用户名: 密码: 验证码:
纳米LaB_6粉末及其PMMA基复合材料的制备、组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LaB6是稀土类六硼化物,属于立方晶系CsCl型,具有高熔点(熔点为2715℃)、高导电率和高的化学稳定性,在各种现代技术器件组元中有着广泛的应用前景。纳米LaB6材料,在紫外和近红外透光率几乎为零的情况下,对可见光仍有很高的透光率,具备新一代窗用隔热材料所需的性能。PMMA作为一种透明性最好的聚合物材料之一,广泛的应用于光学、车窗、洁具和建筑等领域,尤其可作为优异的光学材料。因此对LaB6及其PMMA基复合材料的研究,将丰富LaB6的光学性能研究,极大地促进硼化物功能陶瓷材料在隔热、透光等领域的应用。
     本文以LaCl3·7H2O和NaBH4为原材料,通过高温固相反应和低温固相反应两种方法制备了纳米LaB6粉末,利用表面改法对制备的纳米LaB6粉末进行了改性处理,对改性效果好的纳米粉末利用静置法和离心法对纳米颗粒进行了粒度的分选,最后将不同粒度和不同含量的LaB6颗粒分散在MMA单体中,通过MMA单体的本体聚合法制备了纳米LaB6粉末/PMMA基复合材料。
     研究结果表明,高温固相反应和低温固相反应虽然都能制备出纳米LaB6粉末,但反应机制有所不同,低温固相反应是依靠添加剂Mg与环境中的水或氧气反应而释放出大量的热来维持反应的进行。高温固相反应中,温度直接决定了产物的物相、颗粒的大小和形貌。低温固相反应合成的纳米颗粒的晶粒尺寸比较小,基本上在10-15nm之间,形状为类球形。而高温固相反应在900℃下保温2h可得到平均晶粒尺寸为18.2nm、形状为方形的纳米粒子。随着温度的升高,粒子的尺寸变大,颗粒之间的界面不再规则。
     不同的表面活性剂对LaB6进行表面改性的机理不同,使用CTAB在pH为11的水溶液中进行改性是利用了电荷理论,经过改性后的LaB6纳米颗粒可以很好的分散于CTAB的水溶液中。而使用OA对LaB6改性则是通过OA的羧基与LaB6表面的活性羟基发生化学键合而接枝到纳米颗粒表面,60℃的弱碱性环境更有助于化学键合作用。而MMA单体对LaB6的改性则是利用了MMA单体在LaB6质点上发生的乳液聚合反应而接枝到纳米颗粒表面,单体MMA的量和乳化剂SDS的浓度对产物的结构和形貌影响较大。适度的MMA和SDS才能得到分散较好的LaB6纳米颗粒。
     在使用静置法分层对纳米颗粒进行分选时,发现以水作为溶剂时分选出的纳米颗粒尺度不均一。但在使用了PVP水溶液时,成功地分选出几个不同粒度级别的纳米颗粒,分别为30nm、40nm、60nm、80nm、100nm和150nm,并且每个级别的颗粒的粒度比较均匀。而使用离心法分离出来的颗粒含量较少,而且每个级别颗粒的尺度分布不集中。
     在研究纳米颗粒的尺寸和含量对复合材料的光学性能的影响时,发现用PVP水溶液分选的纳米颗粒在复合材料中分散的比较均匀,而且相应的复合材料的透光率随着纳米颗粒含量的增加而降低,同时随着纳米颗粒尺寸的增大而降低。
     通过对光学数据进行计算分析得到满足实际需要的工艺参数,本研究选择加入粒径为30nm、质量分数为0.01wt%的LaB6粒子制备的PMMA基复合材料,作为一种理想的隔热而又不影响可见光透过的先进窗用节能环保材料。
Lanthanum hexaboride (LaB6) was an excellent thermionic electron emitter material characterized by excellent thermal stability. Nanosized LaB6powder was reported to have excellent selective light absorption and scattering recently. PMMA was widely used as lens, windows and wind screens due to high transparency and light weight. It was advantageous to incorporate LaB6nanoparticles into PMMA, to produce a nanocomposite with additional properties brought by the filler nanoparticles, however, the dispersion of inorganic nanosized particles in organic polymer matrix was a key problem.
     In this paper, nanosized LaB6powder was prepared through high temperature solid state reaction and low temperature solid state reaction as well, surface modification was used in order to improve the dispersion of LaB6nanoparticle in PMMA matrix. Then, LaB6nanopaticles was separated to several levels with different size. Then polymerization was used to prepare the LaB6/PMMA composites.
     It was found that the mechanism between high temperature solid state reaction and low temperature solid state reaction was different, as Mg addition was indispensable in low temperature solid state reaction, to provide much more energy through reacting with vapor and oxygen. The product synthesized from low temperature solid reactions had smaller grain size and round-shaped morphology. However, the one from high temperature solid reactions showed good cubic shape particle with higher crystllinity. The temperature was very important in high temperature solid state reaction, as proper temperature could lead to products with good crystallization. The best technology for high temperature solid state reaction was the raw materials named LaCl3and NaBH4with a molar ratio of1:12heated to900℃rapidly for2h.
     CTAB, OA, and MMA was used to modify LaB6nanomaterials. CTAB, working as a cationic surface active agent, helped LaB6to get a well dispersion in deonized water with pH of11. Alkaline environment was a better choice as it favored CTAB to absorb onto the surface of nanoparticles. Modification with OA was realized through reaction between its' carboxy group and hydroxyl group from the surface of the LaB6, and the alkaline environment proceeded the cooperation between chemical bonds, however,60℃was the best temperature for this reaction as higher teperature could cause secondary reaction to prevent the absorbing of OH group. MMA, was used to grafted to the surface of LaB6nanoparticles through emulsion reaction. SDS had significant effect than CTAB as emulsifiers, meanthile, the concentration of SDS and the volume of MMA monomer were very important to the reaction, proper amounts of SDS and MMA could get well dispersed LaB6, the extreme values would get poor dispersion of LaB6.
     Compared to deionized water, PVP aqueous solution was a better choice for nanoparticles to be separated to particles with various sizes. The final average size of LaB6particle was30nm,40nm,60nm,80nm,100nm and150nm. Finally, the particle with different size was used to prepare LaB6/PMMA composites. LaB6particles dispersed well in the PMMA matrix, and the particle size and LaB6weight ratio of PMMA matrix affected the composites'optical properties. The transmittance of the composite was decreased with the weight ratio of LaB6increased, and with the size of nanoparticles increased as well. After calculation on Tvis, Tsol, and the ratio between them, PMMA containing0.01wt%of nanoparticles with size of30nm was found to meet the need of reality. It could absorb much infrared light and let most of visible light in.
引文
1. R. Nishitani, M. Aono, T. Tanaka, C. Oshima, S. Kawai, H. Iwasaki and S. Nakamura. Surface Structures and Work Functions of the LaB6 (100), (110) and (111) Clean Surfaces. Surf. Sci., 1980,93:535-549.
    2. G. Allard. X-Ray study of some borides. Bull. Soc. Chim. Fr.,1932,51:1213-1215.
    3. M. von Stackelberg, F. Neuman. Crystal structure of borides of composition MeB6. Z. Phys. Chem. B,1932,19:314-320.
    4. Ramakrishnan Kalai Selvan, Isaschar Genish, liana Perelshtein, Jose M. Calderon Moreno, Aharon Gedanken. Single step, low-temperature synthesis of submicron-sized rare earth hexaborides. J. Phys. Chem. C,2008,112:1795-1802.
    5. C. H. Wen, T. M. Wu. Oxidation kinetics of LaB6 in oxygen rich conditions. J. Eur. Ceram. Soc.,2004,24:3235-3243.
    6. S. L. Zhou, J. X. Zhang. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering. Acta Mater.,2010,58:4978-4985.
    7.王小菊,林祖伦,祁康成,陈泽祥,汪志刚,蒋亚东.电化学刻蚀法制备LaB6场发射微尖锥阵列.发光学报,2007,28(3):429-432.
    8. I. Bogomol, T. Nishimura. High-temperature strength of directionally reinforced LaB6-TiB2 composite. J. Alloys Compd.2010,505:130-134.
    9. D. P. Young, D. Hall, M. E. Torelli, Z. Fisk, J. L. Sarrao, J. D. Thompson, H. R. Ott, S. B. Oseroff, R. G. Goodrich, R. Zysler. High-temperatureweak ferromagnetism in a low-density free-electron gas. Nature,1999,397:412-414.
    10. R. J. Sobczak and M. J. Sienko. Superconductivity in the hexaborides. J. Less-Com. Metals, 1979,67:167-171.
    11. J. G. S. Duque, R. R. Urbano, P. A. Venegas, P. G. Pagliuso, C. Rettori, Z. Fisk, S. B. Oseroff. Exchange interaction effects in the ESR spectra of Eu2t in LaB6. Physica B,2007,398: 424-426.
    12. D. J. Late, M. A. More, P. Misra, B.N. Singh, L. M. Kukreja, D. S. Joag. Field emission studies of pulsed laser deposited LaB6 films on W and Re. Ultramicroscopy,2007,107: 825-832.
    13. S. Schelm, G. B. Smith. Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing. Appl. Phys. Lett.,2003,82(24):4346-4348.
    14. S. Schelm and G. B. Smith. Tuning the surface-plasmon resonance in nanoparticles. J. Appl. Phys.,2005,97 (12):124314-124322.
    15. R. W. Johnson, A. H. Daane. The lanthanum-boron system. J. Phys. Ceram.,1961,65: 909-915.
    16. Y. Q. Cai. Comparative study of the electronic structures of superconductors of boride YB6 and LaB6. Chinese J. Low Temp. Phys.,2005,27(5):515-518.
    17. P. F. Walch, D. E. Ellis, F. M. Mueller. Energy bands and bonding in LaB6 and YB6. Phys. Rev. B,1997,15(4):1859-1866.
    18.苏玉长,肖立华,伏云吕,张鹏飞,彭平.LaB6电子结构与光学性质的第一性原理计算.中国科学:物理学力学天文学,2011,41(1):58-65.
    19.金帅,刘丹敏,周身林,张久兴.LaB6热阴极陶瓷材料的研究进展.功能材料,2007,38:480-483.
    20.肖立华.LaB6光学性质的第一性原理计算及实验研究.昆明理工大学硕士学位论文,2010.
    21. H. Raether. Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, 1986, Berlin.
    22. H. F. Ghaemi, Tineke Thio, D. E. Grupp. Surface plasomons enhance optical transmission through subwavelength holes. Phys. Rev. B,1998,58(11):6779-6782.
    23.时晴暄,林祖伦,李建军,陈泽祥.电子束蒸发法制备六硼化镧薄膜及其特性研究.电子器件,2007,30(3):745-747.
    24.于海波,林祖伦,祁康成.六硼化镧材料的化学腐蚀工艺研究Chinese Journal of Electron Devices,2006,29(1):22-24.
    25.朱炳金,陈泽祥,张强.六硼化镧薄膜的制备及发射特性的研究.真空电子技术,2007,5:44-47.
    26.王小菊,蒋亚东,林祖伦,祁康成,陈泽祥.单品六硼化镧的制备及主要应用.材料导报,2006,2:13-15.
    27.朱炳金,陈泽祥,张强,王小菊,于涛.六硼化镧薄膜场致发射的特性.发光学报,2008,29(3):561-566.
    28. C. Mitterer, W. Waldhauser, U. Beck, G. Reiners. Structures and properties of decorative rare-earth hexaboride coatings. Surf. Coat. Tech.,1996,86-87:715-721.
    29. D. J. Late, S. Karmakar, M. A. More, S. V. Bhoraskar, D. S. Joag. Arc plasma synthesized LaB6 nanocrystallite film on various substrates as a field emitter. J. Nanopart. Res.,2010,12: 2393-2403.
    30. D. J. Late, K. S. Date, M. A. More, P. Misra, B.N. Singh, L. M. Kukreja, C.V. Dharmadhikari, D. S. Joag. Enhanced field emission from LaB6 thin flims with nanoprotrusions grown by pulsed laser deposition on Zr foil. Appl. Surf. Sci.,2008,254:3601-3605.
    31.周身林,刘丹敏,张久兴.高纯多晶LaB6纳米块体阴极材料的制备及表征.无机材料学报,2008,23(6):1199-1204.
    32.郑树起,闵光辉,于化顺,韩建德,王维倜,张树.LaB6功能陶瓷材料的研究现状.材料导报,2000,14(3):50-51.
    33. E. A. Kafadaryan, S. I. Petrosyan, G. R. Badalyan, S. R. Harutyunyan, A. S. Kuzanyan. Optical characteristics of (La, Ce)B6 films deposited on silicon substrates by e-beam evaporation process. Thin Solid Films,2002,416:218-223.
    34. H. Takeda, H. Kuno, K. Adachi. Solar control dispersions and coatings with rare-earth hexaboride nanoparticles. J. Am. Ceram. Soc.,2008,91(9):2897-2902.
    35. C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W. S. M.Werner, H. Stori. Sputter deposition of decorative boride coatings. Vacuum,1995,46(11):1281-1294.
    36. C. Mitterer. Borides in thin film technology. J. Solid State Chem.,1997,133:279-291.
    37. V. I. Bessareba, E. M. Dudnik, L. A. Ivanchenko, A. V. Kovalev, V. Yu. Kulikovskii. Optical properties of thin films composed of complex hexaborides of rare-earth metals. Powder Metall. Met. Ceram.,1995,34(1-2):93-95.
    38. L. Shi, Y. L. Gu, L. Y. Chen, Z. H. Yang, J. H. Ma, Y. T. Qian. Low temperature synthesis and characterization of cubic CaB6 ultrafine powders. Chem. Lett.,2004,32(10):958-959.
    39. J. Q. Xu, Y. M Zhao, C. Y. Zou. Self-catalyst growth of LaB6 nanowires and nanotubes. Chem. Phys. Lett.,2006,423:138-142.
    40. M. F. Zhang, L. Yuan, X. Q. Wang, A low-temperature route for the synthesis of nanocrystalline LaB6. J. Solid State Chem.,2008,181:294-297.
    41. L. Zhang, G. H. Min, H. S. Yu, et al. Characterization of calcium hexaboride nano-scale powder. The Chinese Journal of Nonferrous Metals,2005,15(Special 2):176-179.
    42. L. M. Liang, L. Zhang, G. H. Min. Absorption spectra of calcium hexaboride nanopowders. Journal of Shangdong University (Engineering Science),2009,39(1):118-121.
    43. Y. F. Yuan, L. Zhang, L. M. Liang, K. He, R. Liu, G. H. Min. A solid-state reaction route to prepare LaB6 nanocrystals in vacuum. Ceram. Int.,2011,37:2891-2896.
    44. H. Zhang, Q. Zhang, J. Tang and L. C. Qin. Single-Crystalline LaB6 Nanowires. Am. Chem. Soc.,2005,127 (9),2862-2863.
    45. C. Y. Zou, Y. M. Zhao, J. Q. Xu. Synthesis of single-crystalline CeB6 nanowires. J. Cryst. Growth,2006,291:112-116.
    46. J. Q. Xu, Y. M. Zhao, C. Y. Zou. Self-catalyst growth of LaB6 nanowires and nanotubes. Chem. Phys. Lett.,2006,423:138-142.
    47. J. Q. Xu, Y. M. Zhao, C. Y. Zou. Self-catalyst growth of single-crystalline CaB6 nanostructures. J. Solid State Chem.,2007,180:2577-2580.
    48. L. Bai, N. Ma, F. L. Liu. Structure and chemical bond characteristics of LaB6. Physica B,2009, 404(21):4086-4089.
    49. R. Monnier, B. Delley. Propertiers of LaB6 elucidated by density functional theory. Phys. Rev. B,2004,70(19):3403-3406.
    50. F. M. Hossain, D. P. Riley and G. E. Murch. Ab initio calculations of the electronic structure and bonding characteristics of LaB6. Phys. Rev. B,2005,72(23):235101-235105.
    51. Y. S. Grushko, Y. B. Padernok, Y. Mishin, L. I. Molkanov, G. A. Shadrinae, S. Konovalov, E. M. Dudni. A study of the electronic structure of rare earth hexaborides. Physica Status Solidi (b),1985,128(2):591-597.
    52. K. Adachi, M. Miratsu, T. Asahi. Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J. Mater. Res.,2010,25(3): 510-521.
    53. N. Singh, S. M. Saini, T. Nautiyal and S. Auluck. Electronic structure and optical properties of rare earth hexaborides RB6 (R=La, Ce, Pr, Nd, Sm, Eu, Gd). J. Phys.:Condens. Matter., 2007,19(34):1-10.
    54. Y. Kato, N. Shiraishi, S. Kaneko, N. Tsuchimine, S. Kobayashi, M. Yoshimoto. Epitaxial growth of LaB6 thin films on ultrasmooth sapphire substrate with epitaxial SrB6 buffer layer. J. Laser Micro Nanoen.,2009,4 (3):197-201.
    55. V. Craciun, D. Craciun. Pulsed laser deposition of crystalline LaB6 thin films. Appl. Surf. Sci., 2005,247:384-389.
    56. K. R. Peschmann, J. T. Calow, and K. G. Knauff. Diagnosis of the optical properties and structure of lanthanum hexaboride thin films. J. Appl. Phys.,1973,44(5):2252-2256.
    57. J. Xu, G H. Min, X. H. Zhao, L. J. Hu, H. S. Yu. The influence of sputtering bias-voltage on LaB6 film's Characteristics. Int. J. Mod. Phys. B,2009,23(6):1-6.
    58. J. Xu, G. H. Min, L. J. Hu, X. H. Zhao, H. S. Yu. Dependence of characteristics of LaB6 films on dc magnetron sputtering power. Trans. Nonferrous Met. Soc. China,2009,19:952-955.
    59. X. H. Zhao, G. H. Min, J. Xu, J. Lin. The influence of argon pressure on the structural and physical properties of LaB6 films. Applied Mechanics and Materials,2011,54-57:1436-1440.
    60. X. H. Zhao, G. H. Min, L. Zhang, L. M. Liang, H. S. Yu. Low temperature synthesis of BaB6 nanometer powders. Int. J. Mod. Phys B,2009,23(6-7):1553-1558.
    61. X. H. Zhao, G. H. Min, J. Xu, L. Zhang, H. S. Yu. Effect of substrate bias-voltage on the structure and mechanical properties of LaB6 films. Metallofiz. Noveishie Tekhnol.,2011, 33(3):375-382.
    62. D. Wang, L. Zhang, G. H. Min, H. S. Yu, Y. F. Yuan. Effect of heat treatment on the properties of dc magnetron sputtered LaB6/ITO films. Appl. Surf. Sci.,2011,257:6418-6423.
    63. W. Wang, Y. F. Yuan, L. Zhang, G. H. Min. Annealing effects on properties of LaB6/ATO thin films deposited by magnetron sputtering. Ceram. Int.,2012,38(5):4313-4318.
    64. L. J. Liu, Y. M. Yiu, T. K. Sham, D. F. Yang, L. Zuin. Electronic structure of nano-polycrystalline pulsed laser deposited LaB6 films and single crystals:The boronperspective. J. Appl. Phys.,2010,107:043703-043709.
    65. B. H. Lai, Y. R. Lin, D. H. Chen. Fabrication of LaB6@SiO2/Au composite nanoparticles as a catalyst with near infrared photothermally enhanced activity. Chem. Eng. J.,2013,223: 418-424.
    66. B. H. Lai, D. H. Chen. Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria. Acta Biomater.,2013,9(7):7573-7579.
    67. L. H. Xiao, Y. C. Su, X. Z. Zhou, H. Y. Chen, J. Tan, T. Hu, J. Yan and P. Peng. Origins of high visible light transparency and solar heat-shielding performance in LaB6. Appl. Phys. Lett., 2012,101(4):041913-041915.
    68. C. J. Chen, D. H. Chen. Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material. Chem. Eng. J.,2012,180:337-342.
    69. F. Jiang, Y. K. Leong, M. Martyniuk, A. Keating and J. M. Dell. Dispersion of lanthanum hexaboride nanoparticles in water and in sol-gel Silica arrays. Optoelectronic and Microelectronic Materials and Devices,2010,163-164.
    70. F. Jiang, Y. K. Leong, M. Saunders, M. Martyniuk, L. Faraone, A. Keating, J. M. Dell. Uniform dispersion of lanthanum hexaboride nanoparticles in a silica thin film:synthesis and optical properties. Appl. Mater. Interfaces,2012,4:5833-5838.
    71. M. J. Yang, Y. Dan. Preparation of poly(methyl methacrylate)/titanium oxide composite particles via in-situ emulsion polymerization. J. Appl. Polym. Sci.,2006,101:4056-4063.
    72.彭蕾蕾,罗勇悦,淡宜,张立,张强,夏士美,张小磊.聚甲基丙烯酸甲酯/稀土复合发光材料的结构及耐水性能.高分子材料科学与工程,2006,22(3):152-154.
    73. J. Liu, H. Q. Yang, F. Kleitz, Z. G. Chen, T. Y. Yang, E. Strounina, C. Q. Lu and S. Z. Qiao. Yolk-shell hybrid materials with a periodic mesoporous organosilica shell:ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater.,2012,22:591-599.
    74. A. Popat, J. Liu, G. Q. Lu, S. Z. Qiao. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem.,2012,22:11173-11178.
    75. J. Lu, M. Liong, J. I. Zink, F. Tamanoi. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small,2007,3(8):1341-1346.
    76. D. W. Gidley, W. E. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen and D. Y. Yoon. Determination of pore-size distribution in low-dielectric thin films. Appl. Phys. Lett.,2000, 76(10):1282-1284.
    77. X. B. Chen, S. S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.,2007,107:2891-2959.
    78. Q. Zhang, D. Q. Lima, I. Lee, F. Zaera, M. Chi, Y. D. Yin. A Highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed.,2011,50:7088-7092.
    79. M. Gratzel. Photoelectrochemical cells. Nature,2001,414:338-344.
    80. J. Du, J. Qi, D. Wang, Z. Y. Tang. Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci.,2012,5: 6914-6918.
    81. P. Xu, H. T. Wang, R. Lv, Q. G. Du, W. Zhong, Y. L. Yang. Synthesis of TiO2-SiO2/polymer core-shell microspheres with a microphase-inversion method. J. Polym. Sci., Part A:Polym. Chem.,2006,44:3911-3920.
    82. D. Djoumessi Lekeufack, A. Brioude, A. Mouti, J. G. Alauzun, P. Stadelmann, A. W. Coleman and P. Miele. Core-shell Au@(TiO2, SiO2) nanoparticles with tunable morphology. Chem. Commun.,2010,46:4544-4546.
    83. J. L. Hu, H. S. Qian, J. J. Li, Y. Hu, Z. Q. Li, and S. H. Yu. Synthesis of mesoporous SiO2@TiO2 core/shell nanospheres with enhanced photocatalytic properties. Part. Part. Syst. Charact.,2013,30:306-310.
    84.姜立忠,刘久贵,冯玉仲等Sol-Gel法制备PI/SiO2纳米复合薄膜及结构与性能.北京化工大学学报,2005,32(1):59-61.
    85. L. J. Bian, X. F. Qian, J. Yin, et al. Preparation and luminescence properties of the PMMA/SiO2/EuL3-H2O hybrids by a sol-gel method. Mater. Sci. Eng. B,2003,100(1):53-58.
    86. C. L. Chiang, C. C. Ma. Synthesis, Characterization and thermal properties of novel epoxy contaning silicon and phosphorus nanocomposties by sol-gel method. Eur. Polym. J.,2002,38 (11):2219-2224.
    87.刘鹏,田军,刘维民等.纳米氧化硅表面引离子接枝聚合苯乙烯.化学通报,2004,(9):685-688.
    88. E. Bourgeat-Lami, J. Lang. Encapsulation of inorganic particles by dispersion polymerization in polar media 1. Silica nanoparticles encapsulated by polystyrene. J. Colloid Interface Sci., 1998,197(2):293-308.
    89. E. Bourgeat-Lami, J. Lang. Encapsulation of inorganic particles by dispersion polymerization in polar media 2. Effect of silica size and concentration on the morphology of silica-polystyrene composite particles. J. Colloid Interface Sci.,1999,210(2):281-289.
    90.陶华锋,张林,王金凤,袁斯华,杨忠孝.溶胶凝胶法制备PMMA/SiO2杂化材料.强激光与粒子束,2006,2(18):223-226.
    91. H. Zhang, C. Li, J. S. Guo, L. M. Zang, and J. H. Luo. In situ synthesis of poly(methyl methacrylate)/SiO2 hybrid Nanocomposites via "grafting onto" strategy based on UV irradiation in the presence of iron aqueous solution. J. Nanomater.,2012,2012:1-9.
    92.钱家盛,陈晓明,何平笙PMMA/nano-SiO2纳米复合材料的制备和表征.应用化学,2003, 20(12):1200-1203.
    93. M. D. Morales-Acosta, M. A. Quevedo-Lopez, Bruce E. Gnade, R. Ramirez-Bon. PMMA-SiO2 organic-inorganic hybrid films:determination of dielectric characteristics. J. Sol-Gel Sci. Technol.,2011,58:218-224.
    94. A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li and T. J. White. Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J. Mater. Chem.,2013,13:1475-1479.
    95. E. Dzunuzovic, E. Dzunuzovic, E. Dzunuzovic, K. Jeremic, J.M. Nedeljkovic. Thermal properties of PMMA/TiO2 nanocomposites prepared by in-situ bulk polymerization. Polym. Compos.,2009,30(6):737-742.
    96. J. G. Lee, S. H. Kim, H. C. Kang, S. H. Park. Effect of TiO2 on PVDF/PMMA composite films prepared by thermal casting. Macromol. Res.,2013,21(4):349-355.
    97. Y. Hoshi, H. Kato, K. Funatsu. Structure and electrical properties of ITO thin films deposited at high rate by facing target sputtering. Thin Solid Films,2003,445 (2):245-250.
    98. D. S. Ginley, C. Bright. Transparent Conducting Oxides. MRS Bull,2000,25(8):15-18.
    99. C. G. Granqvist, A. Hultaker. Transparent and conducting ITO films:new developments and applications. Thin Solid Films,2002,411:1-5.
    100. E. P. S. Arlindo, J. A. Lucindo, C. M. O. Bastos, P. D. Emmel and M. O. Orlandi. Electrical and optical properties of conductive and transparent ITO@PMMA nanocomposites. J. Phys. Chem.,2012,116:12946-12952.
    101. A. Malliaris, D. T. Turner. Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J. Appl. Phys.,1971,42(2):614-618.
    102. R. P. Kusy, D. T. Turner. Electrical conductivity of a polyurethane elastomer containing segregated particles of nickel. J. Appl. Polym. Sci.,1973,17:1631-1633.
    103. R. P. Kusy, D. T. Turner. Electrical resistivity of polymeric insulator containing segregated metallic particles. Nat. Phys. Sci.,1971,229(374):58-59.
    104. C. J. Charles, R. A. Gerhardt. Novel percolation mechanism in PMMA matrix composites containing segregated ITO nanowire networks. Adv. Funct. Mater.,2007,17:2515-2521.
    105. C. J. Charles, R. A. Gerhardt. Correlation of the ac electrical conductivity and the microstructure of PMMA/ITO nanocomposites that possess phase-segregated microstructures. J. Phys. Chem. C,2008,112:19372-19382.
    106. J. M. Shi, Y. Z. Bao, Z. M. Huang, Z. X. Weng. Preparation of poly(methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization. J. Zhejiang Univ. Sci.,2004,5(6):709-713.
    107.X. K. Ma, B. Zhou, Y. H. Deng, Y. Sheng, C. Y. Wang, Y. Pam, Z. C. Wang. Study on CaCO3/PMMA nanocomposite microspheres by soapless emulsion polymerization. Colloids Surf. A-Physicochem. Eng. Asp.,2008,312:190-194.
    108. M. Avella, M. E. Errico, G. Gentile. PMMA based nanocomposties filled with modified CaCO3 nanoparticles. Macromol. Symp.,2007,247(1):140-146.
    109. A. Chatterjee, S. Mishra. Rheological, thermal and mechanical properties of nano-calcium carbonate (CaCO3)/Poly(methyl methacrylate) (PMMA) core-shell nanoparticles reinforced polypropylene (PP) composites. Macromol. Res.,2013,21(5):474-483.
    110. S. Sen, M. L. Ram, S. Roy, B. K. Sarkar. The structural transformation of anatase TiO2 by high-energy vibrational ball milling. J. Mater. Res.,1999,14 (3):841-848.
    111. A. Gajovic, M. Stubicar, M. Ivanda, K. Furic. Raman spectroscopy of ballmilled TiO2. J. Mol. Struct.,2001,563-564:315-320.
    112. M. Sommer, F. Stenger. W. Peukert. N. J. Wagner. Agglomeration and breakage of nanoparticles in stirred media mills-a comparison of different methods and models. Chem. Eng. Sci.,2006,61:135-148.
    113. M. Pohl, H. Schubert. Dispersion and de-agglomeration of nanoparticles in aqueous solutions. International Congress for Particle Technology Partec,2004, Nuremberg, Germany.
    114. N. Mandzy, E. Grulke, T. Druffel. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol.,2005,160:121-126.
    115. D. W. Kim, D. S. K, Y. G. Kim, Y. C. Kim, S. G. Oh. Preparation of hard agglomerates free and weakly agglomerated antimony doped tin oxide (ATO) nanoparticles by coprecipitation reaction in methanol reaction medium. Mater. Chem. Phys.,2006,97:452-457.
    116.薛茹君,吴玉程.无机纳米材料的表面修饰改性与物性研究.合肥:合肥工业大学出版社,2009.
    117. Y. G. Cao, X. L. Chen, J. Y. Li, Y. C. Lan, J. K. Liang. Observation of a quantum-confinement effect with GaN nanoparticles synthesized through a new gas reaction route. Appl. Phys. A,2000,71:229-231.
    118. P. M. Paulus, A. Goossens, R. C. Thiel, A. M. van der Kraan, G. Schmid, L. J. de Jongh. Surface and quantum-size effects in Pt and Au nanoparticles probed by 197Au Mossbauer spectroscopy. Phys. Rev. B.,2001,64(20):205418-205135.
    119. M. P. Proenca, C. T. Sousa, A. M. Pereira, P. B. Tavares, J. Ventura, M. Vazquez and J. P. Araujo. Size and surface effects on the magnetic properties of NiO nanoparticles. Phys. Chem. Chem. Phys.,2011,13:9561-9567.
    120. M. Respaud, J. M. Broto, H. Rakoto, and A. R. Fert. Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B.,1998,57(5):2925-2935.
    121. D. Yuan, M. C. Tan, R. E. Riman, G. M. Chow. Comprehensive study on the size effects of the optical properties of NaYF4:Yb, Er nanocrystals. J. Phys. Chem. C,2013,117: 13297-13304.
    122. S. Mandal, J. Wang, R. E. Winans, L. Jensen, A. Sen. Quantum size effects in the optical properties of ligand stabilized aluminum nanoclusters. J. Phys. Chem. C,2013,117: 6741-6746.
    123. N. Kiomarsipour, R. S. Razavi, K. Ghani, M. Kioumarsipour. Evaluation of shape and size effects on optical properties of ZnO pigment. Appl. Surf. Sci.,2013,270:33-38.
    124. C. M. Julien, A. Mauger and K. Zaghib. Surface effects on electrochemical properties of nano-sized LiFePO4. J. Phys. Chem.,2011,21:9955-9968.
    125. A. Giberti, C. Malagu, V. Guidi. WO3 sensing properties enhanced by UV illumination:An evidence of surface effect. Sens. Actuators, B:Chem.,2012,165:59-61.
    126. K. Kusters, S. Pratsinis, S. Thoma. Energy-size reduction laws for ultrasonic fragmentation. Powder Technol.,1994,80:253-263.
    127. B. Park, D. Smith, S. Thoma. Determination of agglomerate strength distributions:Part 4. Analysis of multimodal particle size distributions. Powder Technol.,1993,76:125-133.
    128. Y. Wang, G. S. Gu, F. Wei, J. Wu. Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol.,2002,124:152-159.
    129.施利毅.纳米科技基础.上海:华东理工大学出版社,2005.
    130.郑水林.粉体表面改性.北京:中国建材工业出版社,2011.
    131.李风生,杨毅,邓国栋等.纳米TiO2/SiO2复合食品抗菌材料.中国粉体技术,2001,7(5):23-26.
    132.赵旭,杨少凤,赵敬哲等.氧化锌包覆超细二氧化钛的制备及其紫外屏蔽性能.高等学校化学学报,1998,19(11):1727-1730
    133.徐丽娜,岳增全,沈浩瀛等Cu/TiO2超细复合粉末材料的制备与表征.材料导报,2002,16(7):68-76.
    134.郑水林.粉体表面改性.北京:中国建材工业出版社,2003.
    135.史建新.无机纳米粒子表面接枝包覆PMMA的制备研究.兰州理工大学硕士学位论文,2007.
    136. M. J. Owen. Coupling agents:chemical bonding at interfaces. Adhes. Sci. Eng.,2002,2: 403-431.
    137. E. P. Plueddemann. Adhesion through silane coupling agent. J. Adhes.,1970,2:184-201.
    138. J. Zhao, M. Milanova, M. M. C. G Warmoeskerken, V. Dutschk. Surface modification of TiO2 nanoparticles with silane coupling agent. Colloids Surf. A,2012,413:273-279.
    139. Y. K. Guo, M. Y. Wang, H. Q. Zhang, G. D. Liu, L. Q. Zhang, X. W. Qu. The surface modification of nanosilica, preparation of nanosilica/acrylic core-shell composite latex, and its application in toughening PVC matrix. J. Appl. Polym. Sci.,2008,107:2671-2680.
    140. K. J. Kim, J. L. White. Silica surface modification using different aliphatic chain length silane coupling agents and their effects on silica agglomerate size and processability. Compos. Interfaces,2002,9:541-956.
    141. R. Y. Hong, H. P. Fu, Y. J. Zhang, L. Liu, J. Wang, H. Z. Li, Y. Zheng. Surface-modified silica nanoparticles for reinforcement of PMMA. J. Appl. Polym. Sci.,2007,105(4):2176-2184.
    142. E. Ukaji, T. Furusawa, M. Sato, N. Suzuki. The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl. Surf. Sci.,2007,254:563-569.
    143. C. Wang, H. Mao, C. Wang, S. Fu. Dispersibility and hydrophobicity analysis of titanium dioide nanoparticles grafted with silane coupling agent. Ind. Eng. Chem. Res.,2011,50: 11930-11934.
    144. M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr, M. Atai. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coat.,2009,65:222-228.
    145. R. Y. Hong, J. H. Li, J. M. Qu, L. L. Chen, H. Z. Li. Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid. Chem. Engin. J., 2009,150(2-3):572-580.
    146.X. Shen, S. Gui, B. Lin. Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents. Rare Metals,2006,25:426-430.
    147. R. Y. Hong, J. Z. Qian, J. X. Cao. Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technol.,2006,163:160-168.
    148. S. R. Ma, L. Y. Shi, X. Feng, W. J. Yu, B. Lu. Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent. Journal of Shanghai University,2005,12: 278-282.
    149.张建强,冯辉霞,赵霞等.KH570对二硫化钼粉体表面的改性研究.化学试剂,2009,31(1):5-8.
    150. B. Jonsson, B. Lindman, K. Holmberg, B. Kronberg. Surfactants and polymers in aqueous solutions. Wiley, New York,1998.
    151. J. S. Chen, M. C. Liu, L. Zhang, et al. Application of nano TiO2 towards polluted water treatment conbined with electro-photochemical method. Water Research,2003,37:3815-820.
    152. J. Jiang, J. H. Oh. Fabrication of a highly transparent conductive thin film from polypyrrole/poly (methyl methacrylate) core/shell nanospheres.2005,15 (3):494-501.
    153. Q. Lan, F. Yang, S. Zhang, S. Liu, J. Xu, D. Sun. Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions. Colloids Surf. A: Physicochem. Eng. Aspects,2007,302:126-135.
    154. R. Fenger, E. Fertitta, H. Kirmse, A. F. Thunemannc and K. Rademann. Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys. Chem. Chem. Phys.,2012,14: 9343-9349.
    155. S. Y. Moon, T. Kusunose, T. Sekino. CTAB-Assisted synthesis of size-and shape-controlled gold nanoparticles in SDS aqueous solution. Mater. Lett.,2009,63(23):2038-2040.
    156. T. N. Hunter, E. J. Wanless, G. J. Jameson, R. J. Pugh. Non-ionic surfactant interactions with hydrophobic nanoparticles:Impact on foam stability. Colloids Surf. A:Physicochem. Eng. Aspects,2007,347:81-89.
    157. B. R. Midmore. Synergy between silica and polyoxyethylene surfactants in the formation of O/W emulsions, Colloids Surf. A:Physicochem. Eng. Aspects,1998,145:133-143.
    158. S. Zhang, D. Sun, X. Dong, C. Li, J. Xu, Aqueous foams stabilized with particles and non-ionic surfactants, Colloids Surf. A:Physicochem. Eng. Aspects,2008,324:1-8.
    159. K. P. Sharama, V. K. Aswal, G. Kumaraswamy. Adsorption of nonionic surfactant on silica nanoparticles:structure and resultant interparticle interactions. J. Phys. Chem. B,2010,114: 10986-10994.
    160. G. Chen, Y. Wang, L. H. Tan, M. X. Yang, L. S. Tan, Y. Chen, H. Y. Chem. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc.,2009,131:4218-4219.
    161.X. J. Wang, G P. Li, T. Chen, M. X. Yang, Z. Zhang, T. Wu, H. Y. Chen. Polymer-encapsulated gold-nanoparticle dimers:facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano. Lett.,2008,8(9):2643-2647.
    162. P. H. Qiu, C. B. Mao. Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles. Adv. Mater.,2011,23:4880-4885.
    163. L. Bai, X. J. Ma, J. F. Liu, X. M. Sun, D. Y. Zhao, D. G. Evans. Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc.,2010,132: 2333-2337.
    164.陈阳国,方正,唐爱国LaCl3·7H2O品体的热分解.稀土,2002,23(1):56-58.
    165. P. Martelli, R. Caputo, A. Remhof, P. Mauron, A. Borgschulte and A. Zuttel. Stability and decomposition of NaBH4. J. Phys. Chem. C,2010,114(15):7173-7177.
    166. R. Caputo, S. Garroni, D. Olid, F. Teixidor, S. Surinachb and M. D. Barob. Can Na2[B12H12] be a decomposition product of NaBH4? Phys. Chem. Chem. Phys.,2010,12:15093-15100.
    167. J. Urgnani, F. J. Torres, M. Palumbo, M. Baricco. Hydrogen release from solid state NaBH4. Int. J. Hydrogen Energy,2008,33(12):3111-3115.
    168.郑树起.LaB6材料的制备工艺及氧化性行为研究.山东大学博士学位论文,2002.
    169.梁丽梅.LaB6纳米粉末及其复合薄膜制备工艺及性能研究.山东大学硕士学位论文,2009.
    170.胡志强.无机材料科学基础教程.北京:化工工业出版社,2004:248-251.
    171.刘宇宏,黄科林,李克贤.硼氢化钠的性质与应用.企业科技与发展,2009,24:20-23.
    172.常铁军.材料近代分析测试方法(修订版).哈尔滨:哈尔滨工业大学出版社,2005.
    173.徐瑞.材料热力学与动力学.哈尔滨:哈尔滨工业大学出版社,2003.
    174. L. Zhang, W. J. He, O. Tolochko, G. H. Min. Morphology characterization and optical properties analysis for nanostructured lanthanum hexaboride powders. Advanced Materials Research,2009,79-82:107-110.
    175. Z. L. Wang. Morphology-controlled synthesis of Co3O4 crystals by soft chemical method. J. Phys. Chem. B,2000,104:1153-1175.
    176.杨序纲,吴琪琳.拉曼光谱的分析与应用.北京:国防工业出版社,2008.
    177. N. Ogita, S. Nagai, N. Okamoto, F. Iga, S. Kunii, J. Akimitsu, M. Udagawa. Raman scattering study of hexaboride crystals. Physica B:Condensed Matter,2003,328(1-2): 131-134.
    178. P. Teredesai, D. V. S. Muthu, N. Chandrabhas, S. Meenakshi, V. Vijayakumar, P. Modak, R. S. Rao, B. K. Godwal, S. K. Sikka, A. K. Sood. High pressure phase transition in metallic LaB6: Raman and X-ray diffraction studies. Solid State Commun.,2004,129:791-796.
    179. H. C. Choi, Y. M. Jung, S. B. Kim. Size effects in the raman spectra of TiO2 nanoparticles. Vibrational Spectroscopy,2005,37:33-38.
    180. S. Takehiko, M. Tsuboi, T. Miyazawa. Optically Active Lattice vibrations as treated by the GF-matrix method. J. Chem. Phys.,1961,35(5):1597-1612.
    181. M. Ishii, M. Aono, S. Muranaka and S. Kawai. Raman spectra of metallic and semiconducting metal hexaborides (MB6). Solid State Commun.,1976,20:437-440.
    182. D. P. Young, D. Hall, M. E. Torelli, Z. Fisk, J. L. Sarrao, J. D. Thompson, H.-R. Ott, S. B. Oseroff, R. G. Goodrich, R. Zysler. High-temperatureweak ferromagnetism in a low-density free-electron gas. Nature,1999,397:412-414.
    183. H. R. Ott, J. L. Gavilano, B. Ambrosini, P. Vonlanthen, et al. Unusual magnetism of hexaborides. Physica B,2000,281 &282:423-427.
    184. Y. Sakuraba, H. Kato, F. Sato, et al. Structure and magnetism in nanocrytalline Ca(La)B6 films. J. Magn. Magn. Mater.,2004,272-276:1145-1146.
    185. R. Monnier, B. Delley. Point defects, ferromagnetism, and transport in calcium hexaboride. Phys. Rev. Lett.,2001,87(15):157204-157205.
    186.戴道生,钱昆明.铁磁学.北京:科学出版社,1987.
    187.贾之慎.无机及分析化学.北京:中国农业出版社,2009.
    188. S. Souma, H. Komatsu, T. Takahashi, R. Kaji, T. Sasaki, Y. Yokoo, J. Akimitsu. Electronic band structure and fermi surface of CaB6 studied by Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett.,2003,90(2):027202-027205.
    189. J. Michael Berg, A. Romoser, N. Banerjee, R. Zebda, C. M. Sayes. The relationship between pH and zeta potential of ~30 nn metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology,2009,3(4):276-283.
    190. Y. Gur, I. Ravina, A. J Babchin. On the electrical double layer theory. Ⅱ. The Poisson-Boltzmann equation including hydration forces. J. Colloid Interface Sci.,1978,64(2): 333-341.
    191. D. C. Grahame. The electrical double layer and the theory of electrocapillarity. Chem. Rev., 1947,41(3):441-501.
    192.冯辉霞,张建强,张国宏,邱建辉,邵亮.CTAB对二硫化钼粉体的表面改性实验研究.化工科技,2008,16(4):9-13.
    193. S. Y. Lee, M. T. Harris. Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents. J. Colloid Interface Sci.,2006,293: 401-408.
    194. M. Bloemen, W. Brullot, T. Luong, N. Geukens, A. Gils, T. Verbiest. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J. Nanopart. Res.,2012,14:1100-1109.
    195. H. T. Yang, C. M. Shen, Y. G. Wang, Y. K. Su, T. Z. Yang and H. J. Gao. Stable cobalt nanoparticles passivated with oleic acid and triphenylphosphine. Nanotechnology,2004,15: 70-74.
    196. J. L. Luna-Xavier, A. Guyot, E. Bourgeat-Lami. Synthesis and characterization of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization usring a cationic azo initiator. J. Colloid Interface Sci.,2002,250(1):82-92
    197. N. Negrete-Herrera, J. L. Putaux, E Bourgeat-Lami. Synthesis of polymer/laponite nanocomposites latex particles via emulsion polymerization using silylated and cation-exchanged laponite clay. Prog. Solid State Chem.,2006,34(2-4):121-137.
    198.福克斯.固体的光学性质.北京:科学出版社,2009.
    199. L. J. Hu, G. H. Min, X. Yang. Preparation and properties of poly methyl methacrylate/lanthanum hexaboride nanocomposites. Advanced Materials Research,2011, 150-151:703-706.
    200. L. J. Hu, L. Zhang, Y. F. Yuan, G. H. Min. Microstructure and optical properties of PMMA matrix composites containing LaB6 nanoparticles. Metallofiz. Noveishie Tekhnol.,2013,35(5): 623-632.
    201. Y. F. Yuan, L. Zhang, L. J. Hu, et al. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites. J. Solid State Chem.,2011,184:3364-3367.
    202. T. Yamaguchi, S, Yoshida and A. Kinbara. Effect of retarded dipole-dipole interactions between island particles on the optical plasma-resonance absorption of a silver insland film. J. Opt. Soc. Am.,1974,64:1563-1568.
    203.袁志庆.低温固相反应-共生升华氯化铵法制备纳米材料及应用.中南大学硕士学位论文,2005.
    204. M. T. Mayer, Z. I. Simpson, S. Zhou, D. W. Wang. Ionic-diffusion-driven, low-temperature, solid-state reactions observed on copper sulfide nanowires. Chem. Mater.,2011,23(22): 5045-5051.
    205.周星.镁基水反应金属燃料与水反应特性研究.国防科学技术大学博士学位论文,2010.
    206.占文.低温固相法制备高温结构陶瓷用氧化物粉体研究.武汉科技大学硕士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700