用户名: 密码: 验证码:
西昆仓地区成矿地质条件与密西西比河谷型铅锌矿床成矿模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆西昆仑地区是我国西部待开发的重要成矿区之一,将成为我国新的矿产资源(特别是铅锌资源)基地。
     本文运用区域成矿学理论从沉积(变质)建造、岩浆活动、构造演化以及区域地球物理场和地球化学场特征等方面系统地阐述了西昆仑地区(特别是奥依塔格—库尔良晚古生代裂陷盆地)的成矿地质条件。并通过系统的野外地质调查和深入的室内测试研究,对区内优势矿种——铅锌矿产进行了重点研究,获得了大量创新性成果。从矿床的地质特征和微量元素、稳定同位素、稀土元素地球化学及流体包裹体物理化学性质等方面,论证了本区以塔木、卡兰古为代表的这类层控型铅锌矿床属于密西西比河谷型铅锌矿床。在此基础上,建立了该区密西西比河谷型铅锌矿床的成矿模式和找矿模型,开展了成矿预测。取得的主要成果如下:
     根据西昆仑区内的沉积(变质)建造类型、岩浆岩演化特点,结合区域构造特征,将西昆仑及邻近地区划分为5个一级构造单元,6个二级构造单元和7个三级构造单元,论证了各构造演化阶段的大地构造属性,探讨了各期构造运动对区内金属成矿作用的影响。
     通过对西昆仑地区自新元古宙以来构造演化特征的分析,认为西昆仑地区最重要的成矿单元(奥依塔格—库尔良弧后裂谷盆地)是在晚古生代开始形成,到二叠纪末闭合。其所处的特殊构造位置和区内多期构造作用为铅锌等金属成矿创造了良好条件。
     区域构造研究表明印度大陆的楔入是造成西昆仑地区大规模推覆构造发生的主要原因,同时也是该区在中生代以来陆内演化阶段的主要特点。这种大规模推覆和褶皱作用所引发的大规模热卤水运移、循环,特别是油田卤水与深层流体的混合导致了区内矿质的沉淀。这些新思路不仅丰富了该区成矿理论与成矿规律的研究,还将对该区正在进行的科研工作和找矿实践起到一定的指导作用。
     通过矿床地质研究和成矿构造分析得出:区域性断裂及次一级断裂构造对本区铅锌矿的控制作用十分明显。铅锌矿床(点)的分布,总体上受区域性深大断裂控制;短轴背斜、穹隆构造的倾覆端、转折端是形成大而富矿体的有利构造部位;并对其中的典型矿床进行了详细的地质特征描述。这一认识不仅深化了区内铅锌矿床成矿机制的研究,而且还
    
    为今后的找矿工作指明了方向。
     在卡兰古矿区,通过实地考察,总结出了区内铅、锌矿化与岩性、
    岩相变化带及硅化、白云石化等围岩蚀变现象密切相关的规律。新发现了
    “雪顶构造”、“条带状构造”等密西西比河谷型铅锌矿床证据。这些发
    现,对于该区铅锌矿床的厘定具有重要意义。
     同位素、微量元素和稀土元素地球化学、矿物流体包裹体成分及流
    体物理化学性质的研究表明:区内铅锌矿床的成矿物质主要来源于前泥
    盆纪基底,基本上没有地慢物质和岩浆成分的参与;成矿作用主要与油
    田卤水和深层卤水的混合作用有关;成矿金属元素主要以硫氢配合物形
    式迁移;成矿流体的驱动力为构造应力和重力。
     在成矿机制研究方面,根据所取得的大量测试成果,否定了本区铅
    锌矿床是与岩浆作用有关的“热液脉状成因”观点和“原生沉积”观点。
    认为塔木、卡兰古等矿床属典型的后生密西西比河谷型铅锌矿床。结合
    该区构造演化及成矿地质条件特征,首次建立了该区密西西比河谷型铅
    锌矿床的成矿模式和找矿模型。
     在找矿成果方面,于卡兰古西部的卡拉塔什附近新发现了中泥盆统
    砂(砾)型铅锌矿。这一新的发现将对西昆仑内地区铅锌矿的找矿突破
    有着重大的指导意义。
     在成矿预测方面,根据区域成矿学和矿床地质研究成果,结合1:
    5万化探异常,提出了三个成矿远景区。认为塔木一卡拉牙斯卡克、阿
    尔巴勒克、卡兰古一卡拉塔什是西昆仑地区3个最佳的成矿远景区,在
    西昆仑地区至少可以找到3个大型的密西西比河谷型铅锌矿床,并为今
    后找矿工作指明了方向。
West Kunlun Mountain Region in Xinjiang(China) is one of the most important metallogenic regions in west China, it will become a new base for mine resource especially for Lead-Zinc mine prospecting.
    Regional sedimentary (metamorphic) formation, magmatite, tectonic evolution, geophysics field characteristics and regional geochemistry condition have been analysised in order to expound the metallogenic Geological Condition about West Kunlun Mountain Region brilliantly in this paper. Especially considered that Oytage-kurliang fissure basin, as a very important polymetal metallogenic belt in West Kunlun Mountain Region, is the key of the paper. The author chose Lead-Zinc deposits in Oytage-kurliang fissure basin as a main target to research. After detail field inspecting, combined with the deep indoor research result, the author regarded that those deposits, which districted in West Kunlun Mountain Region(such as Tamu, Kalangu), are belong to Mississippi Valley Type Lead-Zinc deposits. Based on all of these, the metallogenic model of these Mississippi valley type lead-zinc deposits have been built up. The regional metallogenic regular pattern and exploration model had been summarized. At last, the dissertati
    on gave a revaluating of Long-rang prospect for Mississippi Valley type lead-zinc deposits in West Kunlun Mountain Region, proposed three long-range prospecting. From all of these researching, some important achievements are acquired as follow:
    According to the sedimentary (metamorphic) formation, magmatite, tectonic evolution, the geotectonic units of West Kunlun Mountain Region and it's adjacent area are divided into 5 first order units, and subdivided into 6 second-order units, on the basis of these, 7 third-order units are divided in order to show those important polymetal metallogenic belt clearly. The relationship between plate tectonic movement and ore-forming process was revealed.
    Based on the analysis about the main characteristics of West Kunlun Mountain Region's tectonic evolution stage since the late Proterozoic Era, the author put forward that Rodinia super-continent's merging and dissociation had a profoundly influence during the West Kunlun Mountain Region 's tectonic evolution phase. Oytage-kurliang fissure basin was formed in the end of Permian, it's special tectonic place and special tectonic evolution process supplied favourable conditions to the polymetal metallogenical course in this .
    
    
    Referring himself to some geophysics information, the author made a suggestion that the Indio Continent's jamming together with Europ-Asian Continent was the main force of West Kunlun Mountain Region's grand scale napping and the main characteristics of the regional evolution, pointed out that it was the grand napping and folding that caused grand scale hot brine's moving and cycling, especially the oil field brine blending with deeply fluid that leaded the metallogenic material to precipitate. This new idea not only enriched the metallogenic theory and the metallogenic law's researching, but also gave a guide to the mining respecting and mining scientific research on West Kunlun Mountain Region .
    After studying on the deposits' geological character and metallogenic tectonic, Some development have been achieved in the relation between the West Kunlun Mountain Region's regional tectonic and Lead-Zinc's metallogenic process. The author regarded that the regional rifts and the second scale rifts had an obviously control function during the metallogenic process of Lead-Zinc deposits in West Kunlun Mountain Region. All of those Lead-Zinc deposits' character,which distributed around the big rifts nearly such as Tamu, Kalangu, Teklyke, had been described detail to readers. This work not only deepened the Lead-Zinc deposits' metallogenic machine and metallogenic process' researching but also pointed out a way for the West Kunlun Mountain Region region's mining respecting.
    Based on the detail field inspecting information, the law of Lead-Zinc mineralization had been concluded. It shows that the Lead-Zinc mineralizatio
引文
[1] 毕华,王中刚,王元龙等.西昆仑造山带构造—岩浆演化史.中国科学(D辑),1999,29(5):398-406
    [2] 陈毓川,裴荣富,宋天锐.中国矿床成矿系列初论.北京:地质出版社,1998,1-14
    [3] 陈哲夫,成守德,梁云海等.新疆开合构造与成矿.新疆科技卫生出版社,1997,3-10
    [4] 陈哲夫,周守云,乌统旦.中亚大型金属矿床特征与成矿环境.乌鲁木齐:新疆科技卫生出版社,1999,1-62
    [5] 成守德,王广瑞,杨树德等.新疆古板块构造.新疆地质,1986,4(2):1-26
    [6] 程裕淇,宋天锐.关于中国矿床成矿系列.国外矿床地质,1995,(4):4-5
    [7] 邓军、翟裕生.构造演化与成矿系统动力学.地学前缘,1999,6(2):315-323
    [8] 邓万明.喀喇昆仑-西昆仑地区蛇绿岩的地质特征及基大地构造意义.岩石学报,1995(11):98-111
    [9] 丁道桂,王道轩,刘伟新等.西昆仑造山带与盆地.北京:地质出版社,1996,1-180
    [10] 杜佩轩,田素荣.新疆岩石、岩屑、水系沉积物元素背景平均值.物探与化探,2001,25(2):117-122
    [11] 方维萱.论流体与成矿作用.有色金属矿产与勘查,1999,8(2):65-73
    [12] 高鹏,张东生.西昆仑阿克塔什—带逆冲—推覆构造特征.新疆地质,1994,12(2):116-123
    [13] 高锐,高弘.西昆仑-塔里木-天山岩石圈深地震探测综述.地质通报.2002,21(1).11-18
    [14] 高锐,黄东定.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面.科学通报.2000,45(17).1874-1879
    [15] 高锐,肖序常,高弘等.疆地学断面深地震反射剖面揭示的西昆仑—塔里木结合带岩石圈细结构.地球学报.2001,22(6):547-552
    [16] 高珍权,刘继顺.新疆乌恰地区中新生代盆地寻找热卤水成因的超大型铅锌矿床的地球化学证据.地质地球化学,2002,30(1):13~19
    
    
    [17] 高珍权,刘继顺.浅析新疆乌恰地区超大型热卤水成因的铅锌矿床成矿的地质条件.中南工业大学学报.2002,33(2):116~120.
    [18] 关剑宇 赵祖应.新疆西昆仑地区契列克其——卓木吉勒尕富铁富铜矿床地质特征及成因类型探讨.新疆有色金属.2002,25(2):1-4
    [19] 湖南有色217队.西昆仑库斯拉甫-大同地区金铜重点异常查证(内部资料).1996.1-18
    [20] 何国琦,李茂松,刘德权等.中国新疆古生代地壳演化及成矿.乌鲁木齐:新疆人民出版社,1994,1-28
    [21] 何国琦,刘德权,李茂松等.新疆主要造山带地壳发展的五阶段模式及成矿系列.新疆地质,1995,13(2):99-181
    [22] 贺日政,高锐.新疆天山(独山子)—西昆仑(泉水沟)地学断面地震与重力联合反演地壳构造特征.地球学报.2001,22(6):553-558
    [23] 韩芳林,崔建堂,计文化等.西昆仑加里东期造山作用初探.陕西地质.2001,19(2).8-18
    [24] 何绍勋,段嘉瑞,刘继顺等.韧性剪切带与成矿.北京:地质出版社,1996,99-136
    [25] 胡霭琴、张国新.新疆大陆基底分区模式和主要地质事件的划分.新疆地质,2001,19(1):12-19
    [26] 华仁民.成矿过程中由流体混合而导致金属沉淀的研究.地球科学进展,1994,94(4):15-22
    [27] 黄河源,朱庆亮.新疆构造运动期序及特征.新疆地质,1993,11(4):275-283
    [28] 贾群子,李文明,于浦生等.西昆仑块状硫化物矿床条件和成矿预测.地质出版社,北京:地质出版社,1999,1-102
    [29] 姜春发.昆仑开合构造.地质专报(五):北京:地质出版社,1992,101-125
    [30] 姜耀辉.西昆仑造山带花岗岩形成的构造环境.地球学报,2000,21(1):23-25
    [31] 姜耀辉 芮行健.西昆仑山构造格架与成矿堆积环境.火山地质与矿产.2001,22(1).1-11
    [32] 凯斯.,SE刘伟.密西西比河谷型矿床中矿化卤水的Na-Cl-Br系统.国外地质科技.1996,(5).14-18
    [33] 李向东、王克卓.塔里木盆地西南及其邻区特提斯格局和构造意义.新疆地
    
    质,2000,18(2):113-120
    [34] 李永安,李向东,孙东汇等.中国新疆西南部喀喇昆仑羌塘地块及康西瓦构造带构造演化[M].新疆科技卫生出版社,1995,1-100
    [35] 李秋生,李敬卫等.塔里木地壳俯冲在西昆仑山之下——宽角地震测量的证据.地球学报.2002,23(5).442-442
    [36] 刘德权,唐延龄,周汝洪.中国新疆矿床成矿系列.北京:地质出版社,1996,127-144
    [37] 刘继顺.韧性剪切带中金成矿研究的若干问题.地质论评,1996,42(2):123-138
    [38] 刘继顺,高珍权,舒广龙.新疆东天山卡拉塔格斑岩型铜(金)矿的发现及找矿前景,东天山铜金多金属矿床成矿过程和成矿动力学及找矿预测新技术新方法会议论文集,2001,117-122
    [39] 刘继顺,高珍权,奚小双.天山区带有色(贵)金属矿床找矿条件及靶区优选(内部资料).2000,1-92
    [40] 刘继顺,匡文龙,高珍权.新疆重点成矿(区)带成矿条件与靶区优选(内部资料).2001,1-85
    [41] 刘继顺,吴延之.东川铜矿田喷流沉积成矿机制.中南工业大学学报,1996,27(1):8-12
    [42] 刘建明,刘家军,顾雪祥.沉积盆地中的流体活动及其成矿作用.岩石矿物学杂志,1997,16(4):341~352
    [43] 刘生国,郭建华等.塔里木盆地西南缘的构造演化与岩石组合.西安矿业学院学报,1999,19(3):225-230
    [44] 刘学锋,肖安成,陈毓遂等.塔里木盆地地西南缘构造形变特征.江汉石油学院学报,1996,18(2):19-24
    [45] 马东升.地壳中流体的大规模流动系统及其成矿意义[J].高校地质学报,1998,4:250~261
    [46] 毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区.矿床地质,1999,18(4):290-299
    [47] 潘裕生.青藏高原西昆仑北带的发现与论证.地球物理学报,1994a,37(2):184-192
    [48] 裴荣富,吴良士,熊群尧等.中国特大型矿床成矿偏在性与异常成矿构造聚敛场.北京:地质出版社,1998,296-306
    
    
    [49] 裴荣富主编.中国矿床模式.北京:地质出版社,1995,1~357
    [50] 邱家骧,林景仟.岩石化学.地质出版社,1991,64-75,119-138
    [51] 曲国胜 陈新安.西昆仑-帕米尔造山带及其北缘前陆盆地板内变形构造.地质论评.1998,44(4).419-429
    [52] 芮宗瑶、李宁、王龙生.关门山铅锌矿床盆地热卤水成矿及铅同位素打靶.北京,地质出版社.地质专报(四)矿床与矿产.1991,48-179
    [53] 孙世群.西昆仑造山带主要变形期的磁性组构特征及其构造意义.合肥工业大学学报,1997,20(4):109-114
    [54] 孙世群,王道轩.西昆仑造山带西北向拉伸线现特征及其地质意义.安徽地质,1998,8(3):26-29
    [55] Sver., DA张洪涛.密西西比河谷型铅锌矿床成因研究.国外矿床地质.1989,(2).61-73
    [56] 田培仁.浅释新疆超大型金属矿床.新疆有色金属,2000,18(1):1-6
    [57] 涂光炽.初议中亚成矿域.地质科学,1999,34(4):397-404
    [58] 汪东坡.机遇与挑战--也谈有色地勘产业的改革与发展方向.有色金属工业.1996,(1).16-19
    [59] 王奖臻,李朝阳,李泽琴等.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨.地质地球化学,2001,29(2):41-45
    [60] 王书来,汪东波,祝新友.西昆仑中间隆起带花岗岩及与Cu、Au矿化关系.矿产与地质,2000,14(1):5-10
    [61] 王元龙,李向东,毕华等.西昆仑库地蛇绿岩的地质特征及其形成环境.长春地质学院学报,1997,27(3):304-309
    [62] 王元龙,王中刚,朱笑青等.西昆仑造山带花岗岩类时空分布规律及其构造意义,第四届天山地质矿产资源学术讨论论文集,新疆科技卫生出版社,2000,1-5
    [63] 王志洪,王中刚.西昆仑库地蛇绿岩地质地球化学及其成因研究.地质科学,2000,35(2):151-160
    [64] 王中刚,于学元,赵振华等.稀土元素地球化学.科学出版社,1989,88-93
    [65] 吴世敏,马瑞士,卢华复等.西昆仑早古生代构造演化及其对塔西南盆地的影响.南京大学学报,1996,32(4):650-657
    [66] 伍致中,刘东海.塔里木盆地西南坳陷的形成演化.新疆石油地质,1996,17(3):211-218
    [67] 肖序常,刘训,罗照华等.西昆仑及邻区岩石圈结构构造演—塔里木南--
    
    西昆仑多学科地学断面简要报道.地质通报.2002,21(2).63-68
    [68] 谢鸿森.地质流体与构造运动.地球科学进展,1995,9(3):24-29
    [69] 新疆地质矿产局.新疆维吾尔自治区区域地质志.北京:地质出版社,1993,1-189
    [70] 新疆维吾尔自治区人民政府国家三0五项目办公室.新疆地壳结构与地质演化(内部资料),2001,129-209
    [71] 新疆维吾尔自治区人民政府国家三0五项目办公室.西昆仑贵金属、有色金属大型矿产远景及靶区预测(内部资料).2001,224-226,309-318
    [72] 新疆维吾尔自治区人民政府国家三0五项目办公室.新疆地球物理场特征与深部构造(内部资料).2001,9-16,80-156
    [73] 新疆维吾尔自治区人民政府国家三0五项目办公室.新疆及周边古地磁与构造演化(内部资料).2001,21-42
    [74] 新疆维吾尔自治区人民政府国家三0五项目办公室.新疆岩石圈结构、构造演化与成矿作用(内部资料).2001,3-16
    [75] 新疆维吾尔自治区人民政府国家三0五项目办公室.新疆优势金属矿床主要类型、成矿规律及成矿区划研究.(内部资料).2001,12-19,120-204
    [76] 新疆维吾尔自治区冶金工业管理局702地质大队.喀什市卡兰古铅锌矿床地质勘探中间报告及储量计算.(内部资料)1956,1-15
    [77] 新疆维吾尔自治区冶金工业管理局702地质大队.喀什市塔木铅锌矿床地质勘探中间报告及储量计算.(内部资料)1959,1-53
    [78] 许荣华.西昆仑北部早古生代构造-岩浆带的发现.地质科学,1994,29(4):313-328
    [79] 杨克明.论两昆仑大陆边缘构造演化及塔里木西南盆地类型.地质论评.1994,40(1).9-18
    [80] 袁超,孙敏,李继亮.西昆仑中带两个花岗岩体的年龄和可能的源区.科学通报,1999,44(5):534-538
    [81] 袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社,1979,45-75
    [82] 翟裕生.关于构造—流体—成矿作用研究的几个问题.地学前缘,1996,3(4):230-236
    [83] 翟裕生.区域成矿学研究.中国第六届矿床学学术会议论文集,北京:地质出版社,1998,253-258
    [84] 翟裕生,邓军.同生断层对层控超大型矿床的控制.中国科学:D辑,地球
    
    科学,1998,28(3):214-218
    [85] 张贵宾 高锐.横过西昆仑和塔里木结合带的山隆盆降机制动力学模拟.地球学报.2001,22(6).541-546
    [86] 张连昌,赵伦山.成矿流体研究的若干进展与动态.地质与勘探,2001,37(1):7-10
    [87] 张良臣,刘德权,唐延龄等.新疆的宝藏.乌鲁木齐:新疆人民出版社,1990,88-114
    [88] 张怡侠.矿床模型导论.地震出版社,1993,102-130
    [89] 中国地调局西北项目部.西北地区十四个成矿区带矿产资源调查评价工作部署思路(内部资料):2001,1-3
    [90] 中国科学院矿床地球化学开放研究实验室.矿床地球化学.北京,地质出版社.1997,1-166
    [91] 中科院青藏高原综合科学考察队.喀喇昆仑山-昆仑山地区地质演化.科学出版社2000,1-256
    [92] 周辉,李继亮,侯泉林等.西昆仑库地韧性剪切带的~(40)Ar/~(39)Ar年龄.地质科学,2000,35(2):233-239
    [93] 周辉 张健.西昆仑及邻区岩石圈动力学特征.自然科学进展.2000,10(11).1051-1054
    [94] 周朝宪,魏春生,叶造军.密西西比河谷型铅锌矿床.地质地球化学,1997,1:65-75
    [95] 祝新友,汪东波,王书来.新疆塔里木盆地西南缘铅锌矿找矿潜力分析.有色金属矿产与勘查,1999,8(6):413-416
    [96] Bethke, C.M., Marshak, S. Brine Migrations across North America-the plate tectonics of groundwater. Annu, Rev, Earth Planet, Sci, 1990,18, 287-315
    [97] Brannon J. C., Podosek F. A., and McLimans R. K., Allegherian age of the Upper Mississippi Valley-type zinc-lead deposit determined by Rb-Sr dating of sphalerite. Nature, 1992,356:509-511
    [98] Cathle L. M. and Smith A. T., Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Econ. Geol., 1983,78:983-1002
    [99] Clendenin C. W., Niewendorp C. A., Duane M. J., and Lowell G. R., The paleohydroiogy of southwest Missouri Mississippi Valley-type deposits: Interplay of faults, fluids and adjoining lithoiogies. Econ. Geol. 1994,89:322-332
    
    
    [100] Coleman, M., Hodges, K., Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension. Nature, 1995,374, 45-92
    [101] Dowers T. and Ortoleva P., Nonlinear dynamical aspects of deep basin hydrology: Fluid compartment formation and episodic fluid release. Amer. J. Sei., 1994,294:713-755
    [102] Eisenlohr B. N., Topkins L. A., Cathles L. M., Barley M. E., and Groves D. I., Mississippi Valley-type deposits: Products of brine expulsion by eustatically induced hydrocarbon generation? An example from northwestern Australia, Geology, 1994,22: 315~318
    [103] Gatain, M., Garzanti, E.,Jadoul, F, el al., The North Karakorum side of the Central Asia geopuzzle, Bull, Geol Soc. American, 1990,102, 54-62
    [104] Grandia, F., Cardellach, E., Canals,A., Fluid mixing evidence in MVT Zn-Pb deposits related to rift stage carbonates of the Maestrat Basin, Easten Spain. In: Stanley et al, (Eds), Mineral Deposits: Processes to Processing, PP, 1999, 861-864
    [105] Gregg, J.M. Shelton, K. L, Geochemical and petrographic evidence for fluid sources and pathways during dolomitization and lead-zinc. Mineralization in southeast Missouri: a review. Carbonates Evaporites, 1989, 4, 153-175
    [106] Haynes, F.M. kesler, S. E, Chemical evolution of brines during Mississippi, valley-type mineralization evidence from east Tennessee and Pine Point. Econ, Geol, 1987, 82, 53-71
    [107] J. Heinhorst, B. Lehmann, P. Ermolov, V. Serykh, S. Zhurutin, Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-phdrothermal ore systems of Central Kazakhstan, Tectonophysics, 2000,328, 69-87
    [108] J.J. adams, B. J. Rostron, C. A. Mendoza, Evidence for two-fluid mixing at Pine Point, NWT, Journal of Geochemical Exploration, 2000, 69-70, 103-108
    [109] Kesler S. E., Appold M. S., Cumming G L., and Kristic D., Lead isotipe geochemistry of Mississippi Valley-type mineralization in central Appalachiaris. Econ. Geol, 1994, 89:1492-1500
    [110] Leach D. L, and Sangster D. F., Mississippi Valley-type lead-zinc deposits, In: Mineral Deposit Modeling (eds, R. V. Kirkham, W. D. Sinclair, R. I. Thorpe, and J. M. Duke). Geological Association of Canada, Spec. Papers, 1993, 40:289-314
    [111] Leach D. L. and Rowan E. L., Genetic link between Ouachita foldbelt tectonism and Mississippi Valley-type Leadzinc deposits of the Ozarks. Geology, 1986,14:
    
    931-935
    [112] lIU Jishun. GAO Zhenquan. DENG Gongquan One potential superlarge Pb-Zn deposit ore occurrence with the Himalayan thermal brine genesis. Bulletin of Central South University, 2002, 9 (1): 41~46.
    [113] M. Lisk, M. M. Faiz, E. B. Bekele, T. E. Ruble, transient fluid flow in the Timor Sea, Australia: implications for prediction of fault seal integrity, Journal of Geochemical Exploration, 2000, 69-71,607-613
    [114] Mattauer, M., Intracontinental subduction, crust-mantle decoll-ement and crustal-stacking wedge in the Himalayas and other collision belts, In: Coward, M.P. and Ries, A.C. (eds): Collision tectonics. Geol. Soc. Special publication, 1986,19, 7-50
    [115] Mckenzie, D., Spinnig continents. Nature, 1990,344; 109-11-0
    [116] McLimanns R. K., Barnes H. L, and Ohrnoto H., Sphalerite stratigraphy of the Upper Mississppi Valley Lead-Zinc district, southowest Wisconsin. Econ. Geol., 1980,75:351-361
    [117] Nakai S., HallidayA. N., Kesler S. E, Jones H. D., Kyle J. R., and Lane T. E, Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore dposit Geochim Cosmochim Acta, 1993, 57:" 417-427
    [118] Oliver J., Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenon\mena, Geology, 1986,14: 99~102
    [119] Paymond E. Smith, R. R. Anand, N. F. Alley, Use and implications of Paleoweathering Surfaces in mineral exploration in Australia, Ore Geolopy Reviews, 2000,16, 185-204
    [120] Powell, C. A., Continental underplating model for the rise of the Tibet plateau, Earth and Planet, Sci. Lett, 1986, 81, 79-94
    [121] Qing, H, Mountjoy, E W, Large-scale fluid flow in the Middle Devonian Presqu ile barrier, Western Canada Sedimentary Basin. Geology, 1992,20: 903-906
    [122] Ramboz C., and Chafer A., Temperature, pressure, burial history, and paleohydrology of the les Malines Pb-Zn deposit: Reconstruction from aqueous inclusions in barite. Econ. Geol., 1988,83: 784~800
    [123] S. Bagci, M. V. kok, U. Turksoy, Determination of formation damage in limestone reservoirs and its effect on production, Journal of Petroleum Science and Engineering,2000,
    
    28. 1-12
    [124] S.C. Sarkar, I.V. Chernyshev, H. Banerjee, Mid-proterozoic Pb-Pb ages for some Himalayan base-metal deposits and comparison to deposits in Rajasthan, NW India, Precambrian Research, 2000, 99, 171 178
    [125] S. Makhoukhi, J.M. Schmitt, M. Bouabdelli, A. Bastoul. Ch. Marignac, Modelling of an MVT deposit: Touissit-Bou Beker district(eastern Morocco), Journal of Geochmical Exploration, 2000,69-70, 109-113
    [126] Sangster D. F., Mississippi Valley-type and sedex lead-zinc deposits: a comparative examination, Trans, Instn, Min. Metall. (Sect, B: Appl Earth Sci), 1990,90:B21-B42
    [127] Sangster D. F. Mississippi Valley-type deposite: A geological melange. In. Intl. Conf Mississippi Valley-type leadzinc deposits (eds. G Kisvarsanyi, S. K. Grant, W P, Pratt, and J. W Koening), Univ Miss. -Rolla, 1983,7~19
    [128] Sapgster D. F., Nowlan G S., and McCracken A. D., Thermal comparison of Mississippi Valley-type lead-zinc deposits and their host rocks using fluid inclusion and conodont color alteration index data. Econ. Geol., 1994,89:493-514
    [129] Schmitt, J. M, Makhoukhi, S, Goblet, P, Modelling of structure-induced hydrothermal circulatious in Mississippi valley type deposits in: pagel, M. Leroy, J. L(Eds). Source, Transport and Deposition of Metals, 1991,PP, 489-492
    [130] Searle, M.P. Windley B. F, coward. M,P, cooper D. J. W, Rex. A.J. Rex D. Tingdon. L. xuchang, X, Jan. M.Q. Thakur, V.C. Kumar. S. The Closing of Tethys and tectonics of the Himalays. Bull, Geol. Soc. Am. 1987,98, 678 701
    [131] Sicree A. A. and Bames H. L., Upper Mississippi Valley district ore fluid model: The role of organic complexes. Ore Geol. Rev., 1996, 11:105-131
    [132] Spirakis C. S. and Heyl A. V, Evaluation of propsed precipitation mechanisms for Mississippi Valley-type deposits. Ore Geol. Rev., 1995,10:1-17
    [133] Sverjensky D. A., The origin of a Mississippi Valley-type deposit in the Vibumum Trend, southeast Missouri. Econ. Geol., 1981, 79:1848-1872
    [134] Sverjensky, D. A., Garven. G. Tracing great fluid migrations. Nature, 1992, 356, 481-482
    [135] Turner, S., Hawkesworth, C., Liu, J., Timing of Tibetan uplift constrainedty analysis of volcanic rocks. Nature, 1993,364, 50-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700