是利用可控的电磁力将转子稳定地悬浮在空中,实现转子和定子之间无机械接触的一种新型的高性能轴承。由于其具有无磨损、无需润滑、寿命长、能耗低、振动和噪声小等传统轴承无法比拟的优点,在航空航天、能源、交通、超高速精密加工等领域有着广阔的应用前景。控制系统是磁力轴承系统的重要组成部分,其性能的好坏直接影响磁力轴承系统的性能。本文对磁力轴承控制系统的硬件和控制算法做了研究与实验,主要工作如下:
     首先,在分析了磁力轴承嵌入式控制系统的硬件响应速度和精度的基础上,根据磁力轴承控制系统的需要,本文设计了以单片TMS320LF2407A DSP为核心控制器的高性能控制平台,集成了多通道高速同步A/D采样模块、高速D/A模块、多种数据通信接口和实时数据显示等模块,本设计提高了磁力轴承系统的集成度和可靠性,降低了系统的成本。
     其次,为解决传统两电平功率放大器的动态性能的提高、电流纹波的减小和开关损耗的减小三者之间的矛盾,本文研究并设计了最大容量为1860VA(310V~*6A)的三电平滞环—最小脉宽功率放大器。实验结果表明该功率放大器可以较好地克服两电平功率放大器的缺点,并具有优良的静态和动态性能。
     最后,针对传统PID控制算法的局限性和实际磁力轴承的非线性特性,本文进行了基于模式识别的控制算法研究与仿真分析,仿真结果表明该算法可以补偿磁力轴承的非线性,并在保证转子稳定的前提下提高轴承刚度。
     本文的研究对磁力轴承系统的集成化技术有一定的意义。
Active magnetic bearing (AMB) is a kind of novel high-performance bearing, in which rotor can be suspended stably by controllable magnetic force and realize contact-free property between rotor and stator. Due to its advantages of no friction,no lubrication, longevity, low energy consumption, low vibration and noise and so on, it is much better than traditional bearing and has vast and promising applications in following fields: aerospace, energy, transportation, super-high speed and high precision manufacturing, etc. The control system is an important part of AMB system and influences its performance. This paper makes some research and experiment of hardware design and control algorithm for AMB control system.The main works are as follows:
     First,according to the needs of control system for AMB,and on the base of the analysis of response speed and precision of conrtol system for AMB embedded control system.This research designed a high-performance control platform based on a single DSP:TMS320LF2407A.It integrated multi-channel high-speed synchronous A/D module,high-speed D/A module,versatile communication interfaces and real time data displayer module.This design increases the integration and reliability of system,and reduces the cost.
     Second,a power amplifier called three-level Hysteresis-MPW(Minimum Pulse Width) with the maximum capacity of 1860VA(310V*6A) is researched and designed to overcome the contradiction of improvement of dynamic performance, reduction of current ripple and reduction of switching power losses of two-level power amplifier. The experimentation results demonstrate that it can overcome the drawbacks of two-level power amplifier and has good steady and dynamic performance.
     Finally,a control algorithm based on pattern recognition is researched in this paper aiming to the limits of PID and nonlinear characteristic of real AMB, the simulation results of this algorithm prove that it can compensate the nonlinearity of AMB and also improves the stiffness of bearing on the base of rotor's stability.
     This research has a contribution to integration technology of AMB system.
引文
[1] Levitronix公司网站主页:http://www.1evitronix.com/
    [2] SKF公司网站主页:http://www.revolve.com/
    [3] synchrony公司网站主页:http://www.synchmny.com/
    [4] 张德魁,赵雷,赵鸿滨,等.磁悬浮轴承内圆磨床电主轴及其控制.轴承,2000.11:11~13
    [5] 杨作兴,赵雷,赵鸿滨.磁轴承MPW开关功率放大器的研究.电力电子技术,2000.5:23~25
    [6] 韩邦成,李也凡,贾宏光,等.电磁轴承控制系统研究综述.机床与液压,2004.14:1~3
    [7] 施阳,周凯,严卫生,等.主动磁悬浮轴承控制技术综述.机械科学与技术,1998.17(4):580~582
    [8] 蒋启龙,连级三.电磁轴承及其应用研究综述.重庆大学学报,2004.27(7):146~151
    [9] Bleuler. H, Gahler. C, Herzog. R, Larsonneur. R, Mizuno. T, Siegwart. R, Woo. S. J. Application of Digital Signal Processors for Industrial Magnetic Bearings, IEEE Trans. Control Syst. Technol, 1994. 280~289
    [10] MECOS公司网站主页:http://www.mecos.ch/
    [11] Zhang Jing, Karrer N. !GBT power amplifiers for active magnetic bearings of high speed milling spindles[A]. IECON Proceedings[C]. 1995. 596~601
    [12] Zhang J, Schulze J O, Barletta N. Sychronous Three-level PWM Power Amplifier for Active Magnetic Bearings[A]. Proceedings of the 5th International Symposium on Magnetic Bearings, Kanazawa, Japan[C], 1996. 277~282
    [13] 李冰,邓智泉,严仰光.磁轴承二态开关功率放大器的电流模式控制.电力电子技术,2003.37(4):52~55
    [14] 陶永华.新型PID控制及其应用(第2版).北京:机械工业出版社,2005.33~70
    [15] Larsonneur R., Buhler P., Richard P.: Active Magnetic Bearings and Motor Drive Towards Integration. Proceeding of the 8th International Symposium on Magnetic Bearings(ISMB-8), Mito, Japan, August 26-28, 2002. 187~192
    [16] 施韦策,布鲁勒,特拉克斯勒.土动磁轴承基础、性能及应用(虞烈,袁崇军译).北京:新时代出版社,1997.24~72
    [17] 赵雷,刘晋春,张士义.可控磁悬浮轴承刚度的提高与大范围稳定性.组合机床与自动化加工技术,1996.7:24~27
    [18] Sung-Kyung Hong, Reza Langari. Robust Fuzzy Control of a Magnetic Bearing System Subject to Harmonic Disturbances IEEE Transactions on Control Systems Technology, Vol. 8, No. 2, March 2000. 366~371
    [19] R. Larsonneur. Design and Control of Active Magnetic Beatings Systems for High Speed Rotation. PhD thesis, Eidgenossische Technische Hochschule Ziirich, 1990
    [20] 张雄伟,陈亮,徐光辉.DSP芯片的原理与开发应用(第三版).北京:电子工业出版社,2003.173~227
    [21] 刘和平 编著.TMS320LF240X DSP结构、原理及应用.北京:北京航空航天大学出版社,2002.74~82
    [22] 江思敏.TMS320LF240X DSP硬件开发教程.北京:机械工业出版社,2003.2~15
    [23] 清源科技 编著.TMS320LF240X DSP应用程序设计教程.北京:机械工业出版社,2003.60~120
    [24] 张德魁,赵雷,赵鸿宾.电流响应速度及力响应速度对磁轴承系统性能的影响.清华大学学报(自然科学版),2001.6:23~26
    [25] Keith F J. Switching Amplifier Design for Magnetic Bearings[A]. Proceeding of the 2nd International Symposium on Magnetic Bearings, Tokoyo[C], 1990. 211~218
    [26] 陈增禄,任记达,王兆安,等.新型双重△调制电流跟踪控制方法的研究.电网技术,2005.29(12):62~65
    [27] (捷)本达,(英)戈沃,(英)格兰特.功率半导体器件—理论及应用(吴郁,张万荣,刘兴明译).北京:化学工业出版社,2005.221~340
    [28] 王兆安.电力电子变流技术(第3版).北京:机械工业出版社,2004.170~230
    [29] 李正中,孙德刚.高压浮动MOSFET栅极驱动技术.通信电源技术,2003.3:37~40
    [30] 李士勇.模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,2004.250~340
    [31] 汪希平.电磁轴承系统的刚度阻尼特性分析.应用力学学报,1997.14(3):95~100
    [32] 高志华,胡业发.磁力轴承刚度阻尼特性研究.中国制造业信息化,2005.34(2):130~132
    [33] 李新生,杨作兴,赵雷,等.磁轴承磨床电主轴全局线性化研究.机械工程学报,2002.38(10):122~126
    [34] (美)Jean-Jacques Slotine,Weiping Li.应用非线性控制(程代展译).北京:机械工业出版社,2006.2~32
    [35] 边肇祺,张学工,等编著.模式识别(第二版).北京:清华大学出版社,2000.2~25
    [36] 徐志良,程春法.基于模式识别的数字伺服系统智能PID控制.电气传动,2002.5:23~26
    [37] Ronald. D. Williams, F. Joseph Keith, Paul. E. Allaire. Digital Control of Active Magnetic Bearings. IEEE Transactions on Industrial Electronics, Vol. 31, No. I, February 1990. 19~27
    [38] 薛定宇.控制系统计算机辅助设计-MATLAB语言与应用(第2版).北京:清华大学出版社,2006.120~450
    [39] 刘金馄.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.1~45
    [40] Chao Bi, Dezheng Wu, Quan Jiang, and Zhejie Liu. Automatic Learning Control for Unbalance Compensation in Active Magnetic Bearings. IEEE Transactions on Magnetics, Vol. 41, No. 7, July 2005. 22~25
    [41] Wojciech Grega, Adam Pilat. Comparison of Linear Control Methods for an AMB System. Int. J. Appl. Math. Comput. Sci., Vol. 15, No. 2, 2005. 245~255
    [42] Alexander Lanzon, Panagiotis Tsiotras. A combined application of H8 loop-shaping and μ-synthesis to control high speed flywheels. IEEE Transactions on Magnetics. Vol. 13, No. 5, 2005. 766~777
    [43] Shyh-Leh Chen, Sung-Hua Chen, Shi-Teng Yan. Experimental Validation of a Current-Controlled Three-Pole Magnetic Rotor-Bearing System. IEEE Transactions on Magnetics, Vol. 41, No. 1, January 2005. 99~110
    [44] Bostjan Polaj er. Design and Analysis of an Active MagneticBearing Experimental System. PhD thesis, University of Maribor Faculty of Electrical Engineering and Computer Science, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700