用户名: 密码: 验证码:
太阳能电化学转化与储存中若干新型电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石能源在地球的储量有限而且其使用伴随温室效应等环境问题,利用可再生能源发电成为迫切需要。太阳能是总量巨大的清洁能源,太阳能发电被寄望在未来满足相当部分世界能源需求。在光伏技术中,新型太阳能电池如染料敏化太阳能电池因为制作工艺要求较低而光电转化效率相对较高而受到关注。目前高效敏化电池主要基于钌配合物,而纯有机染料的使用可以避免对贵金属资源的依赖,所需解决的是效率问题。另一方面,太阳能是间歇性能源,其不稳定性决定了其将来接入电网离不开高效的电蓄能系统。在现有的电化学储能技术中,锂二次电池具有突出的高能量密度,但电极材料成本有待降低;工作原理相似的镁二次电池的理论能量密度仅次于前者,且具有潜在的成本优势,但目前能量密度受制于正极材料。
     本文针对高效低成本的太阳能电化学转化与储存,围绕有机染料敏化太阳能电池、有机锂二次电池和镁二次电池等三种潜在廉价的电池技术,对其中若干新型电极材料的设计进行了研究,主要内容和结果包括:
     (1)太阳能电池的光电转化效率由短路电流、开路电压(V_(OC))和填充因子决定。通过纯有机染料的分子设计提高光电流已有较多进展,而分子结构对V_(OC)的影响则研究较少。为了研究有机染料分子结构和染料敏化太阳能电池V_(OC)的关系,设计合成并比较了一系列三苯胺基有机光敏染料。对V_(OC)的变化原因从TiO_2导带带边的移动和界面电荷复合两方面进行了探讨。第一,考察了吸附模式的影响。以氰基丙烯酸为吸附基团的两个染料(TC染料)采取直立吸附模式;相比起以躺卧模式吸附的以绕丹宁-3-乙酸为吸附基的TR染料,前者能在TiO_2表面施加更大的偶极电势,会直接提高V_(OC)。TR染料因为表面阻挡效率低且与I_3~-的结合物与TiO_2表面更接近而会引起比TC染料更多的电子复合。第二,借助含N-烷基吲哚鎓电子受体结构的TI染料探讨了基于有机离子型染料的敏化电池通常V_(OC)较低的原因。发现TI染料因为导致界面电荷复合加剧和TiO_2导带正移而使V_(OC)比非离子型染料低。实验和理论分析表明离子型染料分子中独特的电荷分布形式不利于高效染料的构筑。第三,在三苯胺染料中引入3,4-丙撑基二氧噻吩共轭桥能同时改善光谱吸收、抑制染料聚集和显著缓解电荷复合。合成的OR染料取得了高达800mV的V_(OC)值,显示了其三维枝化结构对分子的有效自钝化作用。
     (2)有机羰基化合物是潜在低成本和高能量密度的锂二次电池正极材料,但目前系统的设计原则尚未确立,因此成为本论文的研究对象之一。首先通过向大共轭体系插入前芳香性的1,2-二羰基结构,设计并合成了一系列分子基羰基正极材料,它们同时具备了所有已知的稳定因素,能发生多达四电子还原。其中两个新的羰基电极化合物芘-4,5,9,10-四酮和1,10-菲啰啉-5,6-二酮分别展现了360mA h g~(-1)的可逆容量和2.74V的平均工作电压,为设计高能有机电极材料用于能量储存提供了思路。理论模拟显示,分子轨道图样和能级能量可应用于羰基利用率的预测和氧化还原电位的调节。在此基础上进一步系统研究了芳香杂环基团对有机电极材料电池性能的影响。另一方面,向锂二次电池中的羰基正极材料分子中引入芳杂环结构能同时提高质量比容量、工作电压、倍率性能和循环性能。其中苯并呋喃[5,6-b]呋喃-4,8-二酮取得了539W h kg~(-1)的能量密度、3278W kg~(-1)的功率密度和100次充放电循环后86%的容量保持。结果表明,跟其它有机功能电子器件材料一样,芳香杂环结构修饰是提高有机电极性能的有效手段。
     (3)层状硫属化合物是典型的离子嵌入材料,但目前在镁二次电池的表现差强人意,同时镁负极在一些电解液体系中的钝化也限制了电池性能。本论文以纳米技术为依托,在溶剂热条件下合成了高度剥离、平均厚度小于4层的石墨烯状二硫化钼(G-MoS_2),并通过离子液体辅助的溶液还原法合成了平均粒径为2.5nm的超细纳米镁颗粒(N-Mg)。这两种新型纳米材料展示了比相应的微米级材料远为优异的电化学性能。分别以G-MoS_2和N-Mg为正负极组装的镁二次电池取得了高达1.8V的工作电压和170mAh g~(-1)的可逆比容量,50次充放电循环后容量仍保持95%。借助理论模拟初步研究了G-MoS_2的储镁机制并解释了其性能优于块体二硫化钼的原因。突出的电池性能使得G-MoS_2N-Mg成为最成功的镁二次电池构型之一,表明合理的电极材料形貌调控将是设计高效镁二次电池的有效途径。
The limited resource and environment issues related to fossil fuels haveprompted the power generation by renewable energies. Solar energy is clean andinfinite, and solar electricity is expected to meet a considerable portion of globalpower desire. Among photovoltaic technologies, new-generation inexpensive onessuch as dye-sensitized solar cells (DSCs) have aroused world-wide research interests.While current high-efficiency DSCs are predominantly based on Ru complexes, pureorganic DSCs have provided noble metal-free alternatives with their efficienciespending for improvement. On the other hand, solar energy is known as intermittentand its non-stability has placed enormous demands on the grid system. Efficientenergy storage system is necessary for the future power generation from renewableenergies into the grid. Rechargeable lithium batteries, with their outstanding energydensities, are attractive candidates for such applications given that lower costs ofelectrode materials could be realized.
     Towards cost-effective solar electrochemical conversion and storage, thisdissertation has dealt with three potentially low-cost electrochemical technologiesincluding DSCs, organic rechargeable lithium batteries and rechargeable magnesiumbatteries, with particular focus on the design of novel electrode materials. The mainresults and conclusions include
     (1) The efficiency of a solar cell depends on short-circuit density, open-circuitvoltage (V_(OC)), and fill factor. While accomplishments have been made by moleculardesign of organic dyes to increase short-circuit densities of DSCs, studies on V_(OC)areby far less. In order to study the relationship between molecular structure of organicdyes and the V_(OC)of DSCs, a series of triphenylamine-based organic sensitizers wereengineered and compared. The origin of V_(OC)variance was exmined in terms ofband-edge movement of TiO_2conduction band (CB) and interfacial chargerecombination. Firstly, the influence of adsorption behavior was investigated. Thetwo dyes with cyanoacrylic acid as anchoring group (TC-dyes) adopt a standing adsorption mode and exert larger surface dipole potential on TiO_2than theircounterparts bearing rhodanine-3-acetic acid (TR-dyes) which lie along the surface.TR-dyes exhibit greater extent of charge recombination than TC-dyes because of thelow surface-blocking efficiency of the dye layer and the intimacy between theI_3~-bound dyes and TiO_2. Secondly, two ionic dyes (TI dyes) featuring a1,1-diphenylvinyl auxiliary electron donor and N-alkyl indolium carboxylic acidacceptors have been synthesized to investigate the generally low V_(OC)values DSCsbased on organic ionic dyes. TI dyes have shown much lower V_(OC)values than that ofnon-ionic ones, suffering from serious interfacial charge recombination anddownward shift of the TiO_2CB. Through combined experimental and computationalanalysis, it was concluded that the electronic distribution over ionic dye molecules isintrinsically not ideal for the construction of efficient sensitizers. Thirdly, introductionof rationally modified3,4-propylenedioxythiophene units into triphenylamine dyeswas found to enhance light capturing, suppress dye aggregation, and remarkablyretard charge recombination in dye-sensitized solar cells. V_(OC)values for these dyes(~800mV) are much higher than that for a thiophene congener (720mV) undersimilar conditions, as a result of self-passivation benefited from theirthree-dimensional branched structures.
     (2) Organic carbonyl compounds are potentially low-cost andhigh-energy-density cathode materials for rechargeable lithium batteries, generaldesign rules of which are not yet established. By embedding pre-aromatic1,2-dicarbonyl moieties into extended conjugated systems, a series of organiccarbonyl-based molecular cathode materials integrating all known stabilizing factorsand enabling up to four-electron reduction were designed and synthesized.Remarkably, two new carbonyl electrodes, pyrene-4,5,9,10-tetraone and1,10-phenanthroline-5,6-dione, have delivered a reversible capacity of360mA h g~(-1)and an average working potential of2.74V, respectively, providing insights indesigning high-energy organic positive electrodes for energy storage. Theoreticalmodeling revealed that molecular orbital profiles and energetics can be applied for theprediction of carbonyl utilization and modulation of redox potentials. The influenceof heteroaromatic building blocks on the electrochemical behavior of organic electrode materials was further demonstrated in a systematic way. The structuralincorporation of heteroaromatics improves the cell performance of carbonyl-basedmolecular cathode materials in rechargeable lithium batteries in terms of specificgravimetric capacity, working potential, rate capability, and cyclability. In particular,benzofuro[5,6-b]furan-4,8-dione has achieved an energy density of up to539W hkg~(-1), a power density of up to3278W kg~(-1), and a capacity retention of86%after100discharge charge cycles. Functionalization with heteroaromatic structures, in parallelto various families of organic functional electronic materials, are therefore recognizedas a versatile strategy to improve the performance of organic electrodes.
     (3) Layered chalcogenides are typical ion intercalation material but so faroperate moderately in rechargeable magnesium batteries. The passivation of metallicmagnesium in some electrolyte systems has also restricted the battery performance.With the advent of nanoengineering, highly exfoliated graphene-like MoS_2(G-MoS_2)was synthesized via solvo-thermal conditions with an average layer number of≤4,and ultrasmall magnesium nanoparticles (N-Mg) with an average diameter of2.5nmwere prepared through ionic liquid-assisted reduction. These two novel nanomaterialsshow significantly superior electrochemical performance to their micro-structuredcounterparts. Rechargeable magnesium batteries with G-MoS_2as cathode and N-Mgas anode were fabricated, showing a high working potential of1.8V and a reversiblespecific capacity of170mA h g~(-1), of which95%was preserved after50discharge charge cycles. The magnesium storage mechanism was preliminarilystudied by theoretical modeling, which explains the enhanced capacity of G-MoS_2over bulk MoS_2. These results highlight the G-MoS_2N-Mg combination as one ofthe most successful configurations for rechargeable magnesium batteries, and suggestthat rational morphological design of electrode materials should be a promisingpathway towards high performance magnesium batteries.
引文
[1] BP statistical review of world energy2009. http://www.bp.com.
    [2] International energy outlook2009. http://www.eia.doe.gov/oiaf/ieo/pdf/0484(2009).pdf.
    [3] Smalley R E. Future global energy prosperity: The terawatt challenge. MRS Bull.,2005,30:412-417
    [4] Agency I E. Key World Energy Statistics, Paris: International Energy Agency,2006
    [5] Toledo O M, Oliveira Filho D, Diniz A S A C. Distributed photovoltaic generation andenergy storage systems: A review. Renew. Sust. Energy Rev.2010,14:506-511
    [6] Renewables in global energy supply2007-An IEA fact sheet.http://www.iea.org/textbase/papers/2006/renewable_factsheet.pdf.
    [7] Yang Z, Liu J, Baskaran S, et al. Enabling renewable energy—and the future grid—withadvanced electricity storage. JOM,2010,62:14-23
    [8] Chapin D M, Fuller C S, Pearson G L. A new silicon p‐n junction photocell forconverting solar radiation into electrical power. J. Appl. Phys.,1954,25:676-677
    [9] Goetzberger A, Luther J, Willeke G. Solar cells: past, present, future. Sol. Energy Mater.Sol. Cells,2002,74:1-11
    [10] Carlson D E, Wronski C R. Amorphous silicon solar cell. Appl. Phys. Lett.,1976,28:671-673
    [11] Staebler D L, Wronski C R. Reversible conductivity changes in discharge-producedamorphous Si. Appl. Phys. Lett.,1977,31:292-294
    [12] Hinuma T, Kasai H, Tanimoto H, et al. Light-induced anelastic change in a-Si(H).Materials Science and Engineering: A,2006,442:302-306
    [13] Photovoltaic solar energy generation.http://www.springer.com/physics/optics/book/978-3-540-23676-4.
    [14] Bosi M, Pelosi C. The potential of III-V semiconductors as terrestrial photovoltaic devices.Prog. Photovolt: Res. Appl.,2007,15:51-68
    [15] Li G, Zhu R, Yang Y. Polymer solar cells. Nat. Photon.,2012,6:153-161
    [16] Goncalves L M, de Zea Bermudez V, Ribeiro H A, et al. Dye-sensitized solar cells: A safebet for the future. Energy Environ. Sci.,2008,1:655-667
    [17] National Center for Photovoltaics at National Renewable Energy Laboratory: Research cellefficiency records. http://www.nrel.gov/ncpv/.
    [18] Chen H, Cong T N, Yang W, et al. Progress in electrical energy storage system: A criticalreview. Prog. Natural Sci.,2009,19:291-312
    [19] O'Regan B C, Gr tzel M. A low-cost, high efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature,1991,353:737-740
    [20] Gr tzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem.,2005,44:6841-6851
    [21] Halme J, Vahermaa P, Miettunen K, et al. Device physics of dye solar cells. Adv. Mater.,2010,22: E210-E234
    [22] Nazeeruddin M K, Zakeeruddin S M, Humphry-Baker R, et al. Acid base equilibria of(2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) complexes and the effect of protonationon charge-transfer sensitization of nanocrystalline titania. Inorg. Chem.,1999,38:6298-6305
    [23] Chen C-Y, Wang M, Li J-Y, et al. Highly efficient light-harvesting ruthenium sensitizer forthin-film dye-sensitized solar cells. ACS Nano,2009,3:3103-3109
    [24] Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2filmwith high molar extinction coefficient ruthenium sensitizers for high performancedye-sensitized solar cells. J. Am. Chem. Soc.,2008,130:10720-10728
    [25] Bessho T, Yoneda E, Yum J H, et al. New paradigm in molecular engineering of sensitizersfor solar cell applications. J. Am. Chem. Soc.,2009,131:5930-5934
    [26] Wu K-L, Hsu H-C, Chen K, et al. Development of thiocyanate-free, charge-neutral Ru(II)sensitizers for dye-sensitized solar cells. Chem. Commun.,2010,46:5124-5126
    [27] Chou C-C, Wu K-L, Chi Y, et al. Ruthenium(II) sensitizers with heteroleptic tridentatechelates for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,50:2054-2058
    [28] Yella A, Lee H-W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt(II/III)-based redox electrolyte exceed12percent efficiency. Science,2011,334:629-634
    [29] Wang C-L, Chang Y-C, Lan C-M, et al. Enhanced light harvesting with π-conjugated cyclicaromatic hydrocarbons for porphyrin-sensitized solar cells. Energy Environ. Sci.,2011,4:1788-1795
    [30] Bessho T, Zakeeruddin S M, Yeh C-Y, et al. Highly efficient mesoscopic dye-sensitizedsolar cells based on donor–acceptor-substituted porphyrins. Angew. Chem. Int. Ed.,2010,49:6646-6649
    [31] Mishra A, Fischer M K R, Bauerle P. Metal-free organic dyes for dye-sensitized solar cells:from structure: property relationships to design rules. Angew. Chem. Int. Ed.,2009,48:2474-2499
    [32] Xu M, Zhou D, Cai N, et al. Electrical and photophysical analyses on the impacts ofarylamine electron donors in cyclopentadithiophene dye-sensitized solar cells. EnergyEnviron. Sci.,2011,4:4735-4742
    [33] Paek S, Choi H, Kim C, et al. Efficient and stable panchromatic squaraine dyes fordye-sensitized solar cells. Chem. Commun.,2011,47:2874-2876
    [34] Ito S, Miura H, Uchida S, et al. High-conversion-efficiency organic dye-sensitized solarcells with a novel indoline dye. Chem. Commun.,2008:5194-5196
    [35] Franco S, Garín J, Martínez de Baroja N, et al. New D π A conjugated organic sensitizersbased on4H-pyran-4-ylidene donors for highly efficient dye-sensitized solar cells. Org.Lett.,2012,14:752-755
    [36] Yang H-Y, Yen Y-S, Hsu Y-C, et al. Organic dyes incorporating thedithieno[3,2-b:2',3'-d]thiophene moiety for efficient dye-sensitized solar cells. Org. Lett.,2009,12:16-19
    [37] Hara K, Sato T, Katoh R, et al. Novel conjugated organic dyes for efficient dye-sensitizedsolar cells. Adv. Funct. Mater.,2005,15:246-252
    [38] Zeng W, Cao Y, Bai Y, et al. Efficient dye-sensitized solar cells with an organicphotosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosiloleblocks. Chem. Mater.,2010,22:1915-1925
    [39] Ooyama Y, Inoue S, Nagano T, et al. Dye-sensitized solar cells based on donoracceptorπ-conjugated fluorescent dyes with a pyridine ring as an electron-withdrawing anchoringgroup. Angew. Chem. Int. Ed.,2011,50:7429-7433
    [40] Lin J T, Chen P C, Yen Y S, et al. Organic dyes containing furan moiety forhigh-performance dye-sensitized solar cells. Org. Lett.,2009,11:97-100
    [41] Velusamy M, Justin Thomas K R, Lin J T, et al. Organic dyes incorporating low-band-gapchromophores for dye-sensitized solar cells. Org. Lett.,2005,7:1899-1902
    [42] Cui Y, Wu Y, Lu X, et al. Incorporating benzotriazole moiety to construct D A π Aorganic sensitizers for solar cells: significant enhancement of open-circuit photovoltagewith long alkyl group. Chem. Mater.,2011,23:4394-4401
    [43] Chang D W, Lee H J, Kim J H, et al. Novel quinoxaline-based organic sensitizers fordye-sensitized solar cells. Org. Lett.,2011,13:3880-3883
    [44] He J, Wu W, Hua J, et al. Bithiazole-bridged dyes for dye-sensitized solar cells with highopen circuit voltage performance. J. Mater. Chem.,2011,21:6054-6062
    [45] Lin L-Y, Tsai C-H, Wong K-T, et al. Efficient organic DSSC sensitizers bearing anelectron-deficient pyrimidine as an effective π-spacer. J. Mater. Chem.,2011,21:5950-5958
    [46] Qu S, Wu W, Hua J, et al. New diketopyrrolopyrrole (DPP) dyes for efficientdye-sensitized solar cells. J. Phys. Chem. C,2009,114:1343-1349
    [47] Li R, Lv X, Shi D, et al. Dye-sensitized solar cells based on organic sensitizers withdifferent conjugated linkers: Furan, bifuran, thiophene, bithiophene, selenophene, andbiselenophene. J. Phys. Chem. C,2009,113:7469-7479
    [48] Chen Y, Zeng Z, Li C, et al. Highly efficient co-sensitization of nanocrystalline TiO2electrodes with plural organic dyes. New J. Chem.,2005,29:773-776
    [49] Hao Y, Yang X C, Cong J Y, et al. Efficient near infrared D π A sensitizers with lateralanchoring group for dye-sensitized solar cells. Chem. Commun.,2009:4031-4033
    [50] Ito S, Zakeeruddin S M, Humphry-Baker R, et al. High-efficiency organic-dye-sensitizedsolar cells controlled by nanocrystalline-TiO2electrode thickness. Adv. Mater.,2006,18:1202-1205
    [51] Armand M, Tarascon J M. Building better batteries. Nature,2008,451:652-657
    [52] Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries. Adv. Mater.,2011,23:1695-1715
    [53] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for greengrid. Chem. Rev.,2011,111:3577-3613
    [54] Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery ofchoices. Science,2011,334:928-935
    [55] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater.,2010,22:587-603
    [56] Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ionbatteries: a review. Energy Environ. Sci.,2011,4:3243-3262
    [57] Whittingham M S. Lithium batteries and cathode materials. Chem. Rev.,2004,104:4271-4302
    [58] Chen J, Cheng F Y. Combination of light weight elements and nanostructured materials forbatteries. Acc. Chem. Res.,2009,42:713-723
    [59] Ji X, Nazar L F. Advances in Li-S batteries. J. Mater. Chem.,2010,20:9821-9826
    [60] Bruce P G, Freunberger S A, Hardwick L J, et al. Li O2and Li S batteries with highenergy storage. Nat. Mater.,2012,11:19-29
    [61] Lee J-S, Tai Kim S, Cao R, et al. Metal–air batteries with high energy density: Li–airversus Zn–air. Adv. Energy Mater.,2011,1:34-50
    [62] Fukuda M.高エネルギーをめざした有機電解質-リチウム電池. Electrochemistry,1973,41:593-601
    [63] Novák P, Müller K, Santhanam K S V, et al. Electrochemically active polymers forrechargeable batteries. Chem. Rev.,1997,97:207-282
    [64] Liu M, Visco S J, Jonghe L C D. Novel solid redox polymerization electrodes. J.Electrochem. Soc.,1991,138:1891-1895
    [65] Oyama N, Tatsuma T, Sato T, et al. Dimercaptan-polyaniline composite electrodes forlithium batteries with high energy density. Nature,1995,373
    [66] Visco S J, Liu M, Jonghe L C D. Ambient temperature high-rate lithium/organosulfurbatteries. J. Electrochem. Soc.,1990,137:1191-1192
    [67] Naoi K, Kawase K-I, Mori M, et al. Electrochemistry of poly(2,2'-dithiodianiline): A newclass of high energy conducting polymer interconnected with S S bonds. J. Electrochem.Soc.,1997,144: L173-L175
    [68] Li J, Zhan H, Zhou L, et al. Aniline-based polyorganodisulfide redox system of high energyfor secondary lithium batteries. Electrochem. Commun.,2004,6:515-519
    [69] Li Y, Zhan H, Kong L, et al. Electrochemical properties of PABTH as cathode materials forrechargeable lithium battery. Electrochem. Commun.,2007,9:1217-1221
    [70] Yu X-G, Xie J-Y, Yang J, et al. Lithium storage in conductive sulfur-containing polymers. J.Electroanal. Chem.,2004,573:121-128
    [71] Zhang S-C, Zhang L, Wang W-K, et al. A Novel cathode material based on polyanilineused for lithium/sulfur secondary battery. Synth. Met.,2010,160:2041-2044
    [72] Zhang J Y, Kong L B, Zhan L Z, et al. Sulfides organic polymer: Novel cathode activematerial for rechargeable lithium batteries. J. Power Sources,2007,168:278-281
    [73] Tang J, Song Z-P, Shan N, et al. Poly[3,4-(ethylenedithio)thiophene]: High specificcapacity cathode active material for lithium rechargeable batteries. J. Power Sources,2008,185:1434-1438
    [74] Zhang J, Kong L, Zhan L, et al. Aliphatic thioether polymers as novel cathode activematerials for rechargeable lithium battery. Electrochem. Commun.,2008,10:1551-1554
    [75] Zhang J, Song Z, Zhan L, et al. Poly(ethene-1,1,2,2-tetrathiol): Novel cathode materialwith high specific capacity for rechargeable lithium batteries. J. Power Sources,2009,186:496-499
    [76] Sarukawa T, Oyama N. Electrochemical activity of sulfur-linked tetrathionaphthalenepolymer. J. Electrochem. Soc.,2010,157: F23-F29
    [77] Barriga S.2,2,6,6-Tetramethylpiperidin-1-oxyl (TEMPO). Synlett,2001,2001:0563
    [78] Nakahara K, Iwasa S, Satoh M, et al. Rechargeable batteries with organic radical cathodes.Chem. Phys. Lett.,2002,359:351-354
    [79] Nakahara K, Iriyama J, Iwasa S, et al. Cell properties for modified PTMA cathodes oforganic radical batteries. J. Power Sources,2007,165:398-402
    [80] Oyaizu K, Ando Y, Konishi H, et al. Nernstian adsorbate-like bulk layer of organic radicalpolymers for high-density charge storage purposes. J. Am. Chem. Soc.,2008,130:14459-14461
    [81] Nakahara K, Iriyama J, Iwasa S, et al. High-rate capable organic radical cathodes forlithium rechargeable batteries. J. Power Sources,2007,165:870-873
    [82] Choi W, Ohtani S, Oyaizu K, et al. Radical polymer-wrapped SWNTs at a molecular level:High-rate redox mediation through a percolation network for a transparent charge-storagematerial. Adv. Mater.,2011,23:4440-4443
    [83] Guo W, Yin Y-X, Xin S, et al. Superior radical polymer cathode material with atwo-electron process redox reaction promoted by graphene. Energy Environ. Sci.,2012,5:5221-5225
    [84] Oyaizu K, Kawamoto T, Suga T, et al. Synthesis and charge transport properties ofredox-active nitroxide polyethers with large site density. Macromolecules,2010,43:10382-10389
    [85] Nesvadba P, Bugnon L, Maire P, et al. Synthesis of a novel spirobisnitroxide polymer andits evaluation in an organic radical battery. Chem. Mater.,2010,22:783-788
    [86] Morita Y, Nishida S, Murata T, et al. Organic tailored batteries materials using stableopen-shell molecules with degenerate frontier orbitals. Nat. Mater.,2011,10:947-951
    [87] Qu J, Khan F Z, Satoh M, et al. Synthesis and charge/discharge properties of cellulosederivatives carrying free radicals. Polymer,2008,49:1490-1496
    [88] Qu J, Morita R, Satoh M, et al. Synthesis and properties of DNA complexes containing2,2,6,6-tetramethyl-1-piperidinoxy (TEMPO) moieties as organic radical battery materials.Chem. Eur. J.,2008,14:3250-3259
    [89] Qu J, Katsumata T, Satoh M, et al. Synthesis and charge/discharge properties ofpolyacetylenes carrying2,2,6,6-tetramethyl-1-piperidinoxy radicals. Chem. Eur. J.,2007,13:7965-7973
    [90] Katsumata T, Satoh M, Wada J, et al. Polyacetylene and polynorbornene derivativescarrying TEMPO. Synthesis and properties as organic radical battery materials. Macromol.Rapid Commun.,2006,27:1206-1211
    [91] Oyaizu K, Suga T, Yoshimura K, et al. Synthesis and characterization of radical-bearingpolyethers as an electrode-active material for organic secondary batteries. Macromolecules,2008,41:6646-6652
    [92] Koshika K, Sano N, Oyaizu K, et al. An aqueous, electrolyte-type, rechargeable deviceutilizing a hydrophilic radical polymer-cathode. Macromol. Chem. Phys.,2009,210:1989-1995
    [93] Koshika K, Sano N, Oyaizu K, et al. An ultrafast chargeable polymer electrode based onthe combination of nitroxide radical and aqueous electrolyte. Chem. Commun.,2009:836-838
    [94] Suguro M, Iwasa S, Nakahara K. Effect of ethylene oxide structures in TEMPO polymerson high rate discharge properties. Electrochem. Solid-State Lett.,2009,12: A194-A197
    [95] Williams D L, Byrne J J, Driscoll J S. A high energy density lithium/dichloroisocyanuricacid battery system. J. Electrochem. Soc.,1969,116:2-4
    [96] Ohzuku T, Wakamatsu H, Takehara Z, et al. Nonaqueous lithium/pyromellitic dianhydridecell. Electrochim. Acta,1979,24:723-726
    [97] Boschi T, Pappa R, Pistoia G, et al. On the use of nonylbenzo-hexaquinone as a substitutefor monomeric quinones in non-aqueous cells. J. Electroanal. Chem.,1984,176:235-242
    [98] Pasquali M, Pistoia G, Boschi T, et al. Redox mechanism and cycling behaviour ofnonylbenzo-hexaquinone electrodes in Li cells. Solid State Ionics,1987,23:261-266
    [99] Haringer D, Novak P, Haas O, et al. Poly(5-amino-1,4-naphthoquinone), a novellithium-inserting electroactive polymer with high specific charge. J. Electrochem. Soc.,1999,146:2393-2396
    [100] Han X, Chang C, Yuan L, et al. Aromatic carbonyl derivative polymers ashigh-performance Li-ion storage materials. Adv. Mater.,2007,19:1616-1621
    [101] Song Z, Zhan H, Zhou Y. Anthraquinone based polymer as high performance cathodematerial for rechargeable lithium batteries. Chem. Commun.,2009:448-450
    [102] Liu K, Zheng J, Zhong G, et al. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide)(PDBS) asa cathode material for lithium ion batteries. J. Mater. Chem.,2011,21:4125-4131
    [103] Song Z, Zhan H, Zhou Y. Polyimides: Promising energy-storage materials. Angew. Chem.Int. Ed.,2010,49:8444-8448
    [104] Xiang J, Chang C, Li M, et al. A novel coordination polymer as positive electrode materialfor lithium ion battery. Cryst. Growth Des.,2008,8:280-282
    [105] Chen H, Armand M, Demailly G, et al. From biomass to a renewable LixC6O6organicelectrode for sustainable Li-ion batteries. ChemSusChem,2008,1:348-355
    [106] Yao M, Araki M, Senoh H, et al. Indigo dye as a positive-electrode material forrechargeable lithium batteries. Chem. Lett.,2010,39:950-952
    [107] Renault S, Geng J, Dolhem F, et al. Evaluation of polyketones with N-cyclic structure aselectrode material for electrochemical energy storage: case of pyromellitic diimidedilithium salt. Chem. Commun.,2011,47:2414-2416
    [108] Blomgren G E. Electrochemistry: Making a potential difference. Nature,2000,407:681-682
    [109] Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesiumbatteries. Nature,2000,407:724-727
    [110] Aurbach D, Suresh G S, Levi E, et al. Progress in rechargeable magnesium batterytechnology. Adv. Mater.,2007,19:4260-4267
    [111] Mitelman A, Levi M D, Lancry E, et al. New cathode materials for rechargeable Mgbatteries: fast Mg ion transport and reversible copper extrusion in CuyMo6S8compounds.Chem. Commun.,2007:4212-4214
    [112] Tao Z L, Xu L N, Gou X L, et al. TiS2nanotubes as the cathode materials of Mg-ionbatteries. Chem. Commun.,2004:2080-2081
    [113] Amir N, Vestfrid Y, Chusid O, et al. Progress in nonaqueous magnesium electrochemistry. J.Power Sources,2007,174:1234-1240
    [114] Li X L, Li Y D. MoS2nanostructures: Synthesis and electrochemical Mg2+intercalation. J.Phys. Chem. B,2004,108:13893-13900
    [115] Yuan L-X, Wang Z-H, Zhang W-X, et al. Development and challenges of LiFePO4cathodematerial for lithium-ion batteries. Energy Environ. Sci.,2011,4:269-284
    [116] Dominko R, Bele M, Gaber ek M, et al. Structure and electrochemical performance ofLi2MnSiO4and Li2FeSiO4as potential Li-battery cathode materials. Electrochem.Commun.,2006,8:217-222
    [117] Feng Z, Yang J, NuLi Y, et al. Preparation and electrochemical study of a new magnesiumintercalation material Mg1.03Mn0.97SiO4. Electrochem. Commun.,2008,10:1291-1294
    [118] Nuli Y N, Yang J, Li Y S, et al. Mesoporous magnesium manganese silicate as cathodematerials for rechargeable magnesium batteries. Chem. Commun.,2010,46:3794-3796
    [119] NuLi Y N, Zheng Y P, Wang Y, et al. Electrochemical intercalation of Mg2+in3Dhierarchically porous magnesium cobalt silicate and its application as an advanced cathodematerial in rechargeable magnesium batteries. J. Mater. Chem.,2011,21:12437-12443
    [120] Chen J, Tao Z-L, Li S-L. Lithium intercalation in open-ended TiS2nanotubes. Angew.Chem. Int. Ed.,2003,42:2147-2151
    [121] Novak P, Desilvestro J. Electrochemical insertion of magnesium in metal oxides andsulfides from aprotic electrolytes. J. Electrochem. Soc.,1993,140:140-144
    [122] Jiao L, Yuan H, Si Y, et al. Electrochemical insertion of magnesium in open-endedvanadium oxide nanotubes. J. Power Sources,2006,156:673-676
    [123] NuLi Y, Guo Z, Liu H, et al. A new class of cathode materials for rechargeable magnesiumbatteries: Organosulfur compounds based on sulfur–sulfur bonds. Electrochem. Commun.,2007,9:1913-1917
    [124] Ichitsubo T, Adachi T, Yagi S, et al. Potential positive electrodes for high-voltagemagnesium-ion batteries. J. Mater. Chem.,2011,21:11764-11772
    [125] Choi H, Baik C, Kang S O, et al. Highly efficient and thermally stable organic sensitizersfor solvent-free dye-sensitized solar cells. Angew. Chem. Int. Ed.,2008,47:327-330
    [126] Miyashita M, Sunahara K, Nishikawa T, et al. Interfacial electron-transfer kinetics inmetal-free organic dye-sensitized solar cells: combined effects of molecular structure ofdyes and electrolytes. J. Am. Chem. Soc.,2008,130:17874-17881
    [127] Marinado T, Nonomura K, Nissfolk J, et al. How the nature of triphenylamine-polyenedyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes.Langmuir,2010,26:2592-2598
    [128] O'Regan B C, Lopez-Duarte I, Martinez-Diaz M V, et al. Catalysis of recombination and itslimitation on open circuit voltage for dye sensitized photovoltaic cells usingphthalocyanine dyes. J. Am. Chem. Soc.,2008,130:2906-2907
    [129] O'Regan B C, Walley K, Juozapavicius M, et al. Structure/function relationships in dyes forsolar energy conversion: A two-atom change in dye structure and the mechanism for itseffect on cell voltage. J. Am. Chem. Soc.,2009,131:3541-3548
    [130] Wang Z S, Koumura N, Cui Y, et al. Hexylthiophene-functionalized carbazole dyes forefficient molecular photovoltaics: Tuning of solar-cell performance by structuralmodification. Chem. Mater.,2008,20:3993-4003
    [131] Ning Z J, Zhang Q, Pei H C, et al. Photovoltage improvement for dye-sensitized solar cellsvia cone-shaped structural design. J. Phys. Chem. C,2009,113:10307-10313
    [132] Pei J. Study on the triphenylamine-based dyes for dye-sensitized solar cells:[dissertation].Tianjin: Nankai University,2009
    [133] Keegstra M A, Peters T H A, Brandsma L. Copper(I) halide catalysed synthesis of alkylaryl and alkyl heteroaryl ethers. Tetrahedron,1992,48:3633-3652
    [134] Reeves B D, Grenier C R G, Argun A A, et al. Spray coatable electrochromicdioxythiophene polymers with high coloration efficiencies. Macromolecules,2004,37:7559-7569
    [135] Medina A S, Claessens C G, Rahman G M A, et al. Accelerating charge transfer in atriphenylamine-subphthalocyanine donor-acceptor system. Chem. Commun.,2008:1759-1761
    [136] Justin Thomas K R, Hsu Y-C, Lin J T, et al.2,3-Disubstituted thiophene-based organic dyesfor solar cells. Chem. Mater.,2008,20:1830-1840
    [137] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity bycis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J. Am. Chem.Soc.,1993,115:6382-6390
    [138] Hagberg D P, Yum J H, Lee H, et al. Molecular engineering of organic sensitizers fordye-sensitized solar cell applications. J. Am. Chem. Soc.,2008,130:6259-6266
    [139] Ito S, Chen P, Comte P, et al. Fabrication of screen-printing pastes from TiO2powders fordye-sensitised solar cells. Prog. Photovolt: Res. Appl.,2007,15:603-612
    [140] Ito S, Nazeeruddin M K, Liska P, et al. Photovoltaic characterization of dye-sensitized solarcells: Effect of device masking on conversion efficiency. Prog. Photovolt: Res. Appl.,2006,14:589-601
    [141] Shi D, Pootrakulchote N, Li R, et al. New efficiency records for stable dye-sensitized solarcells with low-volatility and ionic liquid electrolytes. J. Phys. Chem. C,2008,112:17046-17050
    [142] Frisch M J, Trucks G W, Schlegel H B, et al.(2004). Gaussian03, Revision C.01(Gaussian,Inc, Wallingford, CT).
    [143] Howie W H, Claeyssens F, Miura H, et al. Characterization of solid-state dye-sensitizedsolar cells utilizing high absorption coefficient metal-free organic dyes. J. Am. Chem. Soc.,2008,130:1367-1375
    [144] Liang M, Xu W, Cai F S, et al. New triphenylamine-based organic dyes for efficientdye-sensitized solar cells. J. Phys. Chem. C,2007,111:4465-4472
    [145] Xu W, Peng B, Chen J, et al. New triphenylamine-based dyes for dye-sensitized solar cells.J. Phys. Chem. C,2008,112:874-880
    [146] Xu W, Pei J, Shi J F, et al. Influence of acceptor moiety in triphenylamine-based dyes onthe properties of dye-sensitized solar cells. J. Power Sources,2008,183:792-798
    [147] Tian H N, Yang X C, Chen R K, et al. Effect of different dye baths and dye-structures onthe performance of dye-sensitized solar cells based on triphenylamine dyes. J. Phys. Chem.C,2008,112:11023-11033
    [148] Liu W H, Wu I C, Lai C H, et al. Simple organic molecules bearing a3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chem. Commun.,2008:5152-5154
    [149] Wiberg J, Marinado T, Hagberg D P, et al. Effect of anchoring group on electron injectionand recombination dynamics in organic dye-sensitized solar cells. J. Phys. Chem. C,2009,113:3881-3886
    [150] Hara K, Sato T, Katoh R, et al. Molecular design of coumarin dyes for efficientdye-sensitized solar cells. J. Phys. Chem. B,2003,107:597-606
    [151] Tian H N, Yang X C, Chen R K, et al. Phenothiazine derivatives for efficient organicdye-sensitized solar cells. Chem. Commun.,2007:3741-3743
    [152] De Angelis F, Fantacci S, Selloni A, et al. Influence of the sensitizer adsorption mode onthe open-circuit potential of dye-sensitized solar cells. Nano Lett.,2007,7:3189-3195
    [153] Burke A, Ito S, Snaith H, et al. The function of a TiO2compact layer in dye-sensitized solarcells incorporating "Planar" organic dyes. Nano Lett.,2008,8:977-981
    [154] Jose R, Kumar A, Thavasi V, et al. Relationship between the molecular orbital structure ofthe dyes and photocurrent density in the dye-sensitized solar cells. Appl. Phys. Lett.,2008,93:3
    [155] Pei J, Peng S J, Shi J F, et al. Triphenylamine-based organic dye containing thediphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. J.Power Sources,2009,187:620-626
    [156] Shi J F, Wang L, Liang Y L, et al. All-solid-state dye-sensitized solar cells withalkyloxy-imidazolium iodide ionic polymer/SiO2nanocomposite electrolyte andtriphenylamine-based organic dyes. J. Phys. Chem. C,2010,114:6814-6821
    [157] Snaith H J, Petrozza A, Ito S, et al. Charge generation and photovoltaic operation ofsolid-state dye-sensitized solar cells incorporating a high extinction coefficientindolene-based sensitizer. Adv. Funct. Mater.,2009,19:1810-1818
    [158] Hahlin M, Johansson E M J, Plogmaker S, et al. Electronic and molecular structures oforganic dye/TiO2interfaces for solar cell applications: a core level photoelectronspectroscopy study. Phys. Chem. Chem. Phys.,2010,12:1507-1517
    [159] Nazeeruddin M K, Humphry-Baker R, Liska P, et al. Investigation of sensitizer adsorptionand the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2solar cell. J. Phys. Chem. B,2003,107:8981-8987
    [160] Nazeeruddin M K, Humphry-Baker R, Officer D L, et al. Application of metalloporphyrinsin nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity.Langmuir,2004,20:6514-6517
    [161] Deacon G B, Phillips R J. Relationship between the carbon-oxegen stretching frequenciesof carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev.,1980,33:227-250
    [162] Hara K, Wang Z S, Sato T, et al. Oligothiophene-containing coumarin dyes for efficientdye-sensitized solar cells. J. Phys. Chem. B,2005,109:15476-15482
    [163] Usami A, Seki S, Mita Y, et al. Temperature dependence of open-circuit voltage indye-sensitized solar cells. Sol. Energy Mater. Sol. Cells,2009,93:840-842
    [164] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, et al. Influence of electrolyte intransport and recombination in dye-sensitized solar cells studied by impedancespectroscopy. Sol. Energy Mater. Sol. Cells,2005,87:117-131
    [165] Ning Z J, Zhang Q, Wu W J, et al. Starburst triarylamine based dyes for efficientdye-sensitized solar cells. J. Org. Chem.,2008,73:3791-3797
    [166] Kruger J, Bach U, Gr tzel M. Modification of TiO2heterojunctions with benzoic acidderivatives in hybrid molecular solid-state devices. Adv. Mater.,2000,12:447-451
    [167] Ruhle S, Greenshtein M, Chen S G, et al. Molecular adjustment of the electronic propertiesof nanoporous electrodes in dye-sensitized solar cells. J. Phys. Chem. B,2005,109:18907-18913
    [168] Chen P, Yum J H, De Angelis F, et al. High open-circuit voltage solid-state dye-sensitizedsolar cells with organic dye. Nano Lett.,2009,9:2487-2492
    [169] Peng B, Yang S Q, Li L L, et al. A density functional theory and time-dependent densityfunctional theory investigation on the anchor comparison of triarylamine-based dyes. J.Chem. Phys.,2010,132,034305
    [170] Wang Z S, Zhou G. Effect of surface protonation of TiO2on charge recombination andconduction band edge movement in dye-sensitized solar cells. J. Phys. Chem. C,2009,113:15417-15421
    [171] Furube A, Katoh R, Hara K, et al. Lithium ion effect on electron injection from aphotoexcited coumarin derivative into a TiO2nanocrystalline film investigated byvisible-to-IR ultrafast spectroscopy. J. Phys. Chem. B,2005,109:16406-16414
    [172] Kuang D, Uchida S, Humphry-Baker R, et al. Organic dye-sensitized ionic liquid basedsolar cells: Remarkable enhancement in performance through molecular design of indolinesensitizers. Angew. Chem. Int. Ed.,2008,47:1923-1927
    [173] Meng F S, Yao Q H, Shen J G, et al. Novel cyanine dyes with multi-carboxyl groups andtheir sensitization on nanocrystalline TiO2electrode. Synth. Met.,2003,137:1543-1544
    [174] Alex S, Santhosh U, Das S. Dye sensitization of nanocrystalline TiO2: enhanced efficiencyof unsymmetrical versus symmetrical squaraine dyes. J. Photochem. Photobiol. A: Chem.,2005,172:63-71
    [175] Otsuka A, Funabiki K, Sugiyama N, et al. Dye sensitization of ZnO by unsymmetricalsquaraine dyes suppressing aggregation. Chem. Lett.,2006,35:666-667
    [176] Yum J H, Walter P, Huber S, et al. Efficient far red sensitization of nanocrystalline TiO2films by an unsymmetrical squaraine dye. J. Am. Chem. Soc.,2007,129:10320-10321
    [177] Geiger T, Kuster S, Yum J H, et al. Molecular design of unsymmetrical squaraine dyes forhigh efficiency conversion of low energy photons into electrons using TiO2nanocrystallinefilms. Adv. Funct. Mater.,2009,19:2720-2727
    [178] Wang Q, Moser J E, Gr tzel M. Electrochemical impedance spectroscopic analysis ofdye-sensitized solar cells. J. Phys. Chem. B,2005,109:14945-14953
    [179] Wang Q, Ito S, Gr tzel M, et al. Characteristics of high efficiency dye-sensitized solar cells.J. Phys. Chem. B,2006,110:25210-25221
    [180] Watson D F, Meyer G J. Cation effects in nanocrystalline solar cells. Coord. Chem. Rev.,2004,248:1391-1406
    [181] Ren X M, Feng Q Y, Zhou G, et al. Effect of cations in coadsorbate on chargerecombination and conduction band edge movement in dye-sensitized solar cells. J. Phys.Chem. C,2010,114:7190-7195
    [182] Tian H N, Yang X C, Chen R K, et al. A metal-free "black dye'' for panchromaticdye-sensitized solar cells. Energy Environ. Sci.,2009,2:674-677
    [183] Shibano Y, Umeyama T, Matano Y, et al. Electron-donating perylene tetracarboxylic acidsfor dye-sensitized solar cells. Org. Lett.,2007,9:1971-1974
    [184] Erten-Ela S, Yilmaz M D, Icli B, et al. A panchromatic boradiazaindacene (BODIPY)sensitizer for dye-sensitized solar cells. Org. Lett.,2008,10:3299-3302
    [185] Qin H, Wenger S, Xu M, et al. An organic sensitizer with a fused dithienothiophene unit forefficient and stable dye-sensitized solar cells. J. Am. Chem. Soc.,2008,130:9202-9203
    [186] Wang Z S, Cui Y, Hara K, et al. A high-light-harvesting-efficiency coumarin dye for stabledye-sensitized solar cells. Adv. Mater.,2007,19:1138-1141
    [187] Kim S, Lee J K, Kang S O, et al. Molecular engineering of organic sensitizers for solar cellapplications. J. Am. Chem. Soc.,2006,128:16701-16707
    [188] Heredia D, Natera J, Gervaldo M, et al. Spirobifluorene-bridged donor/acceptor dye fororganic dye-sensitized solar cells. Org. Lett.,2010,12:12-15
    [189] Koumura N, Wang Z S, Mori S, et al. Alkyl-functionalized organic dyes for efficientmolecular photovoltaics. J. Am. Chem. Soc.,2006,128:14256-14257
    [190] Kim S, Kim D, Choi H, et al. Enhanced photovoltaic performance and long-term stabilityof quasi-solid-state dye-sensitized solar cells via molecular engineering. Chem. Commun.,2008:4951-4953
    [191] Welsh D M, Kumar A, Meijer E W, et al. Enhanced contrast ratios and rapid switching inelectrochromics based on poly(3,4-propylenedioxythiophene) derivatives. Adv. Mater.,1999,11:1379-1382
    [192] Nielsen C B, Bjornholm T. Structure-property relations of regiosymmetrical3,4-dioxy-functionalized polythiophenes. Macromolecules,2005,38:10379-10387
    [193] Hammond S R, Clot O, Firestone K A, et al. Site-isolated electro-optic chromophoresbased on substituted2,2'-bis(3,4-propylenedioxythiophene) π-conjugated bridges. Chem.Mater.,2008,20:3425-3434
    [194] Zhang G L, Bala H, Cheng Y M, et al. High efficiency and stable dye-sensitized solar cellswith an organic chromophore featuring a binary π-conjugated spacer. Chem. Commun.,2009:2198-2200
    [195] Moon S J, Yum J H, Humphry-Baker R, et al. Highly efficient organic sensitizers forsolid-state dye-sensitized solar cells. J. Phys. Chem. C,2009,113:16816-16820
    [196] Wang Z S, Hara K, Dan-Oh Y, et al. Photophysical and (photo)electrochemical propertiesof a coutnarin dye. J. Phys. Chem. B,2005,109:3907-3914
    [197] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338-344
    [198] Yum J H, Chen P, Gr tzel M, et al. Recent developments in solid-state dye-sensitized solarcells. ChemSusChem,2008,1:699-707
    [199] Mori S N, Kubo W, Kanzaki T, et al. Investigation of the effect of alkyl chain length oncharge transfer at TiO2/dye/electrolyte interface. J. Phys. Chem. C,2007,111:3522-3527
    [200] Choi W, Harada D, Oyaizu K, et al. Aqueous electrochemistry of poly(vinylanthraquinone)for anode-active materials in high-density and rechargeable polymer/air batteries. J. Am.Chem. Soc.,2011,133:19839-19843
    [201] Chen H, Armand M, Courty M, et al. Lithium salt of tetrahydroxybenzoquinone: towardthe development of a sustainable Li-ion battery. J. Am. Chem. Soc.,2009,131:8984-8988
    [202] Geng J, Bonnet J-P, Renault S, et al. Evaluation of polyketones with N-cyclic structure aselectrode material for electrochemical energy storage: Case of tetraketopiperazine unit.Energy Environ. Sci.,2010,3:1929-1933
    [203] Genorio B, Pirnat K, Cerc-Korosec R, et al. Electroactive organic molecules immobilizedonto solid nanoparticles as a cathode material for lithium-ion batteries. Angew. Chem. Int.Ed.,2010,49:7222-7224
    [204] Walker W, Grugeon S, Mentre O, et al. Ethoxycarbonyl-based organic electrode forLi-batteries. J. Am. Chem. Soc.,2010,132:6517-6523
    [205] Yao M, Senoh H, Sakai T, et al.5,7,12,14-pentacenetetrone as a high-capacity organicpositive-electrode material for use in rechargeable lithium batteries. Int. J. Electrochem.Sci.,2011,6:2905-2911
    [206] Tobishima S-I, Yamaki J-I, Yamaji A. Cathode characteristics of organic electron acceptorsfor lithium batteries. J. Electrochem. Soc.,1984,131:57-63
    [207] Cardinaels T, Ramaekers J, Guillon D, et al. A propeller-like uranyl metallomesogen. J. Am.Chem. Soc.,2005,127:17602-17603
    [208] Phillips K E S, Katz T J, Jockusch S, et al. Synthesis and properties of an aggregatingheterocyclic helicene. J. Am. Chem. Soc.,2001,123:11899-11907
    [209] Schiemann O, Cekan P, Margraf D, et al. Relative orientation of rigid nitroxides byPELDOR: Beyond distance measurements in nucleic acids. Angew. Chem. Int. Ed.,2009,48:3292-3295
    [210] Sissi C, Lucatello L, Paul Krapcho A, et al. Tri-, tetra-and heptacyclic perylene analoguesas new potential antineoplastic agents based on DNA telomerase inhibition. Bioorg. Med.Chem.,2007,15:555-562
    [211] Walker W, Grugeon S, Vezin H, et al. The effect of length and cis/trans relationship ofconjugated pathway on secondary battery performance in organolithium electrodes.Electrochem. Commun.,2010,12:1348-1351
    [212] Junqueira G M A, Rocha W R, De Almeida W B, et al. Theoretical analysis of theoxocarbons: The electronic spectrum of the rhodizonate ion. J. Mol. Struct.: THEOCHEM,2005,719:31-39
    [213] Cheng M F, Li C L, Li W K. A computational study of the charge-delocalized andcharge-localized forms of the croconate and rhodizonate dianions. Chem. Phys. Lett.,2004,391:157-164
    [214] Shamsipur M, Siroueinejad A, Hemmateenejad B, et al. Cyclic voltammetric,computational, and quantitative structure–electrochemistry relationship studies of thereduction of several9,10-anthraquinone derivatives. J. Electroanal. Chem.,2007,600:345-358
    [215] Kawai K, Kodera H, Osakada Y, et al. Sequence-independent and rapid long-range chargetransfer through DNA. Nat. Chem.,2009,1:156-159
    [216] Kuhn A, von Eschwege K G, Conradie J. Reduction potentials of para-substitutednitrobenzenes—an infrared, nuclear magnetic resonance, and density functional theorystudy. J. Phys. Org. Chem.,2012,25:58-68
    [217] Clifford J N, Martinez-Ferrero E, Viterisi A, et al. Sensitizer molecular structure-deviceefficiency relationship in dye sensitized solar cells. Chem. Soc. Rev.,2011,40:1635-1646
    [218] Zhu X H, Peng J B, Caoa Y, et al. Solution-processable single-material molecular emittersfor organic light-emitting devices. Chem. Soc. Rev.,2011,40:3509-3524
    [219] Pron A, Gawrys P, Zagorska M, et al. Electroactive materials for organic electronics:preparation strategies, structural aspects and characterization techniques. Chem. Soc. Rev.,2010,39:2577-2632
    [220] Gendron D, Leclerc M. New conjugated polymers for plastic solar cells. Energy Environ.Sci.,2011,4:1225-1237
    [221] Takahashi K, Kobayashi K. Furan-fused TCNQ and DCNQI: synthesis and properties. J.Org. Chem.,2000,65:2577-2579
    [222] Slocum D W, Gierer P L. Directed metalation reactions.8. Directed metalation of3-mono-and2,5-disubstituted thiophenes. J. Org. Chem.,1976,41:3668-3673
    [223] Bolitt V, Mioskowski C, Reddy S P, et al. A convenient synthesis ofpyrido[3,4-g]isoquinoline via ortho-directed metallation/dimerization. Synthesis,1988,5:388,389
    [224] Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activationof graphene. Science,2011,332:1537-1541
    [225] Chen W, Chen S, Qi D C, et al. Surface transfer p-type doping of epitaxial graphene. J. Am.Chem. Soc.,2007,129:10418-10422
    [226] Manna A K, Pati S K. Tuning the electronic structure of graphene by molecular chargetransfer: A computational study. Chem. Asian J.,2009,4:855-860
    [227] Zhao L, Wang W-K, Wang A-B, et al. A MC/AQ parasitic composite as cathode materialfor lithium battery. J. Electrochem. Soc.,2011,158: A991-A996
    [228] Oyaizu K, Choi W, Nishide H. Functionalization of poly(4-chloromethylstyrene) withanthraquinone pendants for organic anode-active materials. Polym. Adv. Technol.,2011,22:1242-1247
    [229] Yao M, Senoh H, Yamazaki S-I, et al. High-capacity organic positive-electrode materialbased on a benzoquinone derivative for use in rechargeable lithium batteries. J. PowerSources,2010,195:8336-8340
    [230] Levi E, Gofer Y, Aurbach D. On the way to rechargeable Mg batteries: The challenge ofnew cathode materials. Chem. Mater.,2010,22:860-868
    [231] Chen J, Kuriyama N, Yuan H, et al. Electrochemical hydrogen storage in MoS2nanotubes.J. Am. Chem. Soc.,2001,123:11813-11814
    [232] Dominko R, Arcon D, Mrzel A, et al. Dichalcogenide nanotube electrodes for Li-ionbatteries. Adv. Mater.,2002,14:1531-1534
    [233] Du G D, Guo Z P, Wang S Q, et al. Superior stability and high capacity of restackedmolybdenum disulfide as anode material for lithium ion batteries. Chem. Commun.,2010,46:1106-1108
    [234] Xiao J, Choi D W, Cosimbescu L, et al. Exfoliated MoS2nanocomposite as an anodematerial for lithium ion batteries. Chem. Mater.,2010,22:4522-4524
    [235] Liu Y, Xue J S, Zheng T, et al. Mechanisem of lithium insertion in hard carbons preparedby pyrolysis of epoxy resins. Carbon,1996,34:193-200
    [236] Lee S W, Yabuuchi N, Gallant B M, et al. High-power lithium batteries from functionalizedcarbon-nanotube electrodes. Nat. Nanotechnol.,2010,5:531-537
    [237] Peng B, Liang J, Tao Z L, et al. Magnesium nanostructures for energy storage andconversion. J. Mater. Chem.,2009,19:2877-2883
    [238] Li W Y, Li C S, Zhou C Y, et al. Metallic magnesium nano/mesoscale structures: theirshape-controlled preparation and Mg/air battery applications. Angew. Chem. Int. Ed.,2006,45:6009-6012
    [239] Li C S, Cheng F Y, Ji W Q, et al. Magnesium microspheres and nanospheres:morphology-controlled synthesis and application in Mg/MnO2batteries. Nano Res.,2009,2:713-721
    [240] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals andsemiconductor using a plane-wave baseis set. Comp. Mater. Sci.,1996,6:15-50
    [241] Bl chl P E. Projector augmented-wave method. Phys. Rev. B,1994,50:17953-17979
    [242] Wang Y, Perdew J P. Correlation hole of the spin-polarized electron gas, with exactsmall-wave-vector and high-density scaling. Phys. Rev. B,1991,44:13298-13307
    [243] Ramakrishna Matte H S S, Gomathi A, Manna A K, et al. MoS2and WS2analogues ofgraphene. Angew. Chem. Int. Ed.,2010,49:4059-4062
    [244] Yang D, Sandoval S J, Divigalpitiya W M R, et al. Structure of single-molecular-layerMoS2. Phys. Rev. B,1991,43:12053-12056
    [245] Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2.ACS Nano,2010,4:2695-2700
    [246] Frey G L, Tenne R, Matthews M J, et al. Raman and resonance Raman investigation ofMoS2nanoparticles. Phys. Rev. B,1999,60:2883-2892
    [247] Lu Z, Schechter A, Moshkovich M, et al. On the electrochemical behavior of magnesiumelectrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem.,1999,466:203-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700