用户名: 密码: 验证码:
中国几个镍矿床的地球化学比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界镍和铂族金属的主要来源是与基性超基性岩有关的铜镍硫化物岩浆矿床。该类矿床占世界镍、铂量的近一半或更多。我国的情况更为突出,镍金属储量近86%、铂90%以上、铜约7.3%均来源于铜镍硫化物岩浆矿床。探讨我国主要镍矿床成矿作用的地球化学机理和成矿元素聚散的控制因素,对于深化该类矿床成因认识,总结成矿标志和扩大找矿远景等,有重要的理论和实际意义。
     本文依据比较矿床学的研究思路,以野外工作和国内外有关文献资料为基础,以含镍岩体的岩石类型、造岩矿物地球化学特征研究、Re-Os同位素年代学研究的比较为主线,结合岩浆硫化物不混溶模拟试验,应用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)及电子探针(EMPA)原位微区分析等测试手段及信息处理方法,通过对我国甘肃金川、吉林红旗岭、陕西煎茶岭及新疆喀拉通克、黄山东和黄山几个典型矿床的比较研究,取得的主要进展如下:
     1.较系统地测试、分析和整理了我国与侵入岩有关的镍矿床主要地球化学特征资料,积累了基础数据。其中一些研究,如铬尖晶石环带的研究、橄榄石、辉石等单矿物的原位LA—ICP—MS分析等,在我国还是首次,为研究我国主要铜镍硫化物矿床成岩成矿过程中元素的分异和演化提供了定量结果。
     2.通过国内外和国内各矿床的比较,研究了我国与侵入岩有关的镍矿床的特点和规律性。特别是将我国与侵入岩有关的镍矿床分为与超基性岩有关、与超基性—基性岩有关和与中性—基性岩有关的三类,表现出明显的岩浆岩成矿专属性和地球化学专属性。
     3.Re—Os同位素地质年代学研究表明,以岩浆成矿作用为主但有多种成矿作用贡献的金川镍矿床的形成可能经历了长时期的演化过程。其成岩年龄可能在13亿年到15亿年之间;浸染状贫矿石主要形成年龄约1217Ma;海绵陨铁矿石主要形成年龄约960Ma;而块状矿石形成年龄911Ma左右。中国含铜镍硫化物矿床按受混染程度由弱到强排列为金川(红旗岭)<煎茶岭<黄山东(喀拉通克)。元古代为镍矿成矿作用的重要历史时期。
    
    4.通过地质和地球化学比较研究,研究了我国金川超大型铜镍硫化物矿床的特点和规
     律性。特别是通过铂族元素、稀土元素研究、实验地球化学研究及其与实际资料的
     对比,提出了金川矿床成岩成矿是从深部到侵位持续熔离的新模式,论证、补充和
     发展了汤中立院士提出的深部熔离成矿说。
    5.通过地质地球化学比较研究,提出我国与侵入岩有关的铜镍硫化物矿床特别是金川
     型矿床的找矿方向和找矿标志是在古陆边缘找寻元古代张性渐增的裂谷前期地质环
     境,基性程度较高、下部有纯橄榄岩相、铬尖晶石中有钦铁矿出溶的岩体。
The main source of nickel and platinum metals in the world is the nickel-copper sulfide magmatic deposits related to basic-ultrabasic body, which provide half or more amount of the metals in the world. In China, it is more prominent, about 86% amount of nickel, 90% amount of platinum metals, 7.3% copper comes from nickel-copper sulfide magmatic deposits. To discuss geological mechanism of the forming of important nickel deposits and the control of converging and dispersing of the ore forming elements has theoretic and practical meaning in deepening the understanding of the genesis of this kind of deposit and summarizing the deposit forming indication, expanding perspective targets.
    With the theory of comparative methods of economic geology, based on field work and vast amount of related information and materials, worked over comparing sorts of rock, geochemical character of the body forming minerals, Re-Os isotope chronology, in addition to sulfide segregation experiments, the dissertation achieved progress in following aspect by using modern techniques such as LA-ICP-MS and EMPA, the in-situ probe analysis methods, comparing important deposits in China including Jinchuan (Gansu province), Hongqiling (Jiling province), Jianchaling (Shaanxi province) and Kalatongke, East Huangshan, Huangshan (Xinjiang province):
    1. Systematically tested, analyzed and sorted out geochemical data of intrusion-related nickel
    deposits in China, such as analysis of zonal structure of chrome spinels, micro-probe in situ analysis of single minerals incjude olivine and pyroxene by LA-ICP-MS, in which some of the research is the first time domestically. All above accumulated essential data for the research in this aspect, provided quantitative result for the research on differentiations and evolutions of the elements in genesis of the important nickel deposits in China.
    2. Studied the characteristic and regularity of intrusion-related nickel deposits in China by
    comparing the deposits domestically and abroad. The nickel deposits in China can be sort into three kinds, i.e. the ultra-basic related, ultrabasic-basic related, and neutral-basic related, of which present obvious specialty on magmatic origin and geochemistry.
    3. Re-Os isotope chronology study suggesting the forming of Jinchuan nickel-copper deposit
    which is magmatic dominanted and multi-mineralization attributed may lasting a long period of time. The age of Jinchuan body was estimated between 1300Ma~1500Ma;
    
    
    period of time. The age of Jinchuan body was estimated between 1300Ma-1500Ma; disseminated ore is about ~1217Ma; sideronitic ore is about 960Ma and massive ore is about 911 Ma. The level of contaminants was increase in order of Jinchuan (Hongqiling) < Jianchaling < East Huangshan (Kalatongke). Proterozoic is important evolution period in forming of nickel-copper deposits.
    4. the geologic, element and experimental study suggest the mechanism of small body, giant
    deposit in Jinchuan is succeeding segregation whole magma chamber intruding from deep to emplace. The study is proof, supplementary and progress of the deep segregation, penetrating ore formation theory, which was advanced by Mr Tang Zhongli, the academician of china.
    5. The perspective targets for deposit shooting is in deep facies of neutral-basic, basic,
    altra-basic body and there complexes. There are dunite facies in the bottom and exsoluting gregorite in the chrome spinels.
引文
(1)帕拉提·阿布都卡迪尔,黄建华,吴兆宁.喀拉通克铜镍矿床伴生贵金属赋存富集规律.新疆工学院学报,17(2):79~85.
    (2)白文吉,杨经绥,方青松等.寻找超高压地幔矿物的储存库—豆荚状铬铁矿.地学前沿,2001,8(3):111~121.
    (3)白文吉.中国基性—超基性杂岩体类型及特征.中国地质科学院地质研究所所刊,1989,第20号:52~68.
    (4)B.M.马卡罗夫.铜镍矿床的成因类型.锁林译.国外地质科技,1990,(7):53~58.
    (5)蔡树型,黄超.贵金属分析.北京:冶金出版社.1984.54~55.
    (6)曹荣龙,赵斌,曾易善等.成岩成矿实验.北京:地质出版社.1980.
    (7)岑况,於崇文,金属矿物与造岩矿物共存时的溶解度与硫化物金属成矿作用,中国科学(D),2000,30(5):449~455.
    (8)程裕淇主编.中国区域地质概论.北京:地质出版社,1994,448~476.
    (9)陈毓川,朱裕生,孙文珂等.中国矿床成矿模式.北京:地质出版社,1993,98~102.
    (10)陈毓川,赵逊,张之一等.世界之交的地球科学—重大地学领域进展.北京:地质出版社,2000,1~69.
    (11)陈毓川主编.中国主要成矿区带矿产资源远景评价.北京:地质出版社,1999,8~118.
    (12)陈浩琉,吴水波,傅德彬等.镍矿床.北京:地质出版社,1993,22~57.
    (13)陈民扬,庞春勇.煎茶岭镍矿床成矿作用同位素地球化学.见:陈好寿主编.同位素地球化学研究.杭州:浙江大学出版社,1994,56~81.
    (14)陈殿芬.我国一些铜镍硫化物矿床主要金属矿物的特征.岩石矿物学杂志,1995,14(4):345~354.
    (15)陈江峰,江博明.钐、钕、铅同位素示踪和中国东南大陆地壳演化.见:郑永飞主编.化学地球动力学.北京:科学出版社,1999,262~287.
    (16)陈绍海,周新华,张国辉等.透辉石的激光探针ICP质谱分析及其深部地质意义.科学通报,1997,42(16):1707~1711.
    (17)陈源.硫化铜镍矿石成因类型.西北地质,1990,11(2):6~7.
    (18)陈子诚.吉林省岩浆铜镍硫化物矿床地质特征及成矿模式,地质与勘探,1991,26(10):1~10.
    (19)储雪蕾,孙敏,周美夫.化学地球动力学中的铂族元素地球化学.岩石学报,2001,17(1):112~122.
    (20)董振信.金伯利岩中铬尖晶石的特征及与其它岩类中铬尖晶石之对比.地质论评,1991,37(6):508~517.
    (21)杜安道,何红蓼,殷宁万等.辉钼矿的铼—锇同位素地质年龄测定方法研究.地质学报,1994,68(4):339~347.
    (22)杜安道,赵敦敏,王淑贤等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼—锇同位素地质年龄.岩矿测试,2001,20(4):247~252.
    (23)杜安道,孙亚莉,邹晓秋等.等离子体质谱铼—锇同位素测年法研究及其应
    
    用.岩矿测试,1996,15(4):263~268.
    (24)方华,姚家栋.论岩浆深渊分异在硫化镍矿床成岩成矿作用中的意义—以四川力马河流化铜镍矿床为例.地质学报,1985,59(2):141~154.
    (25)樊步恭.金川铜镍矿田的构造特征.西北地质,1988,21(1):1~10.
    (26)傅德彬.基性—超基性硫化铜镍矿床深成矿浆贯入成因论.地质与勘探,1986,22(4):12~21.
    (27)傅德彬,王长春.吉林省太古宙地体中硫化镍矿床的成因规律概论.吉林地质,1992,11(2):1~9.
    (28)傅德彬.吉林赤柏松硫化铜镍矿床的矿浆成因模式,地质学报,1994,68(2):142~157.
    (29)甘肃省地质矿产局第六地质队.白家嘴子硫化铜镍矿床地质.北京:地质出版社,1984,1~225.
    (30)苟国朝,任端进,哲尼克·圆等.金川超镁铁杂岩体中硅酸盐和氧化物的矿物化学特征.甘肃地质,1990,11:43~70.
    (31)顾建中.热力学教程.北京:高等教育出版社,1981.81~107.
    (32)桂林冶金地质研究所岩矿室同位素地质组.勉—略—阳地区岩石钾氩法同位素年龄测定.地质与勘探,1972,8(1):23~25.
    (33)韩秀伶,李家驹,林传勇等.玄武岩中包体橄榄石的分带现象.地质科学,1992,4:363~368.
    (34)郝梓国,王希斌,鲍佩声等.论断陷槽中的铜镍硫化物矿床.地质找矿论丛,1992,7(1):52~62.
    (35)赫英.比较矿床学导论.西安:西北工业大学出版社,1996,1~30.
    (36)黄继均.新疆阿尔泰喀拉通克硫化铜镍矿区构造特征及应力场分析.西北地质,1991,12(2):18~29.
    (37)黄继钧.喀拉通克铜镍硫化物矿区一号矿床构造控岩控矿作用分析.地质与勘探,1995,31(6):23~30.
    (38)黄继钧.喀拉通克铜镍硫化物矿床的岩浆深渊熔离—贯入及其形成力学机理.矿物岩石,1990,10(4):97~104.
    (39)胡受奚,郭继春,叶瑛.前寒武纪成矿作用与地球动力学的关系.国外前寒武纪地质,1994,18(3):1~16.
    (40)贾恩环.金川硫化铜镍矿床地质特征.矿床地质,1986,5(1):27~38.
    (41)贾恩环.甘肃金川铜—镍硫化物矿床成矿模式和成矿系列.地质论评,1986,32(3):276~286.
    (42)蒋少涌.金属矿床Re—Os同位素示踪与定年研究.南京大学学报(自然科学版),2000,36(6):669~677.
    (43)李亚林.秦岭造山带勉县—略阳地区的构造特征及构造演化(博士学位论文).西安:西北大学,1999,1~36.
    (44)李国华,王大伟,张术根.甘肃龙首山超基性岩带含矿岩体主造岩矿物化学特征研究.大地构造与成矿学,2000,24(2):170~174.
    (45)李文渊.中国铜镍硫化物矿床成矿系列与地球化学.西安:西安地图出版社,1996,1~261
    
    
    (46)李华芹,谢才富,常海亮等.新疆北部有色贵金属矿床成矿作用年代学.北京:地质出版社,1998,202~221.
    (47)刘民武,赫英.激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展.地球科学进展,2003,18(1):116~121.
    (48)刘月星.铜镍硫化物矿床成矿作用及成矿模式研究.矿产与地质,1997,11(4):225~231.
    (49)刘月星,唐红松,吴厚泽.中国铜镍硫化物矿床类型及控矿条件.矿产与地质,1998,12(2):86~90.
    (50)刘凤山.铜镍硫化物矿床成矿理论的新进展.地质科技情报,1993,12(2):77~81.
    (51)刘凤山,博学明.新疆哈密黄山镁铁超镁铁杂岩体含矿(Ni)性数理统计分析.兰州大学学报(自然科学版),1991,27(4):153~160.
    (52)骆华宝,乔德武.中国主要含镍岩体特征及其成因.岩石矿物学杂志,1993,12(4):312~324.
    (53)罗照华,A.A.马拉库舍夫,H.A.潘妮娅等.铜镍硫化物矿床的成因—以诺里尔斯克(俄罗斯)和金川(中国)为例.矿床地质,2000,19(4):330~339.
    (54)马鸿文.硅酸盐熔体中硫的溶解度计算与硫化物液态不混溶作用预测.中国科学(B),1989,4:425~432.
    (55)马鸿文,硅酸盐岩浆中的硫化物不混溶作用模拟.中国科学(B),1993,23(9),986~992.
    (56)马开义,刘光海.喀拉通克岩浆型铜镍硫化物矿床的成矿与找矿模式.中国地质科学院矿床地质研究所所刊,1993,(1):142~152.
    (57)毛景文,宋叔和,陈毓川.桂北地区火成岩系列和锡多金属矿床成矿系列.北京:北京科学技术出版社,1988,1~22.
    (58)毛景文,张光弟,杜安道等.遵义黄家湾镍钼铂族元素矿床地质地球化学和Re—Os同位素年龄测定.地质学报,2001a,75(2):234~243.
    (59)毛景文,杜安道.广西宝坛地区铜镍硫化物矿石982Ma Re—Os同位素年龄及其地质意义.中国科学(D辑),200lb,31(12):992~998.
    (60)毛景文,杨建民,屈文俊等.新疆黄山东铜镍硫化物矿床Re—Os同位素测定及其地球动力学意义.矿床地质,2002,21(4):323~330.
    (61)毛景文,杨建民,韩春明.东天山铜金多金属矿床成矿系统和成矿地球动力学模型.地球科学(中国地质大学学报),2002,27(1):413~424.
    (62)慕纪录.新疆哈密黄山铜镍矿床中浅富矿体特征及形成机制.矿物岩石,1996,16(1):58~67.
    (63)M H 戈德列夫斯基著.古方译.含矿超基性岩浆的形成条件及演化.地质科技情报,1982,1(1):62~67.
    (64)倪志耀.新疆哈密黄山东镁铁—超镁铁杂岩体成因探讨.西北地质,1992,13(2):9~16.
    (65)潘长云,王润民,赵昌龙.新疆喀拉通克Y1含矿岩体的岩石化学特征及其与成矿的关系.岩石学报,1994,10(3):261~274.
    (66)庞奖励,孙根年.陕西煎茶岭矿床的稀土元素地球化学行为.中国稀土学报,
    
    1999,17(4):359~364.
    (67)庞春勇,陈民扬.煎茶岭地区同位素地质年龄数据及地质意义.矿产与地质,1993,7(5):354~360.
    (68)裴荣富,吴良士,熊群尧等.中国特大型矿床成矿偏在性与异常成矿构造聚敛场.北京:地质出版社,1998,262~286.
    (69)裴荣富主编.中国矿床模式.北京:科学出版社,1995,1~6,63~66.
    (70)秦克章,汪东波,王之田.中国东部铜矿床类型、成矿环境、成矿集中区与成矿系统.矿床地质,1999.18(4):359~371.
    (71)秦宽.红旗岭岩浆硫化铜镍矿床地质特征.吉林地质,1995,14(3):17~30.
    (72)邱家骧.岩浆岩岩石学.北京:地质出版社.1985.
    (73)冉红彦,肖森红.喀拉通克含矿岩体的微量元素与成岩构造环境.地球化学,1994,23(4):392—401.
    (74)冉红彦,黄婉康,甘先平等.蚀变超基性岩金(镍)矿床中的贵金属元素—以云南墨江金矿和陕西煎茶岭金矿为例.地球化学,1996,25(5):520~528.
    (75)任小华.煎茶岭镍矿床成矿地质特征.见:王相,王东生主编.陕西勉略阳火山岩带主要金属矿化类型及超大型矿床成矿远景探讨.兰州:兰州大学出版社,1990.
    (76)任小华,单祖翔.陕西略阳县煎茶岭镍(钴)矿床外围找矿前景.西北金属矿产地质,2001,1—2,52~60.
    (77)任文清,周鼎武.煎茶岭金、镍、铁矿床形成的构造岩浆作用.西北地质,1999,32(2),19~24.
    (78)师占义,郭炳北.某硫化铜镍矿床铂族矿物及其元素赋存状态和分布规律的研究.北京:地质出版社.1973.
    (79)师占义.金川铜镍矿床超基性岩体的矿物岩石学.中国地质科学院院报西安地质矿产研究所分刊,1980,1(1):78~90.
    (80)师占义,洛长义,杨合群.中国主要含镍岩体(带)岩石类型与组构特征.西北地质科学,1992,13(1):1~16.
    (81)斯米尔诺夫 В.И.矿床地质学,北京:地质出版社.1976.
    (82)苏良赫.液相不共熔在岩石学及矿床学中的重要性.地球科学,1984,9(1):1~11.
    (83)宋恕夏.金川硫化铜镍矿床二矿区矿床地质特征.地质与勘探,1983,19(1):8~14.
    (84)宋恕夏.金川硫化铜镍矿床—矿区铂富集体的发现及其赋存状态研究.地质与勘探,1986,22(3):36~39.
    (85)孙桂玉.脆—韧性剪切带控矿的初步探讨—对金川铜镍矿控岩控矿构造的新见解.矿床地质,1990,9(4):352~362.
    (86)孙卫东,杜安道,杨刚等.董岭ⅢCD铁陨石的Re—Os同位素组成.科学通报,2001,46(1):66~68.
    (87)支霞臣,郑永飞,杜安道等.苏皖地区新生代玄武岩和幔源橄榄岩包体的~(187)Os/~(186)Os比值.科学通报,1996,41(3):245~247.
    (88)孙卫东,彭子成,支霞臣等.N—TIMS法测定盘石山橄榄岩包体的锇同位素
    
    组成.科学通报,1997,42(2):2310~2313.
    (89)孙卫东,支霞臣,彭子成等.原始上地幔的锇同位素组成.科学通报,1998,43(17):1866~1869.
    (90)谭劲,莫宣学,赵珊茸等.岩浆不混溶分异过程动力学分析.岩石学报,1998,14(1):83~89.
    (91)谭扬赓.煎茶岭与火山碳酸岩伴生的硫化镍矿床—中国镍矿的新类型.见:第五届全国矿床会议论文集.北京:地质出版社,1993,491~493
    (92)唐红松,刘月星,1998,我国铜镍硫化物矿床的稀土元素地球化学特征,矿产与地质,12(4),225~229.
    (93)唐红松,肖禧砥.桂北四堡群中科马提岩系及其成因类型.矿产与地质,1992,2:126~138.
    (94)汤中立.超大型Ni—Cu(Pt)岩浆矿床的划分与找矿,地质与勘探,2002a,38(3):1~7.
    (95)汤中立.中国主要镍矿与古板块构造的关系.矿床地质,1982,2(2):29~38.
    (96)汤中立,任端进.中国硫化镍矿床类型.地质学报,1987,61(4):350~360.
    (97)汤中立,任端进,薛增瑞等.中国镍矿床.见:程裕淇主编.中国矿床(上册).北京:地质出版社,1989,104~123.
    (98)汤中立.金川硫化铜镍矿床成矿模式.现代地质,1990,4(4):55~64.
    (99)汤中立,李文渊.中国硫化镍矿床成矿规律的研究与展望.矿床地质,1991,10(3):193~203.
    (100)汤中立,杨杰东,徐士进等.金川含矿超铁镁岩的Sm—Nd定年.科学通报,1992a,37(10):918~920.
    (101)汤中立.超大型岩浆硫化物矿床的类型及地质对比意义.甘肃地质学报,1992b,1(1):24~47.
    (102)汤中立,李文渊.金川铜镍硫化物(含铂)矿床成床模式及地质对比.北京:地质出版社,1995,14~209.
    (103)汤中立.中国岩浆硫化物矿床的主要类型.甘肃地质学报,1996a,5(1):45~49.
    (104)汤中立,李文渊.中国与基性、超基性岩有关的Cu—Ni(Pt)矿床成矿系列类型.甘肃地质学报,1996b,5(1):50~64.
    (105)汤中立.金川铜镍硫化物矿床岩浆成矿作用的偏在性.甘肃地质学报,1996c,5(2):73~85.
    (106)汤中立.中国岩浆硫化物矿床的主要成矿机制.地质学报,1996d,70(3):237~243.
    (107)汤中立.中国的小岩体岩浆矿床.中国工程科学,2002b,4(6):9~12.
    (108)汤中立,S J Barnes.岩浆硫化物矿床成矿机制.北京:地质出版社,1998a.
    (109)汤中立,徐章华.本世纪岩浆硫化镍矿床勘察和研究的主要成就.矿床地质,1998b,17(增刊):709~714
    (110)汤中立,白云来.华北板块西南边缘大型、超大型矿床地质构造背景.甘肃地质学报,2000,9(1):1~15
    (111)涂光炽.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特
    
    性—初谈非常规超大型矿床.中国科学(D),1998,28(增刊):1~6
    (112)涂光炽主编.中国超大型矿床.北京:科学出版社,2000,3~9.
    (113)涂光炽.过去20年矿床事业发展的概略回顾.矿床地质,2001,20(1):1~9.
    (114)王炳恩,王泽利,秦宽.吉林省红旗岭矿区磁黄铁矿—镍黄铁矿矿石建造特征及其成因分析,矿物岩石,1997,17(2):22~27.
    (115)王登红,陈毓川,徐志刚等.新疆北部Cu—Ni—(PGE)硫化物矿床成矿系列探讨.矿床地质,2000,19(2):147~155
    (116)王恒升,白文吉,王炳熙等.中国铬铁矿床及成因.北京:科学出版社,1983,12~204.
    (117)王润民,刘德权,殷定泰.新疆哈密土墩—黄山—带铜镍硫化物矿床成矿控制条件及找矿方向的研究.矿构岩石,1987a,(1):(专辑)37~85
    (118)王润民,李思楚.新疆哈密黄山东铜镍硫化物矿床成岩成矿物理化学条件.成都地质学院学报,1987b,14(3):1~10.
    (119)王润民.新疆哈密黄山—镜儿泉韧性剪切构造带基性—超基性岩与铜镍矿床.地学研究,1993,第27号:95~101.
    (120)王润民,赵昌龙.喀拉通克一号铜镍硫化物矿床矿床与矿产.北京:地质出版社.1991.
    (121)王润民,李思楚.新疆哈密黄山东铜镍硫化物矿床成岩成矿物理化学条件.成都地质学院学报,1987c,14(3):1~10.
    (122)王志辉,王润民,李思楚等.黄山东铜镍硫化物矿床矿石物质组分的研究.矿物岩石,1986,6(3):88~101.
    (123)王瑞廷,赫英,王东生等,略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义,地质论评,2003,49(2):205~211.
    (124)王瑞廷,赫英,刘民武等,煎茶岭硫化镍矿石地球化学特征,地球学报,2002,23(6):535~540.
    (125)Wilson H D B主编.岩浆矿床武汉地质学院矿床教研室译。北京:地质出版社,1977,1~324.
    (126)吴利仁.论中国基性岩、超基性岩的成矿专属性.地质科学,1963,(1):29~41.
    (127)郗爱华,任洪茂,李宝林等.吉林省红旗岭铜镍硫化物矿床的岩石学和地球化学研究.吉林大学学报(地球科学版),2002,32(2):139~145.
    (128)夏林圻.勉—略地区细碧—角斑岩系成因及其母岩浆深部分异机制的初步探讨.地质学报,1976,(1):24~37.
    (129)解广轰,汪云亮,范彩云.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制.中国科学(D),1998,28(增刊):31~36.
    (130)熊永良,翟裕生.铼—锇同位素体系在基性—超基性岩中应用现状的综述.地质科技情报,1994a,13(3):99~104.
    (131)熊永良,翟裕生.铼—锇同位素体系、铂—锇同位素体系及二者的联合体系.地球科学,1994b,19(4):519~528.
    (132)徐章华,汤中立,蔡克勤.金川铜、镍(含PGE)岩浆硫化物矿床母岩浆成分的估计.现代地质,1998,12(4):506~514.
    
    
    (133)杨轩柱,彭礼贵,董显扬等.金川含铜镍超基性岩体的岩浆包裹体特征及其地质意义.地质论评,1991,37(1):70~79.
    (134)杨轩柱,安三元.金川岩体稀土元素特征及其成因意义.西安地质学院学报,1991,13(1):15~22.
    (135)杨轩柱.金川硫化铜镍矿床铂族元素和金的地球化学.中国地质科学院西安地质矿产研究所所刊,1989,第26号:59~68.
    (136)杨合群.金川超基性岩体铬尖晶石的自然分类及其成因意义.西北地质,1987,(6):25~29.
    (137)杨合群.论金川硫化铜镍矿床成因.中国地质科学院院报,1991,第22号:117~135.
    (138)杨合群.论金川硫化铜镍矿床中贵金属元素的分带机制.西北地质科学,1992,13(1):75~80.
    (139)杨合群.金川铜镍矿床硫同位素地球化学.西北地质,1989,10(2):20~23.
    (140)杨合群,汤中立,苏犁等.金川硫化铜镍矿床成矿岩浆性质和源区性质讨论.甘肃地质学报,1997,6(1):44~52.
    (141)杨永强,陈永良,程丽红.新疆喀拉通克铜镍矿床综合信息找矿模型.地质找矿论丛,1998,13(3):61~66.
    (142)阳正熙,唐菊兴,慕纪录等.黄山铜镍硫化物矿床10号矿体形成机理及远景评价.矿物岩石,1996,16(1):44~50.
    (143)曾照祥,新疆哈密黄山铜镍矿床特征.新疆地质,1991,19(4).
    (144)翟裕生.论成矿系统.地学前缘,1999,6(1):13~27.
    (145)战新志.喀拉通克铜镍矿床叠加成矿作用.见:新疆北部固体地球科学新进展.北京:科学出版社.1993:377—388.
    (146)张国伟,孟庆任,于在平等.秦岭造山带的造山过程及其动力学特征.中国科学(D),1996,26(3):193~200.
    (147)郑建平,路凤香,O'Reilly S Y等.华北东部地幔改造作用和置换作用:单斜辉石激光探针研究.中国科学(D),2000,30(4):373~382.
    (148)郑建平,路凤香,O'Reilly S Y等.新疆托云地幔单斜辉石微量元素与西南天山岩石圈深部过程.科学通报,2001,46(6):497~502.
    (149)郑永飞,陈江峰.稳定同位素地球化学,北京:科学出版社,2000,143~247.
    (150)钟应先.新疆黄山含铜镍矿镁铁—超镁铁杂岩体的岩石学特征及其形成演化规律.成都地质学院学报,1989,16(3):50~58
    (151)钟应先.黄山杂岩体的地球化学特征及其意义.新疆地质科学,第1辑.北京:地质出版让,1990.127~138.
    (152)中国矿床编委会,中国镍矿床,中国矿床,上册.北京:地质出版社,1989,205~262.
    (153)周鼎武,张国伟.“秦岭群”的再解体和秦岭造山带中的晋宁运动.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991,15~25
    (154)周英森.喀拉通克铜镍硫化矿床Y1号岩体岩相划分及岩石特征.新疆地质,1987,5(3):9~15
    
    
    (155) 邹海洋,戴塔根,胡祥昭,喀拉通克铜镍硫化矿地质特征及找矿预测,地质 地球化学, 2001, 29(3) : 70-76.
    (156) Amelin Y V, Li C, Valeyev O, et al. Nd-Pb-Sr isotope systematics of crustal assimilation in the Voisey's Bay and Mushuau intrusions, Labrador, Canada. Economic Geology, 2000, 95(4) : 815-830.
    (157) Arndt N T, Nisbet E G Komatiite, Allen & Unwin, London, 1986.
    (158) Barley M E, Groves D Z. Supercontinent cycles and the distributio of metal deposits through time. Geology, 1992, 20(4) : 291-294.
    (159) Barnes S J. Chromite in Komatiites, 1. Magmatic controls on crystallization and composition, Journal of Petrology, 1998,39(10) : 1689-1720.
    (160) Barnes S J, Boyd R, Komeliusson A, et al. The use of mantle ratios in discriminating between the effects of partial melting, crystal fractionation and sulfide segregation on platinum-group-elements, gold, nickel and copper: examples from Norway. In: Prchard H M, et al. ed. Geo-Platinum 87. London: Elsevier, 1988, 113-143.
    (161) Barnes S J, Brand N W. The distribution of Cr, Ni, and chromite in Komatiites, and application to exploration for komatiite-hosted nickel sulfide deposits. Economic Geology, 1999a,94: 129-132.
    (162) Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geolology, 1985, 53: 303-323.
    (163) Barnes S J, Naldrett A J. Fractionation of the platinum-group elements and gold in some komatiites of the Abitibi greentstone blet, Northern Ontraio. Economic Geology, 1987,82(1) : 165-183.
    (164) Barnes S J, Roeder P L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 2001, 42: 2279-2302.
    (165) Barnes S J, Zhong-li Tang. Chrome spinals from the Jinchuan Ni-Cu Sulfide deposite, Gansu Province, People's Republic of China. Economic Geology, 1999b, 94(3) : 343-356
    (166) Barnes S J, Zientek M, Severson M J. Ni, Cu, Au and platinum-group element contents of sulfides associated with intraplate magmatism: A synthesis. Canadian Journal of Earth Sciences, 1997; 34: 337-351 .
    (167) Barnes S J. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 2000a, 41 , 387-409.
    (168) Barnes S J, Kunilov V Y. Chrome spinels and Mg-ilmenites from the Noril'sk 1 and Talnakh intrusions and other mafic rocks of the Siberian flood basalt province. Economic Geology, 2000b, 95, 1701-1717.
    (169) Bea F, Montero P. Behavior of accessory phase and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta, 1999,63: 1133-1153.
    (170) Blusztajn J, Shimizu N. The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chemical Geology, 1994, 111:
    
    227-243.
    (171) Boudreau A E, Cilium IS. Concentration of Platinum-Group Elements by magmatic fluid in layered intrusions. Economic Geology, 1992, 87: 1830-1848.
    (172) Brenan J M, Li Chusi. Constraints on oxygen fugacity during sulfide segregation in the Voisey's Bay intrusion, Labrador, Canada. Economic Geology, 95: 901-915.
    (173) Brugmann G E, Hanski E J, Naldrett, A J, et al. Sulphide Segregation in Ferropicrites from the Pechenga Complex, Kola Peninsula, Russia. Petrology, 2000, 41: 1721-1742.
    (174) Burkhard D J M. Accessory cromian spinels: Their coexistence and alteration in serpentinites. Geochimica et Cosmochimica Ada, 1993, 57: 1297-1306.
    (175) Carroll M R, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysics Research, 1985, 90(suppl) : C601-C612.
    (176) Chai Gang, Naldrett A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China. Economic Geology, 1992a, 87: 1475-1495.
    (177) Chai Gang, Naldrett A J. The Jinchuan ultramafic intrusion:Cumulate of a high-Mg basaltic magma. Journal of Petrolgoy, 1992b, 33(2) : 277-303.
    (178) Craig J R. Geochemical aspects of the origins of ore deposits , review of research on modern problems in geochemistry. Earth sciences, 1979, 16: 225-272.
    (179) Dickin A P, Richardson J M, Croker J H, et al. Osmium isotope evidence for a crustal origin of group elements in the Sudbury nickel ore, Ontario, Canada. Geochimica et Cosmochimica Acta, 1992, 56: 3531-3537.
    (180) Du Andao, Wang Shuxian, Sun Dezhong, Zhao Dunminn, Liu Dunyi. Precise Re-Os dating of Molybdenite using Carius tube, NTIMS and ICPMS. Mineral Deposits at the 21st Century, Piestrzynski et al (eds) , 2001, 405-407.
    (181) Du Andao, Sun Yali, Zou Xiaoqiu, et al. Study on Rhenium-Osmium isotope system by inductively coupled plasma mass spectrometry and its application to copper-nickel sulfide and molybdenite to copper-nickel sulfide and molybdenite dating. 岩矿测试,1996, 15(4) : L263-L266.
    (182) Fleet M E, Crocket J H, Stone W E. Partitioning of platinum-group-elements (Os, Ir, Ru, Pt, Pd)and gold between sulfide liquid and basalt melt. Geochimca Cosmochimca Acta, 1996, 60: 2397-2412.
    (183) Fleet M E, Stone W E. Partitioning of platinum-group elements in the Fe-Ni-S system and their fractionation in nature. Geochimca Cosmochimca Acta, 1991,55:245-253.
    (184) Foster J G, Lambert D D, Frick L R, et al. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature, 1996, 382: 703-706.
    (185) Freestone I C, Powell R. The low temperature field of liquid immiscibility in the system K2O-Al2O3-FeO-SiO2 with special reference to the join fayalite-leucite-silica. Contributions of Mineralogy and Petrology, 1983, 82: 291-299.
    (186) Frey F A.Prinz M. Ultramafic inclutions from San Carlos Arizona: petrologic and
    
    geochemical data bearing on their petrogenesis, Earth and Planetary Science Letters, 1978,38: 129-176.
    (187) Frost B R. On the stability of sulfides, oxides and native metals in serpentinite. Journal of Petrology, 1985, 25(1) : 31-63
    (188) Frost K M, Groves D I. Magmatic contacts between immiscible sulfide and komatiite melts: implications for genesis of Kambalda sulfide ores. Economic Geology 1989, 84, 1697-1704.
    (189) Gao Shan, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 2002, 198 (3-4) : 307-322
    (190) Grauch R 1. Rare earth elements in metamorphic rocks. Review of Mineralogy, 1989,21:147-167.
    (191) Graig J W. Immiscibitity in silicate melts. American Journal of Science, 5th Series, 1927, 13: 1-4,133-154
    (192) Groves D I, Barrett F M, Binns R A, et al. Spinel phases associated with metamorphosed volcanic-nickel sulfide ore from Western Australia. Economic Geology, 1977,72: 1224-1244.
    (193) Haughton D R, Roeder P L, Skinner B J. Solubility of copper sulfer in mafic magmas. Economic Geology, 1974, 69: 451-467
    (194) Hellman P L, Smith R E, Henderson P. The mobility of the rare earth elements: Evidence and implications from selected terrains affected by burial metamorphism. Contributions of Mineralogy and Petrology, 1979, 71: 23-44.
    (195) Hess P C, Wood M I.Aluminum coonrdination in metaalumious and peralkaline silicate melts. Contributions of Mineralogy and Petrology, 1982, 81: 103-112
    (196) Holzheid A, Grove T L.Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. American Mineralogist, 2002, 87: 227-237.
    (197) Irvine T N. Chromian spinel as a petrogenetic indicator. Part I. Theory. Canadian Journal of Earth Sciences, 1965, 2: 648-672.
    (198) Lambert D D, Simmons E C. Magma evolution in the Stillwater Complex, Montana: I. Rare earth element evidence for the formation of ultramafic series. American Journal of Science, 1987,287: 1-32
    (199) Lambert D D, Foster J G, Frick L R, et al. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system. Economic Geology, 1998,93(2) : 121-136.
    (200) Lambert D D, Foster J G, Frick L R, et al. Re-Os isotopic systematics of the Vbisey's Bay Ni-Cu-Co magmatic ore system, Labrador, Canada. Lithos, 1999, 47: 69-88
    (201) Lambert D D, Frick L R, Foster J G, et al. Re-Os isotope systematic of the Voisey's Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada: II. Implications for Parental magma chemistry, ore genesis, and metal redistribution. Economic Geology, 2000, 95(4) : 867-888.
    (202) Lesher C M. Komatiite-associated nickel sulfide deposits, in J. A. Whitney, &
    
    A. J. Naldrett (editors.), Ore Deposition Associated with Magmas. (Reviews in Economic Geology 4) . El Paso: Economic Geology Publishing Company, 1989, 44-101.
    (203) Li C, Ripley E M, Naldrett A J. Compositional variations of olivine and sulfur isotopes the Noril'sk and Talnakh intrusions, Siberia: Implications for ore forming processes in dynamic magma conduits: Economic Geology. 2003,98(1) : 69-86.
    (204) Li C, Ripley E M, Maier W D, et al. Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa: Evidence for sulfur contamination and multiple magma emplacements. Chemical Geology, 2002, 188, 149-159.
    (205) Li C, Maier W D, de Waal S A. Magmatic Ni-Cu versus PGE deposits: Contrasting genetic controls and exploration implication: South African Journal of Geology, 2001 a, 104, 309-318.
    (206) Li C, Maier W D, de Waal S A. The role of magma mixing in the origin of PGE mineralization in the Bushveld Complex: Thermodynamic calculations and new interpretations. Economic Geology, 2001b, 96, 653-662.
    ( 207 ) Li C, Naldrett A J. Melting reactions of gneissic inclusions with enclosing magma at Voisey's Bay, Labrador, Canada: Implications with respect to ore genesis. Economic Geology, 2000a, 95, 801-814.
    (208) Li C, Naldrett A J. A numerical model for the compositional variations of Sudbury sulphide ores and its application to exploration. Economic Geology, 1994, 89, 1599-1607.
    (209) Li C, Naldrett A J. Sulfide capacity of magma: A quantitative model and its application to the formation of the sulphide ores at Sudbury. Economic Geology 1993a, 88, 1253-1260.
    (210) Li C, Naldrett A J. High-chlorine alteration minerals and calcium-rich brine in fluid inclusions from the Strathcona Deep Copper Zone, Sudbury, Ontario. Economic Geology, 1993b, 88, 17. 80-1796.
    (211) Li C, Naldrett A J, Rucklidge J C, et al. Concentrations of platinum-group elements and gold in sulphide minerals from the Strathcona deposit, Sudbury, Ontario. Canadian Mineralogist, 1993c, 31, 523-531.
    (212) Li C, Naldrett A J. Platinum-group minerals from the Deep Copper Zone of the Strathcona deposit, Sudbury, Ontario. Canadian Mineralogist, 1993d, 31,31-44.
    (213) Li, C, Barnes S J, and Mackovicky E. Partitioning of Ni, Cu, Ir, Rh, Pt and Pd between monosulphide solid solution and sulphide liquid: Effects of temperature and composition: Geochimica et Cosmochimica Acta, 1996,60, 1231-1238.
    (214) Li C, Lightfoot P C, Amelin Y, et al. Contrasting petrological and geochemical relationships in the Voisey's Bay and Mushuau intrusions, Labrador: Implications for ore genesis. Economic Geology, 2000b, 95, 771-800.
    (215) Li C, Naldrett A J, Coats C J, et al. Platinum, Palladium, Gold, Copper-rich stringers at the Strathconaa mine, Sudbury: their enrichment by fractionation of a sulfide liquid. Economic Geology, 1992, 87: 1584-1598.
    (216) Li C, Naldrett A J, Ripley E M. Critical factors for the formation of a
    
    nickel-copper deposit in an evolved magma system: from a comparison of the Pants Lake and Voisey's Bay sulfide occurrences in Labrador, Canada. Mineralium Deposita, 2001, 36(1) : 86-92.
    (217) Li C, Naldrett A J. Geology and petrology of the Voisey's Bay intrusion: Reaction of olivine with sulfide and silicate liquids. Lithos, 1999,47: 1-31.
    (218) Lipschuts M E, Wolf S F, Hanchar J M, et al. Geochemical and Cosmochemical Materials. Analytical. Chemistry. 2001. 73: 2687-2700.
    (219) Ludwig K. Isoplot/Ex, version 2. 0: a geochronogical toolkit for Microsoft Excel. Geochronology Center, Berkeley, 1999.
    (220) Maclean W H. Liquid phase relations in the FeS-FeO-Fe2O3-SiO2 sysytems and their applications in geology. Economic Geology. 1969, 64: 865-884.
    (221) Maier W D. Platinum-group elements in Cu-sulphide ores at Carolusberg and East Okiep, Namaqualand, South Africa. Minerialium Deposita, 2000, 35: 422-429.
    (222) Marcantonio F, Reisberg L, Zindler A, et al. An isotopic study of the Ni-Cu-PGE-rich Wellgreen intrusion of the Wrangellia Terrrance: Evidence for hydrothermal mobilization of rhenium and osmium. Geochimica et Cosmochimica Ada. 1994,58: 1007-1017.
    (223) McCandless T E, Ruiz J. Rhenium-Osmium evidence for regional mineralization in North America. Science, 1993, 261: 1282-1286.
    (224) McDongough W F, Sun S S. The composition of the earth. Chemical Geology, 1995,120: 223-253.
    (225) Mysen B O, Virgo D, Scarfe C M. Relations between the anion structure and viscosity of silicate melts-A Raman spectroscopy study. American Mineralogist, 1980,65:690-710.
    (226) Mysen B O, Finger L W, Seifert F A, et al. Curve-fitting of Raman spectra of amorphous materials. American Mineralogist, 1982, 67:686-696.
    (227) Naldrett A J. A portion of the system Fe-S-O and its application to sulfide ore magma. Journal of Petrology, 1969, 10: 171-202.
    (228) Naldrett A J, Nickel sulfides deposits-their classification and genesis with special emphasis on deposits of Volcanic association. Institution of Mining Metallurgy Translate, 1973, 76: 183-201.
    (229) Naldrett A J, Cabri L J. Ultramafic and related mafic rocks: their classification and genesis with special reference to the concentration of nickel sulfides and Platinum-group-elements. Economic Geology, 1976,71:1131-1158.
    (230) Naldrett A J. IGCP. Project No. 161 and a proposed classifiation of Ni-Cu-PGE sulfide deposits. Canadian Mineralogist, 1979, 17: 143-145.
    (231) Naldrett A J, Duke J.M. Platinum metals in magmatic sulfide ores. Science, 1980, 208: 1417-1428.
    (232) Naldrett A J. Nickel sulfides deposits: classification, composition, and genesis. Economic Geology, 1981, 6: 28-85.
    (233) Naldrett A J. Magmatic sulfide deposit. Oxford, Oxford University Press. 1989.
    (234) Naldrett A J, Lightfoot P C, Doherty V A, et al. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implication for the
    
    origin of the Ni-Cu ores. Eeconomic Geology, 1992a, 87(6) : 975-1004.
    (235) Naldrett A J. A model for the Ni-Cu-PGE ores of the Noril'sk region and its application to other areas of flood basalt. Economic Geology, 1992b, 87(8) : 1945-1962.
    (236) Naldrett A J, Fedornko V A, Asif M, et al. Controls on the compositions of Ni-Cu sulfide deposits as illustrated by those at Noril'sk, Siberia. Economic Geology, 1996, 91: 751-773.
    (237) Naldrett A J. World-class Ni-Cu-PGE deposits: key factors in their genesis. Mineralium Deposita, 1999a, 34: 227-240.
    (238) Naldrett A J, Asif M, Scandal E, et al. Platinum-group elements in the Sudbury ores: significance with respect to the origin of different ore zones and to the exploration for footwall ore bodies. Economic Geology, 1999b, 94(2) : 185-210.
    (239) Naldrett A J, Asia M, Krstic S, et al. The composition of mineralization at the voisey's Bay Ni-Cu sulfide deposit, with special reference to Platinum-group-elements. Economic Geology, 2000,95(4) : 845-865.
    (240) Naslund H R. The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. American Journal of Science , 1983, 283: 1034-1059.
    (241) Norman M D. Melting and metasomatism in the continental lithosphere: laser ablation ICP-MS analysis of minerals. Contributions of Petrology and Mineralogy, 1998, 130:240-255.
    (242) Paul J, W. Volatiles in Submarine Basaltic Glasses from the Northern Kerguelen Plateau (ODP Site 1140) : Implications for Source Region Compositions, Magmatic Processes, and Plateau Subsidence. Journal of Petrology, 2002, 43:1311-1326.
    (243) Philpotts A R, Doyle C D. Effect of magma oxidation state on the extend of silicate liquid immiscibility in a tholeiitic basalt. American Journal of Science, 1983, 283:967-986.
    (244) Rajamani V, Naldrett A J. Partitioning of Fe, Co, Ni, Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Economic Geology, 1978,73:82-93.
    (245) Roedder E. Low temperature liquid immiscibility in the system K2O-FeO-A12O3-SiO2. American Mineralogist, 1951, 36,282-286.
    (246) Roeder P L. Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake. Canadian Mineralogist, 1994, 32: 729-746.
    (247) Roscoe S M, Card K D. Early Proterozic tectonics and metallogeny of the lake Huron region of the Canadian shield. Precambrian Research, 1992, 58(1-4) : 99-119.
    (248) Ross J R, Travis G A. The nickel sulfide deposits in western Australia in global perspective. Economic Geology, 1981, 76(6) : 1291-1329.
    (249) Sack R O, Ghiorso M S. Chromian spinels as petrogenetic indicators: thermodynamic and petrological applications. American Mineralogist, 1991, 76: 827-847.
    (250) Shatsky V S, Kozmenko O A, Sobolev N V. Behaviour of rare-earth elements during high-pressure metamorphism. Lithos, 1990,25: 219-226.
    
    
    (251) Shima H, Naldrett A J. Solubility of sulfur inultramafic melt and the relevance of the system Fe-S-O. Economic Geology, 1975, 70: 960-967.
    ( 252) Shirey S B, Walker R J. Carius tube digestion for low-blank rhenium-osmium analysis, Analytical Chemistry, 1995, 67: 2136-2141.
    (253) Skinner B J, Peck D L. An immiscible sulfide melt from Howaii, Magmatic ore deposits, Economic Geology, 1969, Monograph. 4: 310-322.
    (254) Smoliar M I, Walker R J, Morgan J W. Re-Os ages of group IIA, IIIA, IVA and VIB iron meteorites. Science, 1996,271, 1099-1102.
    (255) Stosch H G, Seck H A. Geochemistry and mineralogy of two spinel peridotite suites fromDreiser Waiher, West Germany. Geochimica et Cosmochimica Ada, 1980, 4: 457-469.
    (256) SunS S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders A D and Norry M J eds. Magmatism in the Ocean Basins, Geological Society, London, Special Publication, 1989,42: 13-345.
    (257) Sun S S, Nesbitt R W. Petrogenesis of Archaean ultrabasic and basic volcanics: evidence from rare earth element. Contributions of Mineralogy and Petrology, 1978, 65:301-325.
    (258) Theriault R D, Barnes S J, Severson M J. Origin of Cu-Ni-PGE sulfide materialization in the Partridge River Intrusion, Duluth complex, Minnesota. Economic Geology, 2000, 95(5) : 929-943.
    (259) Visser W, Koster V, Groos A F. Phase relations in the system K2O-FeO-Al2O3-SiO2 at 1 atmosphere with special emphasis on low temperature liquid immiscibility. American Journal of Science, 1979, 279: 70-91.
    (260) Walker R J, Morgan J W, Horan M F, et al. Re-Os is otopic evidence for an enriched-mantle plum source for the Noril'sk-type ore-bearing intrusions, Siberia. Geochimca Cosmochimca Acta, 1994, 58:4179-4198.
    (261) Walker R J, Morgan J W, Naldrett A J, et al. Re-Os isotope systematics of Ni-Cu sulfide ores, Sudbury Igneous Complex, Ontario: Evidence for a major crustal component. Earth and Planetary Science Letters, 1991, 105: 416-429.
    (262) Wallace P J. Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies, Journal of Volcanology and Geothermal Research 2001, 108 (1-4) : 85-106.
    (263) Whitney J A, Naldrett A J. Ore Deposition Associated with Magmas. Rev. Economic Geology, 1989, 4.
    (264) Yuan Wanming, Mo Xuanxue. Contral of melt structure on Cu-Au mineralization in basic-ultrabasic complexes of northern China. Acta Geologica Sinica, 2000,74(4) : 786-794.
    (265) Zhou M F, Lightfoot P C. Keays R R, et al. Petrogenetic significance of chromian spinels from the Sudbury igneous complex, Ontario, Canada. Canadian Journal of earth Science, 1997,34: 1405-1419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700