用户名: 密码: 验证码:
金属矿山硫化矿自然发火机理及其预测预报技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化矿自然发火是金属矿山开采中所面临的重大灾害之一,火灾的发生将引发一系列的安全与环境问题,并且造成矿物资源的巨大浪费。硫化矿石被崩落以后比表面积骤然增大,矿石与潮湿空气发生氧化反应而放出热量;若反应生成的热量大于其向周围环境散发的热量时,矿石温度将不断上升,直到达到自燃点,从而导致自燃火灾。
     本论文依托“十一·五”国家科技支撑计划课题(2006BAK04B03):含硫矿石自燃倾向性鉴定与检测预报关键技术研究;国家自然科学基金项目(51074181):金属矿山硫化矿石自燃安全评价体系研究等课题。在系统检索及深入分析前人已取得研究成果的基础上,采取理论分析与实践应用相结合的研究手段,针对硫化矿石的低温氧化行为、自然发火机理、自燃倾向性测试技术、自燃预测的数学模型、数值模拟、非接触式检测技术等方面做了大量的研究工作。论文的主要研究内容及结论如下:
     (1)借助著名数据库,统计分析了国内外有关矿山自燃火灾研究的文献共计300余篇。探讨了现有解释硫化矿石自然发火的各种理论,包括物理吸附氧机理、化学热力学机理、电化学机理,以及微生物氧化机理。综述了硫化矿石自燃倾向性测试技术的研究成果,着重评述了硫化矿石自燃倾向性测试的吸氧速度法、传统的交叉点温度法、动态自热率测试法、绝热氧化法、金属网篮交叉点法、综合测试法、程序升温氧化法等,并将各种测试方法加以比较、分类。
     (2)从典型金属矿山采集多个最具代表性的硫化矿石矿样,在实验室环境中模拟了各个矿样的低温氧化反应过程。综合运用X射线衍射方法(XRD)、电镜扫描(SEM)、能谱分析(EDAX)、傅立叶变换红外光谱(FTIR)等先进测试技术获得矿样的特征图谱,并对比每一个矿样在发生氧化作用前后,宏观与微观特征的差异。测得各个矿样在经历不同反应时间后,其氧化增重率及内部水溶性铁离子、硫酸根离子等含量的变化。系统分析了影响硫化矿石低温氧化行为的矿物晶体结构、化学成分、痕量元素的含量、环境温度、铁离子含量、氧气浓度、空气湿度、矿样的粒度分布、环境的pH值、微生物,以及地质条件等诸多因素。
     (3)提出了一种新的解释硫化矿石自燃的机械活化理论。认为金属矿山开采中施加于矿体上的各种机械力使得硫化矿石经历了机械活化作用,相应的化学反应活性得到提高,在一定的环境条件下更加容易发生氧化自热,最终引发自燃火灾。表征了硫化矿石在经历不同机械活化时间后,各种矿样的表观形貌、微观结构、粒度分布、比表面积、热行为等物理化学性质的差异。结果发现,硫化矿石在经历机械活化作用以后,粒度变小、比表面积增大、出现团聚效应、产生晶格畸变与晶格缺陷、初始放热点及最大反应速率所对应的温度均有所下降;暴露在自然环境中时,经历机械活化后的矿样更加容易发生氧化作用。
     (4)提出了硫化矿石自燃倾向性测试的氧化动力学研究方法。自行组装了一套实验系统,基于金属网篮交叉点温度法,测试了不同类型矿样的氧化自热性质,并得到相应的氧化反应动力学参数。联合运用热重分析(TG)与差示扫描量热分析(DSC)技术测试了多个硫化矿石矿样的热行为,获得不同升温速率下的TG-DTG-DSC曲线,并找出相应的特征温度值;基于Ozawa-Flynn-Wall方法求得相应温度区间内的表观活化能值。提出运用TG-DSC联合法测试硫化矿石的自燃倾向性,并以获得的反应动力学参数(活化能)作为划分矿石自燃倾向性大小的鉴定指标。在获得多个样本的活化能值以后,新建立了硫化矿石自燃倾向性的鉴定标准,将硫化矿石的自燃倾向性等级划分为三大类,并规范了矿样的具体测试程序。
     (5)将采场硫化矿石爆堆视为多孔介质,基于传热传质学理论、达西定律、质量守恒定律、能量守恒方程等,建立了描述硫化矿石自然发火过程的数学模型,包括矿堆内部的风流场、氧气浓度场、温度场。基于电化学与传热学理论,推算出硫化矿石自然发火期的数学模型,并予以修正。提出了矿仓硫精矿自燃临界堆积厚度的概念,基于Frank-Kamenetskii自燃模型解算出高硫精矿与硫铁精矿在不同环境中的自燃临界堆积厚度。综合考虑了影响硫化矿石爆堆自燃的各种因素,将未确知测度理论应用于采场矿石爆堆的自燃危险性评价中;该方法解决了硫化矿石爆堆自燃危险性评价中诸多因素的不确定性问题,并能进行定量分析。
     (6)采用室内测试与理论分析相结合的研究方法确定了硫化矿石自燃数学模型中的诸多重要参数,包括矿石的放热强度、导热系数、耗氧速率、矿石堆的孔隙率、空气的渗透系数等。运用ANSYS与FLUENT数值分析软件对硫化矿自然发火的数学模型进行解算,揭示出不同矿样的动态自热规律、采场硫化矿石爆堆(硫精矿)在某个时刻的风流场、02浓度场、S02浓度场,以及温度场的分布规律,有效地指导了国内典型发火金属矿山的现场实践工作。
     (7)运用Raytek红外测温仪与Center接触式测温表同时测定了三种不同类型矿样(粉状、小块、大块)的表面温度;找出了红外测温仪在不同感温距离、不同感温角度、不同环境条件、不同类型矿堆等参数条件下,感温读数与矿堆实际温度之间的变化规律;揭示了硫化矿堆自燃非接触式检测中各种测量误差的产生机理。开展了实验仪器配套装置的改进研究,并应用于国内典型金属矿山硫化矿自燃火灾的检测中,验证了所选仪器的适用性。
Spontaneous combustion of sulfide minerals is one of the most serious disasters in the mining of metal mines. Once a fire is initiated in stored sulfide ores and concentrates, the disaster will lead to a series of environmental and safety problems, and losing large quantities of mineral resources. When sulfide ore deposit exploited and exposed to air for a period of time, sulfide minerals will begin chemisorbing oxygen and oxidizing, releasing lots of heat. If the rate of heat generation in sulfide mineral stockpiles exceeds that of heat removal from the boundaries, the heat accumulates and their temperature rises gradually, and the oxidizing reaction will accelerate, up to the auto-ignition point.
     This thesis has been supported financially by several important projects, such as the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of China (Study on the key technologies of spontaneous combustion tendency appraisal and the fire forecasting,2006BAK04B03) and the National Natural Science Foundation of China (Study on the safety assessment system of spontaneous combustion of sulfide ores in metal mines,51074181), etc. By referring to and analyzing many former research fruits about spontaneous combustion hazard in mines, a lot of study work has been made by combining theoretical analysis with practical application, aiming at the oxidation behavior of sulfide ores under ambient environment, the mechanism of spontaneous combustion, the test method and standard for evaluating spontaneous combustion tendency of sulfide minerals, mathematical models and simulations, non-contact measuring of temperature in metal mines. The main study contents and conclusions of this thesis are as follows:
     (1) Based on several famous databases over the world, about 300 papers toward spontaneous combustion in mines were consulted and analyzed. The current mechanisms on spontaneous combustion of sulfide minerals were discussed systematically, including the physical oxygen adsorption theory, chemical thermodynamics, electrochemistry mechanism, and bio-oxidation theory. Also, the test methods for spontaneous combustion tendency appraisal of sulfide minerals were set forth, including oxygen-adsorption velocity test, traditional crossing-point temperature test, adiabatic oxidation test, comprehensive test, new wire-mesh basket method, temperature programmed oxidation method, etc; and these methods were compared and classified by their intrinsic characteristics.
     (2) Several representative sulfide ore samples were obtained from typical metal mines. The oxidation process of each sample at low temperature was simulated in the laboratory. The colors, agglomeration properties, microstructures, chemical compositions, and mineralogical analysis of each sample before and after the oxidation were compared by X-ray diffraction analysis (XRD), scanning electron microscope (SEM), Energy Dispersive Spectrometry (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The weight increment rate of each sample and the contents of water soluble iron and sulfate ions at different time were also measured. Furthermore, the main factors affecting the oxidation of sulfide ores were identified, including the crystal structure, chemical compositions, trace metal content, environmental temperature, oxygen concentration, air moisture, particle size, environmental pH value, ferric iron, bacteria, geological conditions, etc.
     (3) A new theory of mechanical activation for explaining spontaneous combustion of sulfide minerals was put forward, in which the chemical reaction activation of sulfide ores was considered to be heightened by all kinds of mechanical force during the mining. The apparent appearances, microstructures, paricle sizes, specific surface areas, and heat behaviors of activated samples were characterized by advanced apparatuses. It is found that sulfide ores after mechanical activation show many evident changes with decreased particle sizes, increased specific surface areas, agglomeration phenomenon, defect and deformation of lattice structure, and lower temperatures for the initial heat release and self-igniton points. At ambient environment, the activated samples are more susceptible to being oxidized.
     (4) The oxidation kinetics test method for spontaneous combustion tendency of sulfide minerals was advanced. Based on the new wire-mesh basket crossing-point temperature (CPT) method, an experimental system was assembled to gain oxidation and self-heating properties of three different sulfide minerals, and corresponding oxidation kinetics parameters were calculated. The combination of thermogravimetry (TG) with differential scanning calorimeter (DSC) was applied to test sulfide minerals, and the TG-DTG-DSC curves for each sample at different heating rates were gained. By the peak temperatures on DTG curves, the whole reaction process of each sample was divided into different stages, and the corresponding apparent activation energies were calculated using the Ozawa-Flynn-Wall method. Furthermore, activation energy value was considered to be used as the index for evaluating spontaneous combustion tendency. A new appraisal system for assessing spontaneous combustion tendency of sulfide minerals was built, and the concrete test procedure was also regulated.
     (5) Sulfide ore stockpiles in stope were seen as porous medium, and the mathematical models for describing the dynamic process of spontaneous combustion of sulfide minerals were deduced by the theories of heat and mass transfer theory, Darcy Law, conservation of mass and energy laws, etc. Also, the mathematical formulas for calculating spontaneous combustion period of sulfide minerals were improved. The concept of critical accumulative thickness for spontaneous combustion of sulfide concentrates in storage was put forward; the corresponding critical values for each sample under different environmental temperatures were gained by Frank-Kamenetskii's model of spontaneous combustion. Furthermore, considering the main factors that influence spontaneous combustion of sulfide ores in stope, the uncertainty measurement theory was applied to evaluate the spontaneous combustion hazard, which can solve the uncertainty problems in spontaneous combustion assessment of sulfide ores, and it can analyze the problems quantitatively.
     (6) The combination of experimental test and theoretical analysis was used to obtain several important parameters in the mathematical models of spontaneous combustion, including the heat release intensity, heat conductivity, oxygen consumption rate, porosity of ore piles, osmosis coefficient, etc. Combining with the locale boundary and initial conditions, FLUENT and ANSYS softwares were applied to simulate the air flow field, SO2 and O2 concentration fields, and dynamic temperature fields in typical metal mines that have serious spontaneous combustion phenomenon, and the simulation results were used to direct the fire control work effectively
     (7) The surface temperatures of diverse sulfide minerals were measured simultaneously by Raytek infrared thermometer and Center tangent thermometer. The relationship between the sensing data of the infrared thermometer and the actual surface temperature with various measuring distances, measuring angles, mineral types, and environmental conditions were investigated. Also, how the measuring errors come in bad conditions during practical applications were analyzed systematically. The improved instruments adopted in the laboratory were utilized to measure the temperature of sulfide ores and concentrates on locale, and showed good effects.
引文
[1]《采矿手册》编辑委员会编.采矿手册[M].北京:冶金工业出版社,1991.
    [2]Ninteman D J. Spontaneous oxidation and combustion of sulfide ores in underground mines[R]. Information Circular 8775, USA:Bureau of Mines,1978.
    [3]Dimitrov R, Boyanov B. Investigation of the oxidation of metal sulphides and sulphide concentrates[J]. Thermoch. Acta,1983,64:27-37.
    [4]韩鹏,牛桂芝.中国硫矿主要矿集区及其资源潜力探讨[J].化工矿产地质,2010,32(2):95-104.
    [5]何满潮,庞忠和HEMS降温系统研发及深井热害控制对策[R].中国矿业大学(北京),徐州矿务集团有限公司,2007.
    [6]胡汉华.深热矿井环境控制[M].长沙:中南大学出版社,2009.
    [7]邬长福.高硫金属矿床内因火灾及其灭火措施[J].矿业安全与环保,2002,29(2):21-22.
    [8]Wang Xinran. Exploring conditions leading to self-heating of pyrrhotite-rich materials[D]. Montreal:McGill University, Canada,2007.
    [9]Stachulak, J S. Computerized fire monitoring, criteria, techniques and experience at Inco Limited[J]. CIM Bulletin,1990,83(937):59-67.
    [10]叶红卫,王志国.高硫矿床开采的特殊灾害及其发生机理[J].有色矿冶,1995,4:38-41.
    [11]杨培章.国内外硫化矿床内因火灾的防治[J].世界采矿快报,1990:57-61.
    [12]谢庆龙.铜坑矿细脉带矿体火灾防治及开采技术研究[J].采矿技术,2002,2(2):25-26.
    [13]吴世铨.硫化矿自燃和药包自爆的预防措施[J].云锡科技,1992,19(4):14-23.
    [14]陈寿如,谢圣权.硫化矿炸药自爆新判据和治理措施研究[J].工程爆破,2005,11(3):19-22.
    [15]廖明清.高硫矿火区开采中高温气浪的成因及伤亡事故的预防[J].湖南有色金属,1990,6(1):11-14.
    [16]王国利.硫化矿爆破安全技术的发展[J].工程爆破,1997,3(2):65-68.
    [17]钱柏青.铜山铜矿井下采场硫化矿石自燃的机理探讨及预防措施[J].有色金属,2005,57(3):99-102.
    [18]沈福尧.三次硫化矿石自燃火灾的分析及其预防对策[J].金属矿山,1994,2:50-51.
    [19]吴大敏.新桥硫铁矿矿石自燃特征及综合防治措施[J].化工矿物与加工,2001,10:20-23.
    [20]覃和醒.矿房矿石自燃治理措施的研究与应用[A].第六届全国采矿学术会议文集[C],北京:《中国矿业》杂志社,1999:245-246.
    [21]叶图强,林钦河.装药车装填的乳化炸药在高硫矿山的自燃事故原因分析与预防措施 [J].中国矿业,2007,16(10):49-53.
    [22]Yang Fuqiang, Wu Chao, Hu Hanhua, et al. Fire-extinguishing techniques research on spontaneous combustion of a sulfide iron ore dump in mining stope[A]. Progress in Safety Science and Technology (PART A)[C], Beijing:Science Pulishing,2008:869-874.
    [23]阳富强,吴超.未确知测度模型在矿仓硫精矿自燃危险性评价中的应用[J].煤炭学报,2010,35(2):264-268.
    [24]占丰林,蔡关峰.高硫矿山高温采场的成因及危害与防治措施[J].矿业研究与开发,2006,26(1):71-73.
    [25]吴超,孟廷让.高硫矿井内因火灾防治理论与技术[M].北京:冶金工业出版社,1995.
    [26]长沙矿山研究院.硫化矿床自燃机理及鉴别指标研究[R].长沙,1992.
    [27]赵国彦,古德生,吴超.硫化矿床内因火灾灭火试验研究[J].中国矿业,2001,10(2):34-37.
    [28]Soundararajan R, Amyotte P, Pegg M J. Explosibility hazard of iron sulphide dusts as a function of particle size[J]. Journal of Hazardous Materials,1996,51:225-239.
    [29]Wu Chao, Meng Tingrang. Safety assessment technique for the spontaneous detonation of explosives in the mining of sulfide ore deposits[J]. Mining Technology,1996,78(902): 285-289.
    [30]孙浩,阳富强,吴超,等.硫化矿石自燃机理及防治技术研究进展[J].金属矿山,2009,12:5-14.
    [31]李孜军.硫化矿石自燃机理及其预防关键技术研究[D].长沙:中南大学资源与安全工程学院,2007.
    [32]谢振华,金龙哲,刘向来.煤炭自燃预测预报技术及其应用[J].湘潭师范学院学报(自然科学版),2004,26(4):59-62.
    [33]罗海珠,梁运涛.煤自燃发火预测预报技术的现状与展望[J].中国安全科学学报,2003,13(3):76-78.
    [34]宋学义,李济吾.硫化矿石氧化自燃的研究现状及评价[J].湖南冶金,1989,1:35-39.
    [35]周勃,吴爱祥.金属矿山内因火灾综合因素预报法的应用[J].有色矿山,1999,2:18-21.
    [36]Rosenblum F, Spira P. Self-heating of sulfides[A]. The Thirteenth Annual Meeting of the Canadian Mineral Processors[C],1981:34-49.
    [37]Stephanie Somot, Finch James A. Possible role of hydrogen sulphide gas in self-heating of pyrrhotite-rich materials[J]. Minerals Engineering,2010,23:104-110.
    [38]Navarra A, Graham J T, Somot S, et al. Mossbauer quantification of pyrrhotite in relation to self-heating[J]. Minerals Engineering,2010,23:652-658.
    [39]万兵.硫化矿床自燃发火可能性鉴别[J].世界采矿快报,1998,14(11):28-31.
    [40]邓时升.浅谈硫化矿石自燃与含碳量的关系[J].化工矿山技术,1980,6:6.
    [41]李孜军,吴超,周勃.硫化矿石氧化性的实验室综合评判[J].铜业工程,2003,1:40-43.
    [42]吴超,阳富强,郄军芳.硫化矿石动态自热率测定装置及其数值模拟[J].科技导报,2009,27(1):74-79.
    [43]Yang Fuqiang, Wu Chao. Investigation of the propensity of sulfide concentrates to spontaneous combustion in storage[J]. Journal of Loss Prevention in the Process Industries, 2010,24:131-137.
    [44]阳富强,吴超,石英.热重与差示扫描量热分析法联用研究硫化矿石的热性质[J].科技导报,2009,27(22):66-71.
    [45]李萍,叶威,张振华,等.硫化亚铁自然氧化倾向性的研究[J].燃烧科学与技术,2004,10(2):168-170.
    [46]王慧欣.硫化亚铁自燃特性的研究[D].青岛:中国海洋大学,2006.
    [47]赵军,张兴凯,王云海.基于程序升温氧化法的硫化矿石自燃倾向性研究[J].中国安全生产科学技术,2009,5(2):25-29.
    [48]贺兵红,吴超.硫化矿石自燃倾向性的实验室测定方法与应用[J].安全与环境工程,2006,13(1):92-95.
    [49]Rosenblum F, Spira P. Evaluation of hazard from self-heating of sulfide rock[J]. CIM Bull, 1995,88(989):44-49.
    [50]吴超,李孜军.硫化矿石动态自热率测定装置及测定方法[p].中国专利,专利中请受理号:200610136832.
    [51]Beamish B Basil, Barakat Modher A, George John D St. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions[J]. International Journal of Coal Geology, 2001,45:217-224.
    [52]Ren T X, Edwards J S, Clarke D. Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion[J]. Fuel,1999,78:1611-1620.
    [53]陆伟,王德明,周福宝,等.绝热氧化法研究煤的自燃特性[J].中国矿业大学学报,2005,34(2):213-217.
    [54]叶威,张振华,李萍,等.硫化亚铁绝热氧化反应的影响因素研究[J].石油化工腐蚀与防护,2003,20(1):19-21.
    [55]Chen X D. On basket heating methods for obtaining exothermic reactivity of solid materials: The extent and impact of the departure of the crossing-point temperature from the oven temperature[J]. Trans IChemE,1999,77B:187-192.
    [56]Chen X D, Chong L V. Some characteristics of transient self-heating in an exothermically reactive porous solid slab[J]. Trans IChemE,1995,73B:101-107.
    [57]李孜军,古德生,吴超.高温高硫矿床矿石自燃危险性的评价[J].金属矿山,2004,5:57-59.
    [58]宋学义,文艳.硫化矿岩自燃倾向性的研究[J].湖南冶金,1991,3:10-15.
    [59]周国华,彭鹏,唐承丽,等.二十世纪九十年代我国区域经济发展不平衡性的测度及评价[J].中国软科学,2002,10:87-92.
    [60]邱东.多指标综合平价方法的系统分析[M].北京:中国统计出版社,1991.
    [61]阳富强,吴超.基于距离判别分析理论的硫化矿石自燃倾向性等级划分[J].煤炭学报,2010,35(12):2111-2115.
    [62]李孜军,汪发松,马树宝.基于层次分析法和集对理论的硫化矿自燃倾向性评定[J].科技导报,2009,27(19):69-73.
    [63]赵军,张兴凯,王云海.硫化矿石自燃倾向性鉴定技术研究[J].中国安全生产科学技术,2009,5(6):105-111.
    [64]Good B H. The oxidation of sulphide minerals in the Sullivan mine[J]. CIM Bulletin,1977, 70(782):83-85.
    [65]岳梅,赵峰华,朱银凤,等.硫化物矿物氧化反应动力学实验研究[J].地球科学进展,2004,19(1):47-54.
    [66]王海晖.煤自燃倾向性测试方法综述[J].安全与环境学报,2009,9(2):132-137.
    [67]Zhang Jianzhong, Kuenzer Claudia, Tetzlaff Anke, et al. Thermal characteristics of coal fires 2:Results of measurements on simulated coal fires[J]. Journal of Applied Geophysics,2007, 63:135-147.
    [68]Zhou Fubao, Wang Deming. Directory of recent testing methods for coals to spontaneous combustion[J]. Journal of Fire Science,2004,22(2):91-96.
    [69]Carras J N, Young B C. Self-heating of coal and related materials:models, application and test methods[J]. Progress in Energy and Combustion Science,1994,20:1-15.
    [70]仲晓星.煤自燃倾向性的氧化动力学测试方法研究[D].徐州:中国矿业大学安全工程学院,2007.
    [71]Wu Chao, Li Zijun, Zhou Bo. Coincidence on relevant substances of sulfide ores in the oxidation process at ambient temperature and a new method for predicting fire[J]. Transactions of Nonferrous Metals Society of China (English Edition),2004,14(1):33-37.
    [72]Sahu H B, Mahapatra S S, Panigrahi D C. An empirical approach for classification of coal seams with respect to the spontaneous heating susceptibility of Indian coals[J]. International Journal of Coal Geology,2009,80:175-180.
    [73]阳富强,吴超,贾永军,等.GM(1,1)模型在含硫矿堆温度场预测中的应用[J].矿业快报,2007,6:12-14.
    [74]Wu Chao. Fault tree analysis of spontaneous combustion of sulfide ores and its risk assessment[J]. Journal of Central South University of Technology (English Edition),1995, 2(2):77-80.
    [75]李明,吴超,李孜军.多因素耦合条件下硫化矿自燃神经网络动态预测模型研究[J].中国安全科学学报,2007,17(8):32-36.
    [76]夏长念,吴超.采场硫化矿石爆堆自燃危险性评价研究[J].火灾科学,2005,15(2):106-110.
    [77]高科,李明,吴超,等.突变级数法在硫化矿爆堆自燃发火预测中的应用[J].金属矿山,2008,2:20-34.
    [78]刘辉,吴超,李孜军.硫化矿石自燃灾害的脆性风险源[J].中南大学学报(自然科学版),2011,42(3):752-757.
    [79]阳富强,吴超.基于未确知测度理论的硫化矿石爆堆自燃危险性评价[J].中南大学学报(自然科学版),2010,41(6):2373-2380.
    [80]阳富强.硫化矿石堆自燃预测预报技术研究[D].长沙:中南大学资源与安全工程学院,2007.
    [81]古德生,李夕兵.现代金属矿开采技术[M].北京:冶金工业出版社,2006.
    [82]李鸿业,陈希廉,刘立民,等.硫化矿床矿岩自燃的地质调查[J].化工矿山技术,1979,4:1-7.
    [83]#12
    [84]张虹,张春生.黄铁矿自燃机理及其预防[J].铜业工程,2004,3:53-54.
    [85]黄跃军.高温高硫矿床矿石自燃性及防治技术研究[J].有色矿冶,2000,16(1):13-15.
    [86]李济吾,宋学义.矿岩氧化自燃数学模型的研究[J].南方冶金学院学报,1990,11(1):7-17.
    [87]吴超,孟廷让.采场硫化矿石爆堆自燃早期预测数模的研究[J].中南矿冶学院学报,1994,25(增刊4):56-59.
    [88]Rosema A, Guan H, Veld H. Simulation of spontaneous combustion, to study the causes of coal fires in the Rujigou Basin[J]. Fuel,2001,80:7-16.
    [89]Fierro V, Miranda J L, Romero C, et al. Model predictions and experimental results on self-heating prevention of stockpiled coals[J]. Fuel,2001,80:125-134.
    [90]Yuan Liming, Smith Alex C. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas[J]. Fuel,2008,87:3409-3419.
    [91]William Hogland, Marcia Marques. Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel[J]. Resources, Conservation and Recycling,2003,40:53-69.
    [92]Sensogut C, Ozdeniz A H. Statistical modelling of stockpile behaviour under different atmospheric conditions-western lignite corporation (WLC) case[J]. Fuel,2005,84: 1858-1863.
    [93]Liu Lang, Zhou Fubao. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining[J]. International Journal of Coal Geology,2010, 82:27-36.
    [94]Wu Chao, Wu Guomin, Li Zijun, et al. A frame of knowledge-based consulting system for sulfide ore spontaneous combustion forecast[A]. Mine Hazardous Prevention and Control Technology[C], Beijing:Science Press,2007:9-15.
    [95]鲜学福,王宏图,姜德义.我国煤矿矿井防灭火技术研究综述[J].中国工程科学,2001,3(12):28-32.
    [96]王永湘.利用指标气体预测预报煤矿自燃火灾[J].煤矿安全,2001,6:15-16.
    [97]卢守善,宋玉方.柴里煤矿自然发火的预测预报[J].煤矿安全,1995,8:12-13.
    [98]许延辉,许满贵,徐精彩.煤自燃火灾指标气体预测预报的几个关键问题探讨[J].矿业安全与环保,2005,32(1):16-24.
    [99]Liu Hui, Wu Chao. A new approach to detect fire source underground mine for preventing spontaneous combustion of sulfide ores[J]. Procedia Engineering,2010,7:318-326.
    [100]谢振华.大屯矿井煤炭自燃机理及预测预报技术研究[D].北京:北京科技大学,2005.
    [101]王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2008.
    [102]煤炭科学研究总院抚顺分院.利用磁感应及远距离测定作出煤层火灾区域地图[J].国外煤矿安全信息,1996.
    [103]祁明星,万兆昌.陕北煤田火区磁探工作方法及效果[J].煤炭科学技术,1987,8:291-297.
    [104]程卫民,陈平,崔洪义,等.矿井煤炭自燃高温火源点区域的探测实践[J].炭科学技术,1999,27(11):4-7.
    [105]王连成,高克德.地质雷达探测采空区隐蔽火源[J].煤炭科学技术,1988,26(2):7-9.
    [106]Voigt Stefan, Tetzlaff Anke, Zhang Jian-zhong, et al. Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China[J]. International Journal of Coal Geology,2004,59:121-136.
    [107]Gangopadhyay Prasun K, Lahiri-Dutt Kuntala, Saha Kanika. Application of remote sensing to identify coalfires in the Raniganj Coalbelt, India[J]. International Journal of Applied Earth Observation and Geoinformation,2006,8:188-195.
    [108]宋录生,孙淑君,武英刚,等.矿井惰性气体方灭火技术[M].北京:化学工业出版社,2008.
    [109]Kim Ann G. Locating fires in abandoned underground coal mines[J]. International Journal of Coal Geology,2004,59:49-62.
    [110]Taku Ide S, Orr Jr F M. Comparison of methods to estimate the rate of CO2 emissions and coal consumption from a coal fire near Durango, CO[J]. International Journal of Coal Geology,2011,86:95-107.
    [111]中南工业大学,新桥硫铁矿.新桥硫铁矿采场矿石自燃防灭火综合技术研究[R],1995.
    [112]胡汉华.铜山铜矿采场防灭火试验研究[J].金属矿山,2001,5:48-51.
    [113]李济吾.某硫化矿石氧化自燃的调查及防止措施[J].江西冶金,1994,14(2):40-13.
    [114]Wu Chao, Li Zijun, Zhou Bo, et al. Investigation of chemical suppressants for inactivation of sulfide ores[J]. Journal of Central South University of Technology,2001,8(3):180-184.
    [115]Wu Chao, Li Zijun, Zhou Bo. Test of several chemical suppressants for fire prevetion in mines with sulfide ores[J]. Mineral Resources Engineering,2000,9(2):33-37.
    [116]陈平.结晶矿物学[M].北京:化学工业出版社,2006.
    [117]李萍,翟玉春,张振华,等.FeS引发储油罐着火温度动态变化曲线的研究[J].中国安全科学学报,2004,14(3):44-48.
    [118]Raichur A M, Wang X H, Parekh B K. Quantifying pyrite surface oxidation kinetics by contact angle measurements[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,167:245-251.
    [119]张平,陈永亨,刘娟,等.黄铁矿氧化的原位衰减全反射红外光谱表征[J].光谱学与光谱分析,2008,28(11):2554-2556.
    [120]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.
    [121]Murphy R, Strongin D R. Surface reactivity of pyrite and related sulfides[J]. Surface Science Reports,2009,64:1-45.
    [122]Belzile N, Chen Y W, Cai M F, et al. A review on pyrrhotite oxidation[J]. Journal of Geochemical Exploration,2004,84:65-76.
    [123]Vanyukov A V, Razumovskaya N N. Hydrothermal oxidation of pyrrhotites[J]. Izv. Vyssh. Uchelon. Zaved., Tsvetn. Metall.1979,6:605-610.
    [124]Janzen M P, Nicholson R V, Scharer J M. Pyrrhotite reaction kinetics:reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution[J]. Geochimica et Cosmochimica Acta,2000,64(9):1511-1522.
    [125]Gunsinger M R, Ptacek C J, Blowes D W, et al. Evalution of long-term sulfide oxidation processes within pyrrhotite-rich tailings, Lynn Lake, Manitoba[J]. Contaminant Hydrology 2006,83:469-471.
    [126]Steger H F. Oxidation of sulphide minerals-Ⅵ Ferrous and ferric iron in the water soluble oxidation products of iron sulphide minerals[J]. Talanta,1979,26:455-460.
    [127]Abraitis P K, Pattrick R A D, Vaughan D J. Variations in the compositional, textural and electrical properties of natural pyrite:a review[J]. International Journal of Mineral Processing,2004,74(1-4):41-59.
    [128]Lehner S W, Savage K S, Ayers J C. Vapor growth and characterization of pyrite (FeS2) doped with Co, Ni, and As:variations in semiconducting properties[J]. J. Cryst. Growth, 2006,286(2):306-317.
    [129]Stephen Lehner, Kaye Savage, Madalina Ciobanu, et al. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics:An electrochemical study of synthetic pyrite[J]. Geochimica et Cosmochimica Acta,2007,71:2491-2509.
    [130]Stephen Lehner, Kaye Savage. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics:Batch and flow-through reactor experiments with synthetic pyrite[J]. Geochimica et Cosmochimica Acta,2008,72:1788-1800.
    [131]仇勇海,陈自珍.金属硫化矿体自燃的电化学机理[J].中国有色金属学报,1995,5(4):1-4.
    [132]Nowak P, Krauss E, Pomianowski A. The electrochemical characteristics of the galvanic corrosion of sulphide minerals in short circuited model galvanic cells[J]. Hydrometallurgy, 1984,12:95-110.
    [133]刘庆友,李和平,周丽.硫化矿原电池效应研究现状[J].矿物岩石地球化学通报,2007,26(3):284-289.
    [134]吴超,孟廷让,王坪龙,等.水对硫化矿石氧化速度的影响研究[J].西部探矿工程,1 994,6(2):59-62.
    [135]仇勇海,陈白珍.水在金属硫化矿体自燃中的作用[J].中国有色金属学报,1996,6(3):5-10.
    [136]Rosenblum F, Spira P. Evaluation and control of self-heating in sulphide concentrates[J]. CIM Bulletin,2001,94(1056):92-99.
    [137]万鑫,赵杉林,李萍.氧气浓度对铁的硫化物自燃性的影响[J].腐蚀与防护,2005,26(12):512-514.
    [138]McKibben M A, Barnes H L. Oxidation of pyrite in low temperature acidic solutions:rates laws and surface texture[J]. Geochim. Cosmochim. Acta,1986,50:1509-1520.
    [139]Williamson M, Rimstidt J D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J]. Geochim. Cosmochim. Acta,1994,58:5443-5454.
    [140]冯春花,李均淑.铁离子在硫化矿氧化自燃过程中的作用[J].长沙矿山研究院季刊,1992,12(增刊):167-170.
    [141]Steger H F. Oxidation of sulfide minerals Ⅶ. Effect of temperature and relative humidity on the oxidation of pyrrhotite[J]. Chemical Geology,1982,35:281-295.
    [142]李济吾.溶液pH值对硫化矿石氧化速度的影响研究[J].南方冶金学院学报,1993,14(2):95-101.
    [143]兰叶青,周钢,刘止华.不同条件下黄铁矿氧化行为的研究[J].南京农业大学学报,2000,23(1):81-84.
    [144]蔡美芳,党志.实验室条件下磁黄铁矿的氧化机理[J].华南理工大学学报(自然科学版),2005,33(11):10-14.
    [145]李均淑,徐开梁.硫化矿石氧化自燃机理的探讨[J].长沙矿山研究院季刊,1992:8-12
    [146]赵雪娥,蒋军成,王若菌.含硫油品储罐自燃机理及预防技术研究[J].油气储运,2006,25(3):51-54.
    [147]阳富强,吴超,李孜军,等.采场环境中硫化矿石氧化自热的影响因素[J].科技导报,2010,28(21):106-111.
    [148]Wu Chao, Wang Pinglong. In-situ measurement of breeding-fire of sulfide ore dumps[J]. Transactions of Nonferrous Metals Society of China (English Edition),1997,7(1):33-37.
    [149]王坪龙.硫化矿石自燃发火规律现场实验研究[J].化工矿物与加工,1999,5:8-10.
    [150]程传煊.表面物理化学[M].北京:科学技术出版社,1995.
    [151]Wang H H, Dlugogorski B Z, Kennedy E M. Coal oxidation at low temperatures:oxygen consumption, oxidation products, reaction mechanism and kinetic modeling[J]. Progress in Energy and Combustion Science,2003,29:487-513.
    [152]李林.煤自然活化机理及自燃过程实验研究[D].重庆:重庆大学,2008.
    [153]吴超,周勃,孟廷让.硫化矿石低温氧化阶段的电化学机理及其应用[J].中南矿冶学院学报,1994,25(增刊4):20-23.
    [154]宋学义,文彦.硫化矿岩自燃机理的研究[J].湖南冶金,1989,4:1-7.
    [155]柳建设.硫化矿物生物提取及腐蚀电化学研究[D].长沙:中南大学资源加工与生物工程学院,2002.
    [156]Silverman M P. Mechanism of bacterial pyrite oxidation[J]. Bacteriol.,1967,94: 1046-1051.
    [157]关晓辉,赵以恒,刘海宁.硫化物(矿石)的生物氧化机制研究[J].东北电力学院学报,1999,19(2):1-9.
    [158]奥尔松GJ.金属硫化矿物的生物氧化基本原理[J].国外金属矿选矿,2004,12:34-38.
    [159]杨松荣,邱冠周,胡岳华.硫化矿生物氧化机理的探讨[J].有色金属,2003,55(3):80-82.
    [160]Wu C, Li Z J. A simple method for predicting the spontaneous combustion potential of sulfide ores at ambient temperature[J]. Transactions of the Institutions of Mining and Metallurgy, Section A,2005,114 (2):125-128.
    [161]Wu C, Meng T R. Experimental investigation on chemical thermodynamics behavior of sulphide ores during spontaneous combustion[J]. West-China Exploration Engineering.1995, 7:57-65.
    [162]Balaz P. Mechanical activation in hydrometallurgy[J]. Int. J. Miner. Process.2003,72: 341-354
    [163]李冷,曾宪滨.粉碎机械力化学的进展及其在材料开发中的应用[J].武汉工业大学学报,1993,15(1):23-26.
    [164]吴其胜.无机材料机械力化学[M].北京:化学工业出版社,2008.
    [165]杨南如.机械力化学过程及效应(Ⅰ)—机械力化学效应[J].建筑材料学报,2000,3(3):19-26.
    [166]Peters K. Mechanochemische Peaktionen[J]. Frankfurt,1962:78-79.
    [167]张超.机械化学热量仪与机械化学能量学研究[D].长沙:中南大学化学化工学院,2008.
    [168]陈津文,吴年强,李志章.描述机械合金化过程的理论模型[J].材料科学与工程,1998,16(1):19-23.
    [169]赵中伟,赵天从,李洪桂.固体机械力化学[J].湖南有色金属,1995,11(2):44-48.
    [170]杨南如.机械力化学过程及效应(Ⅱ)—机械力化学过程及应用[J].建筑材料学报,2000,3(2):93-97.
    [171]Heinicke G. Recent advances on Tribochemistry[A]. Proc In Symp on Powder Technology 81. Kyoto:1981:354-364.
    [172]陈鼎.固液反应球磨工艺及其原理研究[D].长沙:中南大学材料科学与工程学院,2003.
    [173]邱俊,吕宪俊,陈平,等.铁矿选矿技术[M].北京:化学工业出版社,2009.
    [174]陈鼎,陈振华.机械力化学[M].北京:化学工业出版社,2008.
    [175]陈鼎,严红革,黄培云.机械力化学技术研究进展[J].稀有金属,2003,27(2):293-298.
    [176]Balaz P, Takacs L, Luxova M, et al. Mechanochemical processing of sulphidic minerals[J]. Int. J. Miner. Process,2004,74S:S365-S371.
    [177]赵中伟,杨家红.固体缺陷类型与化学反应速度[J].中南工业大学学报,1997,28(1):28-29.
    [178]Carslaw H S, Jaeger J C. Heat conduction solids[M]. New York:Oxford University Press, 1959:255.
    [179]Schwarz R B, Koch C C. Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and posders of intermetallics[J]. Applied Physics Letters, 1986,49(3):146-148.
    [180]肖忠良.机械活化硫化矿能量学研究[D].长沙:中南大学化学化工学院,2003.
    [181]Urakaev F Kh, Boldyev V V. Mechanism and kinetics of Mechanochemical processes in comminuting devices 2. Application of the theory[J]. Experiment. Powder Technology,2000, 107:197-206.
    [182]Nakayama Keiji, Leiva Jesus Andino, Enomoto Yuji. Chemi-emission of electrons from metal surfaces in the ting process due to metal/interactions[J]. Tribology International,1995, 28(8):507-515.
    [183]Nakayama Keiji, Hashimoto Hiroshi. Triboemission, tribochemical reaction, and friction and wear in ceramics under various nbutane gas pressures[J]. Tribology International,1996, 29(5):385-393.
    [184]解世俊.金属矿床地下开采[M].北京:冶金工业出版社,2008.
    [185]Welham N J. Mechanochemical processing of enargite(Cu3AsS4)[J]. Hydrometallurgy,2001, 62:165-173.
    [186]Zhao Zhongwei, Zhang Youxin, Chen Xingyu, et al. Effect of mechanical activation on the leaching kinetics of pyrrhotite[J]. Hydrometallurgy,2009,99:105-108.
    [187]Godockova E, Balaz P, Bastl Z, et al. Spectroscopic study of the surface oxidation of mechanically activated sulphides[J]. Applied Surface Science,2002,200:36-47.
    [188]李洪桂,赵中伟,赵天从.机械活化黄铁矿的物理化学性质[J].中南工业大学学报,1995,26(3):349-352.
    [189]Bal P, Bastl Z, Bfianin J, et al. Surface and bulk properties of mechanically activated zinc sulphide[J]. Journal of Materials Science,1992,27:653-657.
    [190]EEymery J, Ylli F. Study of a mechanochemical transformation in iron pyrite[J]. Journal of Alloys and Compounds,2000,298:306-309.
    [191]Feng D, Aldrich C. A comparison of the floatation of ore from the Merensky Reef after wet and dry grinding[J]. Int. J. Miner. Process.,2000,60:115-129.
    [192]Tromans D, Meech J A. Enhanced dissolution of minerals:Microtopography and mechanical activation[J]. Minerals Engineering,1999,12(6):609-625.
    [193]Hu Huiping, Chen Qiyuan, Yin Zhoulan, et al. Mechanism of mechanical activation for sulfide ores[J]. Transactions of Nonferrous Metals Society of China,2007,17:205-213.
    [194]胡慧萍.机械活化硫化矿结构与性质变化规律的基础研究[D].长沙:中南大学化学化工学院,2003.
    [195]Agnew C J, Welham N J. Oxidation of chalcopyrite by extended milling[J]. Int. J. Miner. Process.,2005,77:208-216.
    [196]Eymery J P, Ylli F. Study of a mechanochemical transformation in iron pyrite[J]. Journal of Alloys and Compounds,2000,298:306-309.
    [197]Aylmore Mark G, Lincoln Frank J. Mechanochemical milling-induced reactions between gases and sulfide minerals I. Reactions of SO2 with arsenopyrite, pyrrhotite and pyrite[J]. Journal of Alloys and Compounds,2000,309:61-74.
    [198]Aylmore Mark G, Lincoln Frank J. Mechanochemical milling-induced reactions between gases and sulfide minerals:Ⅱ. Reactions of CO2 with arsenopyrite, pyrrhotite and pyrite[J]. Journal of Alloys and Compounds,2001,314:103-113.
    [199]Samayamutthirian Palaniandy, Khairun Azizi Mohd Azizli, Hashim Hussin, et al. Study on mechanochemical effect of silica for short grinding period[J]. Int. J. Miner. Process,2007, 82:195-202.
    [200]Ludwig G. X-ray testing of crystallite size, lattice defects and amorphization phenomena. in: Juhasz Z (ed.). Analysis of Mechanically Activated Solids. Budapest:Kozlekedesi Dokumentdcios Vallalat.1978.
    [201]曾凡,胡永平,杨毅,等.矿物加工颗粒学[M].徐州:中国矿业大学出版社,2001.
    [202]杨华明.材料机械化学[M].北京:科学出版社,2010.
    [203]陈启元,胡慧萍,尹周澜.硫化矿机械活化机理研究现状与展望[J].中国稀土学报,2004,22(专辑):117-127.
    [204]张超,刘士军,陈启元.机械活化黄铁矿的储能研究[J].有色金属(冶炼部分),2009,3:7-10.
    [205]Hu Huiping, Chen Qiyuan, Yin Zhoulan, et al. Study on the kinetics of thermal decomposition of mechanically activated pyrite[J]. Thermochimica Acta,2002,389:79-83.
    [206]Hu Huiping, Chen Qiyuan, Yin Zhoulan, et al. Thermal behaviour of mechanically activated pyrites by thermogravimetry(TG) [J]. Thermochimica Acta,2002,398:233-240.
    [207]Welham N J. Mechanochemical processing of gold-bearing sulphides[J]. Minerals Engineering,2001,14(3):341-347.
    [208]阳富强,吴超.硫化矿样氧化自热性质的新测试方法[J].中国有色金属学报,2010,20(5):976-982.
    [209]刘剑,陈文胜,齐庆杰.基于活化能指标煤的自燃倾向性研究[J].煤炭学报,2005,30(1):67-70.
    [210]Yang Fuqiang, Wu Chao. Evaluation on spontaneous combustion tendency of sulfide ores by activation energy[A]. The 2nd International Conference on Mine Hazards Prevention and Control[C]. Paris:Atlantis Press,2010:244-250.
    [211]Jones J C, Henderson K P, Littlefair J, et al. Kinetic parameters of oxidation of coals by heat-release measurement and their relevance to self-heating tests[J]. Fuel,1998,77(1/2): 19-22.
    [212]仲晓星,王德明,陆伟,等.交叉点温度法对煤氧化动力学参数的研究[J].湖南科技大 学学报(自然科学版),2007,22(1):13-16.
    [213]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [214]Iliyas A, Hawboldt K, Khan F. Thermal stability investigation of sulfide minerals in DSC[J]. Journal of Hazardous Materials,2010,178:814-822.
    [215]沈兴.差热、热重分析与等温固相反应动力学[M].北京:冶金工业出版社,1995.
    [216]李敏,胡松,孙学信,等.热重与差示扫描量热分析法联用研究城市生活垃圾中可燃物反应机理[J].化学工程,2003,3:53-57.
    [217]胡垚沁,郁强,周传华.黄铁矿氧化焙烧过程的热分析[J].有色金属,1997,49(1):78-82.
    [218]苏宁,李江华.试验条件对菱铁矿热分析曲线的影响[J].昆钢科技,2008,1:42-47.
    [219]刘剑,赵凤杰.升温速率对煤的自燃倾向性表征影响的研究[J].煤矿安全,2006,5:4-6.
    [220]Dimitrov R, Bonev I. Mechanism of zinc sulphide oxidation[J]. Thermochimica Acta,1986, 106:9-25.
    [221]Yang Fuqiang, Wu Chao, Cui Yan, et al. Apparent activation energy for spontaneous combustion of sulfide concentrates in storage yard[J]. Transactions of Nonferrous Metals Society of China,2011,21:395-401.
    [222]Forsmo S P E. Oxidation of magnetite concentrate powders during storage and drying[J]. Int. J. Miner. Process,2005,75:135-144.
    [223]Zivkovic Z D, Mitevska N, Savovic V. Kinetics and mechanism of the chalcopyrite-pyrite concentrate oxidation process[J]. Thermochimica Acta,1996,282/283:121-130.
    [224]Dunn J G. The oxidation of sulphide minerals[J]. Thermochimica Acta,1997,300:127-139.
    [225]胡荣祖,高胜利,赵凤起,等.热分析动力学(第二版)[M].北京:科学出版社,2001.
    [226]Min Fanfei, Zhang Mingxu, Chen Qingru. Non-isothermal kinetics of pyrolysis of three kinds of fresh biomass[J]. Journal of China University of Mining & Technology,2007,17(1): 0105-0111.
    [227]庞永莉,肖国先,酒少武.菱铁矿热分解动力学研究[J].西安建筑科技大学学报(自然科学版),2007,39(1):136-140.
    [228]Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions:A variant on the Ozawa-Flynn-Wall method[J]. Thermochimica Acta,1996,285:309-323.
    [229]Malow M, Krause U. The overall activation energy of the exothermic reactions of thermally unstable materials[J]. Journal of Loss Prevention in the Process Industries,2004,17:51-58.
    [230]周勃,吴超,李茂楠,等.硫化矿石预氧化前后自燃倾向性的比较研究[J].中国矿业,1998,7(5):77-79.
    [231]文虎.煤自燃过程的实验及数值模拟研究[D].西安:西安科技大学能源学院,2003.
    [232]张瑞林,杨运良,马哲伦,等.自燃采空区风流场、温度场及热力风压场的计算机模拟[J].焦作工学院学报,1998,17(4):253-257.
    [233]贝尔,著.李竟生,等译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [234]黄文章.煤矸厂山自燃发火机理及防治技术研究[D].重庆:重庆大学,2004.
    [235]邓军.煤自然发火期预测模型的研究与应用[D].西安:西安交通大学,2004.
    [236]刘剑.采空区自然发火数学模型及其应用研究[D].沈阳:东北大学,1999.
    [237]Incropera Frank P, Dewitt Dawitt P. Introduction to Heat Transfer[M]. New York:School of Mechanical Engineering, Purdue University,1985.
    [238]吴晓光.煤自然发火实验台温度场数值模拟研究[D].西安:西安科技大学,2005.
    [239]Yang Fuqiang, Wu Chao, Pan Wei, et al. Risk prediction for spontaneous combustion of sulfide ores in stope[A]. Progress in Safety Science and Technology (Part A)[C]. Beijing: Science Press,2010:586-592.
    [240]邓军,徐精彩,张迎弟,等.煤最短自然发火期实验及数值分析[J].煤炭学报,1999,24(3):274-278.
    [241]余明高,王清安,范维澄,等.煤层自然发火期预测的研究[J].中国矿业大学学报,2001,30(7):384-387.
    [242]余明高,黄之聪,岳超平.煤最短自然发火期解算数学模型[J].煤炭学报,2001,26(5):516-519.
    [243]李济吾,宋学义.硫化矿石氧化自燃时间的研究[J].湖南冶金,1990,5(3):7-12.
    [244]边炳鑫,解强,赵由才,等.煤系固体废弃物资源化技术[M].北京:化学工业出版社,2005.
    [245]盛耀彬,汪云甲,束立勇.煤矸石山自燃深度测算方法研究与应用[J].中国矿业大学学报,2008,37(4):545-550.
    [246]中南大学资源与安全工程学院,铜陵有色冬瓜山铜矿.硫化矿石结块和硫铁精矿自燃控制关键技术研究[R],2008.
    [247]孙金华,丁辉.化学物质热危险性评价[M].北京:科学出版社,2005.
    [248]Janes D, Carson A, Accorsi, et al. Correlation between self-ignition of a dust layer on a hot surface and in baskets in an oven[J]. Journal of Hazardous Materials,2008,159:528-535.
    [249]Nelsonim I, Balakrishnan E, Chen X D. A Semenov model of self-heating in compost piles[J]. Trans IChemE,2003,81 (Part B):375-383.
    [250]仲晓星,王德明,周福宝,等.金属网篮交叉点法预测煤自燃临界堆积厚度[J].中国矿业大学学报,2006,35(6):718-721.
    [251]Jones J C. A new and more reliable test for the propensity of coals and carbons to spontaneous heating[J]. Journal of Loss Prevention in the Process Industries,2000,13: 69-71.
    [252]Jones J C, Puignou A. On the thermal ignition of wood waste[J]. Trans IChemE,1998, 76(Part B):205-210.
    [253]Nugroho Y S, Mcintosh A C, Gibbs B M. Using the crossing point method to assess the self-heating behavior of Indonesian coals[A]. Symposium (International) on Combustion[C], 1998,27(2):2981-2989.
    [254]Sujanti W, Zhang D K, Chen X D. Low-temperature oxidation of coal studied using wire-mesh reactors with both steady-state and transient methods[J]. Combustion and Flame, 1999,117:646-651.
    [255]王光远.论未确知性信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(4):1-9.
    [256]吴义锋,薛联青,吕锡武.基于未确知数学理论的水质风险评价模式[J].环境科学学报,2006,26(6):1047-1052.
    [257]刘开第,庞彦军,孙光勇,等.城市环境质量的未确知测度评价[J].系统工程理论与实践,1999,12:52-58.
    [258]阳富强,高进,张玉柱,等.尾矿库安全评价的未确知测度模型[J].现代矿业,2010,8:7-10.
    [259]闫乐林,王国旗,许满贵,等.煤矿安全预评价的未确知测度模型及应用[J].灾害学,2004,19(2):18-22.
    [260]李如忠,洪天求,熊鸿斌,等.基于未确知数学理论的沉积物重金属污染评价模式[J].农业环境科学学报,2007,26(6):2167-217.
    [261]曹庆奎,刘开展,张博文.用熵计算客观型指标权重的方法[J].河北建筑科技学院学报,2000,17(3):40-42.
    [262]Wu Chao, Xia Changnian, Li Zijun. Study assessment system for evaluating combustion of sulfide ores in mining stope[A]. Progress in Safety Science and Technology (Part A-B) [C], Beijing:Science Press,2006:1599-1603.
    [263]中南大学资源与安全工程学院,新疆阿舍勒铜业股份有限公司.新疆阿舍勒铜矿矿石自燃倾向性综合判定的研究[R],2004.
    [264]刘玉新.颗粒材料孔结构形态的测量和表征[J].中国粉体技术,2000,6(4):21-23.
    [265]格雷格S J,辛K S W,著.高敬琮,等译.吸附、比表面积与孔隙率[M].北京:化学工业出版社,1989.
    [266]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [267]孙强,段法兵,谢和平.煤体爆破破碎分维评价方法的研究[J].岩石力学与工程学报,2000,19(4):505-508.
    [268]肖肠.近距离煤层采空区自然发火预测模型[D].西安:西安科技大学,2005.
    [269]刘艳华,徐精彩,贺敦良.空气在破碎煤体中的流动特性[J].陕西煤炭技术,1991,2:20-22.
    [270]王振平,文虎,黄福昌.松散煤体中的氧气扩散模型及数值分析[J].煤炭学报,2002,27(3):229-232.
    [271]王补宣.工程传热传质学(下册)[M].北京:科学出版社,1998.
    [272]毛丹,陈沅江,吴超.热线法测定散体硫化矿石导热系数[J].金属矿山,2009,4:65-69.
    [273]吴超,宋学义,孟廷让.巷道型高温采场不稳定传热系数的研究[J].中南矿冶学院学报,1992,23(6):646-651.
    [274]宋学义,吴超,谢永铜.硫化矿石氧化自热量的测定方法研究[J].湖南冶金,1991,6:3-8.
    [275]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [276]杨永军.温度测量技术现状和发展概述[J].测试技术,2009,29(4):62-65.
    [277]王魁汉.温度测量技术[M].沈阳:东北工学院出版社,1991.
    [278]Gangopadhyay Prasun K, Lahiri-Dutt Kuntala, Saha Kanika. Application of remote sensing to identify coalfires in the Raniganj Coalbelt, India[J]. International Journal of Applied Earth Observation and Geoinformation,2006,8:188-195.
    [279]田裕鹏.红外检测与诊断技术[M].北京:化学工业出版社,2006.
    [280]晏敏,楚武,永红,等.红外测温原理及误差分析[J].湖南大学学报(自然科学版),2004,31(5):110-112.
    [281]程卫民,王振平,辛嵩,等.矿井煤炭自燃红外探测仪的选择及应用方法[J].煤矿安全,2003,34(10):23-25.
    [282]周晓冬,邓志华,陈晓军,等.数字红外热像测温技术的应用和局限[J].火灾科学,1999,8(4):64-69.
    [283]彭焕良.热成像技术发展综述[J].激光与红外,1997,27(3):131-136.
    [284]阳富强,吴超.红外探测技术在硫化矿石堆自燃检测中的应用[J].金属矿山,2009,3:149-153.
    [285]Yang Fuqiang, Wu Chao, Gao Ge, et al. Technical development on non-contact measurement of monitoring self-heating of sulfide ore dumps[A]. The Third International Symposium on Modern Mining & Safety Technology Proceedings[C]. Beijing:Coal Industry Publishing House,2008:900-905.
    [286]李珞铭,吴超,阳富强,等.红外测温法测定硫化矿石堆自热温度的影响因素研究[J].火灾科学,2008,17(1):49-53.
    [287]高歌,吴超,阳富强,等.红外测温技术监测硫精矿堆自热状态的研究[J].安全与环境学报,2008,8(5):146-149.
    [288]刘辉,吴超,阳富强,等.红外热像技术探测硫化矿石自燃火源的影响因素及其解决方 法[J].科技导报,2010,28(2):91-95.
    [289]郑兆平,曾汉生,丁翠娇,等.红外热成像测温技术及其应用[J].红外技术,2003,25(1):96-98.
    [290]杨立.红外热像仪测温计算与误差分析.红外技术[J],1999,21(4):20-24.
    [291]孙晓刚,李云红.红外热像仪测温技术发展综述.激光与红外,2008,38(2):101-107.
    [292]寇蔚,杨立.热测量中误差的影响因素分析[J].红外技术,2001,23(3):32-34.
    [293]许俊芬,王树根.矿物的热辐射性质及其应用[J].四川有色金属,1996,1:31-34.
    [294]孙丽.距离对红外热像仪测温精度的影响研究[D].长春:长春理工大学,2008.
    [295]刘高文,郭一丁.红外热成像仪温度场测量的几何信息还原[J].红外技术,2004,26(1):56-59.
    [296]韩玉阁,宣益民.大气传输特性对目标与背景红外辐射特性的影响[J].应用光学,2002,23(6):8-13.
    [297]张健,杨立,刘慧开.环境高温物体对红外热像仪测温误差的影响[J].红外技术,2005,27(5):719-422.
    [298]Chatterjee R S. Coal fire mapping from satellite thermal IR data-A case example in Jharia Coalfield, Jharkhand, India[J]. ISPRS Journal of Photogrammetry & Remote Sensing,2006, 60:113-128.
    [299]张啸.手持式激光测距仪的研究与设计[D].合肥:合肥工业大学,2010.
    [300]李晓萍,江洪喜.红外测温及其应用[J].煤炭技术,2003,22(10):88-89.
    [301]程文楷,刘永平.矿用红外辐射测温技术的研究[J].煤炭学报,1995,20(6):578-582.
    [302]林瑶,张德欣.如何正确选择红外测温仪[J].仪表技术与传感器,1999,10:40-42.
    [303]郑子伟.红外测温仪概述[J].计量与测试技术,2006,33(10):22-23.
    [304]张亚琴,郁标.红外成像检测技术基本原理及其应用范围[J].上海地质,2002,4:49-50.
    [305]马民.煤层隐蔽火源红外成像探测技术的应用研究[D].西安:西安科技大学,2009.
    [306]Wu Chao, Li Zijun, Yang Fuqiang, et al. Risk forecast of spontaneous combustion of sulfide ore dump in a stope and controlling approaches of the fire[J]. Archives of Mining Science,2008,53(4):565-579.
    [307]Yuan Liming, Smith Alex C. CFD modeling of spontaneous heating in a large-scale coal chamber[J]. Journal of Loss Prevention in the Process Industries,2009,22:426-433.
    [308]王振平,程卫民,辛嵩,等.煤巷近距离自燃火源位置的红外探测与反演[J].煤炭学报,2003,28(6):603-607.
    [309]Bogdan Cianciara, Henryk Marcak. Localization of fire source in the mining excavation on the base of temperature measurements[J]. Achieves of Mining Science,1987,32(2): 243-265.
    [310]林瑞泰.热传导理论与方法[M].天津:天津大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700