用户名: 密码: 验证码:
稀土氟化物上转换纳米材料的发光调节及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土氟化物上转换多色发光纳米材料由于其独特的光学性能、优良的化学和生理性能,在彩色显示、光子器件、生物医学等领域具有广阔的应用前景。本文分别通过控制稀土氟化物上转换纳米粒子的表面配体组成、结晶度以及晶格声子能量,改变镧系发光中心离子能级之间发生无辐射弛豫的几率,建立了三种具有普遍性的调节稀土氟化物纳米材料上转换多色发光的新方法。
     在稀土氟化物上转换纳米粒子合成过程中,通过简单地改变反应体系中两种长链配体的组成,建立了一种通过控制表面配体调节稀土氟化物纳米粒子上转换多色发光的新方法,实现了同一镧系离子的上转换多色发光输出。利用1H-NMR、FT-IR和系列对照实验对NaYF4:Yb, Er粒子合成过程中溶剂体系的相互作用和粒子表面配体进行了详细的跟踪分析,发现油酸和十八胺之间发生了酰胺化反应,并随着体系中油酸和十八胺比例的变化,络合到粒子表面配体中酰胺化产物的相对含量发生变化,引起NaYF4:Yb, Er纳米粒子发光颜色从红、橙红、黄、黄绿到绿色的连续精细变化。该方法不但可用于Er3+、Ho3+和Tm3+等镧系离子的多色发光调节,而且可进一步拓展到不同的基质(如NaGdF4和NaLuF4)和由十八胺和油酸酰胺两种配体组成的反应体系中。
     论文设计并验证了一种通过控制反应温度和时间调节粒子的结晶度,进而调节稀土氟化物纳米粒子上转换多色发光的新方法。研究了体系反应温度和时间对氟化物上转换纳米粒子的内部缺陷和结晶度的影响,并通过系列对照实验、高分辨TEM照片和Williamson-Hall方法计算拟合等,证明了粒子结晶度的变化引起产物出现多色发光。同样,该方法也可实现对NaYF4:Yb,Ho和NaYF4:Yb,Tm纳米粒子上转换发光颜色的调节。
     论文设计并验证了一种以硝酸铵作为氧源,通过改变其加入量控制基质材料中氧含量来调节晶格声子能量,进而调节镧系离子掺杂的上转换材料的多色发光的普遍性方法,并通过上转换发光光谱、X射线荧光光谱、拉曼光谱等证明了该设计思路的合理性和正确性。同时,研究结果表明,只有硝酸铵作为氧源并且在250℃加入体系才能有效的实现稀土氟化物上转换材料发光颜色输出的调节。该方法可进一步用于Ho3+离子以及NaYF4和NaLuF4基质中Er离子的多色调节。将上述制备的多色上转换粒子与聚合物复合,进一步应用于彩色LED光转换剂,可有效的将近红外光转换为可见光,展示出丰富的发光颜色,有广泛应用前景。
Due to their special upconversion luminescence performance, superior chemical and physiological properties, rare earth fluoride upconversion nanomaterials with multicolor output had been widely used in the fields of multicolor display, photonic devices, biomedical etc. In this thesis, we developed several new general protocols for the fine-tuning multicolor output of fluoride upconversion nanomaterials, based on changing the nonradiative relaxation probability of lanthanide luminescent ions, by controlling surface ligands, internal defects and crystallinity, and phonon energy, respectively.
     A general approach for the multicolor fine-tuning of fluoride upconversion nanoparticles (UCNPs) was developed by simply controlling the composition of two ligands during the synthesis procedure. The interaction between oleic acid (OA) and octadecylamine (OM) in reaction system and the surface ligands of nanoparticles were monitored and analyzed by1H-NMR and FT-IR spectroscopy. It is revealved that OA reacted with OM to form N-octadecyloleamide (OOA) before nucleation of fluoride nanoparticles. With the variation of OA/OM in reaction solution, the relative content of OOA molecule in the surface ligands was varied, which resulted in the multicolor output of NaYF4:Yb, Er nanoparticles with red, orange, yellow, yellow-green, green. This approach was not only expanded to the multicolor tuning of Ho3+and Tm3+, but also to the different host matrix (e.g. NaGdF4and NaLuF4) and ligand pairs (e.g. octadecylamine and oleamide).
     A new approach for the multicolor tuning of fluoride UCNPs was designed and testified based on controlling the crystallinity through tuning reaction temperature and time. The effects of reaction temperature and time on the internal defects and crystallinity were investigated, and it was demonstrated that the variation of crystallinity induced the multicolor emissions of nanoparticles through the control experiments, XRD, HR-TEM, and calculated results of Williamson-Hall methodology. Similarly, this method could also achieve the multicolor tuning of NaYF4:Yb,Ho and NaYF4:Yb,Tm UCNPs.
     A general new approach for the multicolor tuning of fluoride UCNPs was designed and testified by controlling phonon energy, which was achieved through tuning the relative content of oxygen impurities by changing the addition amount of NH4NO3. Upconvesion spectroscopy, X-ray fluorescence spectroscopy, Raman spectroscopy, and upconversion mechanism demonstrated the rationality of this strategy. In addition, the effects of addition temperature of NH4NO3and other oxygen sources on the upconversion luminescent performance were investigated. It is revealed that NH4NO3could be used as the oxygen source, and should be added into the reaction solution when the temperature was raised to250℃to achieve the effective multicolor tuning of fluoride UCNPs. This method could also be used for the multicolor tuning of Ho3+ion and Er3+ion in the host matrix of NaYF4and NaLuF4. Subsequently, as-prepared UCNPs were incorporated into the organic polymer and used as the color converters for LEDs with excellent performance, which could effectively convert the infrared light into visible ones, and these UCNPs exhibited great potential applications in many areas.
引文
[I]Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chemical Reviews, 2004,104(1):139-174.
    [2]Shan G B, Demopoulos G P. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer [J]. Advanced Materials,2010,22(39): 4373-4377.
    [3]Wang F, Banerjee D, Liu Y, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy [J]. Analyst,2010,135(8):1839-1854.
    [4]Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chemical Society Review,2009,38(4):976-989.
    [5]Haase M, Schufer H. Upconverting nanoparticles [J]. Angewandte Chemie International Edition,2011, 50(26):5808-5829.
    [6]van der Ende B M, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells [J]. Phys Chem Chem Phys,2009,11(47):11081-11095.
    [7]Singh-Rachford T N, Castellano F N. Photon upconversion based on sensitized triplet-triplet annihilation [J]. Coordination Chemistry Reviews,2010,254(22):2560-2573.
    [8]Sun J, Wu W, Guo H, et al. Visible-light harvesting with cyclometalated iridium(Ⅲ) complexes having long-lived 3IL excited states and their application in triplet-triplet-annihilation based upconversion [J]. Eur. J. Inorg. Chem,2011,21:3165-3173.
    [9]Ji S, Wu W H, Wu W T, et al. Ruthenium(II) polyimine complexes with a long-lived 3IL excited State or a 3MLCT/3IL equilibrium:efficient triplet sensitizers for low-power upconversion [J]. Angewandte Chemie International Edition,2011,50(7):1626-1629.
    [10]Ji S, Guo H M, Wu W T, et al. Ruthenium(II) polyimine-coumarin dyad with non-emissive 3IL excited state as sensitizer for triplet-triplet annihilation based upconversion [J]. Angewandte Chemie International Edition,2011,50(36):8283-8286.
    [11]Islangulov R R, Kozlov D V, Castellano F N. Low power upconversion using MLCT sensitizers [J]. Chemical Communications,2005,30:3776-3778.
    [12]Singh-Rachford T N, Castellano F N. Supra-nanosecond dynamics of a red-to-blue photon upconversion system [J]. Inorganic chemistry,2009,48(6):2541-2548.
    [13]Singh-Rachford T N, Castellano F N. Low power visible-to-UV upconversion [J]. The Journal of Physical Chemistry A,2009,113(20):5912-5917.
    [14]Sun Y, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature,2006,440(7086):908-912.
    [15]Qin W, Zhang D, Zhao D, et al. Near-infrared photocatalysis based on YF3:Yb, Tm/TiO2 core/shell nanoparticles [J]. Chemical Communications,2010,46(13):2304-2306.
    [16]Li C, Wang F, Zhu J, et al. NaYF4:Yb, Tm/CdS composite as a novel near-infrared-driven photocatalyst [J]. Applied Catalysis B:Environmental,2010,100(3):433-439..
    [17]王峰.镧系掺杂氟化物发光生物标记纳米材料的制备与性能研究[D]:(博士学位论文).浙江:浙江大学,2006.
    [18]Wang H, Duan C, Tanner P A. Visible upconversion luminescence from Y2O3:Eu3+,Yb3+[J]. The Journal of Physical Chemistry C,2008,112(42):16651-16654.
    [19]Buissette V, Giaume D, Gacoin T, et al. Aqueous routes to lanthanide-doped oxide nanophosphors [J]. Journal of Materials Chemistry,2006,16(6):529-539.
    [20]Liu C, Wang H, Zhang X, et al. Morphology-and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence [J]. Journal of Materials Chemistry,2009,19(4):489-496.
    [21]Yan R X, Li Y. Down/Up Conversion in Ln-doped YF3 Nanocrystals [J]. Advanced Functional Materials,2005,15(5):763-770.
    [22]Chen D, Yu Y, Huang F, et al. Lanthanide activator doped NaYb1-xGdxF4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties [J]. Journal of Materials Chemistry, 2011,21(17):6186-6192.
    [23]张思远.稀土离子的光谱学--光谱性质和光谱理论[M].北京:科学出版社,2008.
    [24]Wang F, Xue X, Liu X. Multicolor tuning of (Ln, P)-coped YVO4 nanoparticles by Single-wavelength excitation [J]. Angewandte Chemie International Edition,2008,47(5):906-909.
    [25]Su Y, Li L, Li G. Self-assembly and multicolor emission of core/shell structured CaWO4:Na+/Ln3+ spheres [J]. Chemical Communications,2008,34:4004-4006.
    [26]Su Y, Li L, Li G. Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+and Ln3+(Ln= Tb, Sm, Dy, Eu) [J]. Journal of Materials Chemistry,2009,19(16): 2316-2322.
    [27]Dai Q, Song H, Ren X, et al. Structure and upconversion luminescence of hydrothermal PbWO4:Er3+, Yb3+powders [J]. The Journal of Physical Chemistry C,2008,112(49):19694-19698.
    [28]张希艳,卢利平,柏朝晖,等.稀土发光材料[M].北京:国防工业出版社,2005.
    [29]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2005.
    [30]Bloemvergen N. Solid state infrared qantum cunter [J]. Physical Review Letters,1959,2:8485-8490.
    [31]Chivian J S, Case W, Eden D. The photon avalanche:a new phenomenon in Pr3+-based infrared quantum counters [J]. Applied Physics Letters,1979,35(2):124-126.
    [32]Glaspell G, Anderson J, Wilkins J R, et al. Vapor phase synthesis of upconverting Y2O3 nanocrystals doped with Yb3+, Er3+, Ho3+, and Tm3+ to generate red, green, blue, and white light [J]. The Journal of Physical Chemistry C,2008,112(30):11527-11531.
    [33]Chen G, Liu H, Liang H, et al. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li ions [J]. The Journal of Physical Chemistry C,2008,112(31): 12030-12036.
    [34]郑会龙.上转换发光材料的合成、表征及发光性质的研究[D]:(硕士学位论文).辽宁:大连海事大学,2008.
    [35]Lu W, Ma X, Zhou H. et al. White up-conversion luminescence in rare-earth-ion-doped YAlO3 nanocrystals [J]. The Journal of Physical Chemistry C,2008.112(38):15071-15074.
    [36]Douma K, Prinzen L, Slaaf D W, et al. Nanoparticles for optical molecular imaging of atherosclerosis [J]. Small,2009,5(5):544-557.
    [37]Chatterjee D K, Rufaihah A J, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials,2008,29(7):937-943.
    [38]Abdul Jalil R, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals [J]. Biomaterials,2008,29(30):4122-4128.
    [39]Park Y I, Kim J H, Lee K T, et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent [J]. Advanced Materials,2009,21(44):4467-4471.
    [40]Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles [J]. Small,2008,4(1):26-49.
    [41]Jun Y, Choi J, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J]. Angewandte Chemie International Edition,2006,45(21): 3414-3439.
    [42]Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals [J]. Journal of the American Chemical Society,2000,122(51): 12700-12706.
    [43]Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface [J]. Nature, 2004,437(7059):664-670.
    [44]Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals [J]. Angewandte Chemie International Edition,2007,46(25):4630-4660.
    [45]Yi G, Lu H, Zhao S, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors [J]. Nano Letters,2004, 4(11):2191-2196.
    [46]Yi G S, Chow G M. Colloidal LaF3:Yb, Er, LaF3:Yb, Ho and LaF3:Yb, Tm nanocrystals with multicolor upconversion fluorescence [J]. Journal of Materials Chemistry,2005,15(41):4460-4464.
    [47]Heer S, Kompe K, Gudel H U, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-coped NaYF4 nanocrystals [J]. Advanced Materials,2004,16(23): 2102-2105.
    [48]Li Z, Zhang Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission [J]. Angewandte Chemie International Edition,2006,118(46): 7896-7899.
    [49]Wang F, Liu X. Upconversion multicolor fine-tuning:Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles [J]. Journal of the American Chemical Society,2008.130(17): 5642-5643.
    [50]Wang F, Chatterjee D K, Li Z, et al. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence [J]. Nanotechnology,2006,17(23):5786-5791.
    [51]Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews,2005,105(4):1025-1102.
    [52]Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chemical Reviews,2004,104(9):3893-3946.
    [53]Wang D, Xie T, Li Y. Nanocrystals:Solution-based synthesis and applications as nanocatalysts [J]. Nano Research,2009,2(1):30-46.
    [54]Zhuang J, Liang L, Sung H H Y, et al. Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln= Y, Dy-Yb) [J]. Inorganic Chemistry,2007,46(13):5404-5410.
    [55]Li C, Quan Z, Yang J, et al. Highly uniform and monodisperse "NaYF4:Ln3+(Ln= Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals:Hydrothermal synthesis and luminescent properties [J]. Inorganic chemistry,2007,46(16):6329-6337.
    [56]Wang L, Zhang Y, Zhu Y. One-pot synthesis and strong near-infrared upconversion luminescence of poly (acrylic acid)-functionalized YF3:Yb3+/Er3+nanocrystals [J]. Nano Research,2010,3(5): 317-325.
    [57]Zeng J H, Su J, Li Z H, et al. Synthesis and upconversion luminescence of hexagona-phase NaYF4:Yb, Er phosphors of controlled size and morphology [J]. Advanced Materials,2005,17(17):2119-2123.
    [58]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis [J]. Nature,2005, 437(7055):121-124.
    [59]Wang X, Li Y. Monodisperse nanocrystals:general synthesis, assembly, and their applications [J]. Chemical Communications,2007,28:2901-2910.
    [60]Wang L, Li Y. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals [J]. Chemistry of materials.2007,19(4):727-734.
    [61]Wang G, Peng Q, Li Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+nanocrystals [J]. Journal of the American Chemical Society,2009,131(40):14200-14201.
    [62]Wang L, Li Y. Na (Y1.5Na0.5) F6 single-crystal nanorods as multicolor luminescent materials [J]. Nano letters,2006,6(8):1645-1649.
    [63]Zhang F, Wan Y, Yu T, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence [J]. Angewandte Chemie International Edition,2007, 46(42):7976-7979.
    [64]Zhang F, Zhao D. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M (OH) 3] parents [J]. ACS NANO,2008,3(1):159-164.
    [65]Liang L, Xu H, Su Q, et al. Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes [J]. Inorganic chemistry,2004,43(5):1594-1596.
    [66]Zhang F, Wan Y, Shi Y, et al. Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence [J]. Chemistry of materials,2008,20(11):3778-3784.
    [67]Ma D K, Huang S M, Yu Y Y, et al. Rare-earth-ion-doped hexagonal-phase NaYF4 nanowires: Controlled synthesis and luminescent properties [J]. The Journal of Physical Chemistry C,2009, 113(19):8136-8142.
    [68]Li C, Quan Z, Yang P, et al. Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4:Er and YbF3/YbF3:Er microstructures [J]. Journal of Materials Chemistry,2008, 18(12):1353-1361.
    [69]Li C, Lin J. Rare earth fluoride nano-/microcrystals:synthesis, surface modification and application [J]. Journal of Materials Chemistry,2010,20(33):6831-6847.
    [70]Zeng H, Sun S. Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles [J]. Advanced Functional Materials,2008,18(3):391-400.
    [71]Peng X. An essay on synthetic chemistry of colloidal nanocrystals [J]. Nano Research,2009,2(6): 425-447.
    [72]Sapra S, Poppe J, Eychmuller A. CdSe nanorod synthesis:A new approach [J]. Small,2007,3(11): 1886-1888.
    [73]Kompe K, Borchert H, Storz J, et al. Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield [J]. Angewandte Chemie International Edition,2003,42(44): 5513-5516.
    [74]Hebbink G A, Stouwdam J W, Reinhoudt D N, et al. Lanthanide (Ⅲ)-doped nanoparticles that emit in the near-infrared [J]. Advanced Materials,2002,14(16):1147-1150.
    [75]Huignard A, Gacoin T, Boilot J P. Synthesis and luminescence properties of colloidal YVO4:Eu phosphors [J]. Chemistry of materials,2000,12(4):1090-1094.
    [76]Riwotzki K, Meyssamy H, Kornowski A, et al. Liquid-phase synthesis of doped nanoparticles: colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution [J]. The Journal of Physical Chemistry B,2000,104(13):2824-2828.
    [77]Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor [J]. Journal of the American Chemical Society,2005,127(10):3260-3261.
    [78]Boyer J C, Vetrone F, Cuccia L A, et al. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J]. Journal of the American Chemical Society,2006,128(23):7444-7445.
    [79]Boyer J C, Cuccia L A, Capobianco J A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano letters,2007,7(3):847-852.
    [80]Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties [J]. Journal of the American Chemical Society,2006,128(19): 6426-6436.
    [81]Yi G S, Chow G M. Synthesis of hexagona-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence [J]. Advanced Functional Materials,2006,16(18): 2324-2329.
    [82]Schufer H, Ptacek P, Zerzouf O, et al. Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4 [J]. Advanced Functional Materials,2008,18(19): 2913-2918.
    [83]Vetrone F, Mahalingam V, Capobianco J A. Near-infrared-to-blue upconversion in colloidal BaYF5: Tm3+, Yb3+nanocrystals [J]. Chemistry of materials,2009,21(9):1847-1851.
    [84]Chen G, Ohulchanskyy T Y, Kachynski A, et al. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm [J]. ACS NANO,2011,5 (6):4981-4986.
    [85]Mahalingam V, Vetrone F, Naccache R, et al. Colloidal Tm3+/Yb3+ doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation [J]. Advanced Materials,2009,21(40):4025-4028.
    [86]Zhan Q, Qian J, Liang H, et al. Using 915-nm laser excited Tm/Er/Ho Doped NaYbF4 upconversion nanoparticles for In vitro and deeper In vivo bioimaging without overheating irradiation [J]. ACS NANO,2011,5(5):3744-3757.
    [87]Wei Y, Lu F, Zhang X, et al. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb, Er nanoplates [J]. Chemistry of materials,2006,18(24):5733-5737.
    [88]Qian H S, Zhang Y. Synthesis of hexagonal-phase Core-shell NaYF4 nanocrystals with tunable upconversion fluorescence [J]. Langmuir,2008,24(21):12123-12125.
    [89]Wang F, Han Y, Lim C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature,2010,463(7284):1061-1065.
    [90]Li Z, Zhang Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence [J]. Nanotechnology,2008, 19(34)5606-5610.
    [91]Li Z, Zhang Y, Jiang S. Multicolor core/shel-structured upconversion fluorescent nanoparticles [J]. Advanced Materials,2008,20(24):4765-4769.
    [92]Wang H Q, Nann T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis [J]. ACS NANO,2009,3(11):3804-3808.
    [93]Wang H Q, Tilley R D, Nann T. Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis [J]. CrystEngComm,2010,12(7):1993-1996.
    [94]Quan Z, Yang P, Li C, et al. Shape and phase-controlled synthesis of KMgF3 colloidal nanocrystals via microwave irradiation [J]. The Journal of Physical Chemistry C,2009,113(10):4018-4025.
    [95]Zhang C, Chen J. Facile EG/ionic liquid interfacial synthesis of uniform RE doped NaYF4 nanocubes [J]. Chemical Communications,2010,46(4):592-594.
    [96]Chen C, Sun L D, Li Z X, et al. Ionic liquid-based route to spherical NaYF4 Nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence [J]. Langmuir, 2010,26(11):8797-8803.
    [97]He M, Huang P, Zhang C, et al. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging [J]. Advanced Functional Materials,2011,21(23),4470-4474.
    [98]Downing E, Hesselink L, Ralston J, et al. A Three-color, solid-state, three-dimensional display [J]. Science,1996,273:1185-1189.
    [99]Liu X F, Dong G P, Qiao Y B, et al. Transparent colloid containing upconverting nanocrystals:an alternative medium for three-dimensional volumetric display [J]. Appl Opt,2008,47(34):6416-6421.
    [100]Carling C J, Boyer J C, Branda N R. Remote-control photoswitching using NIR light [J]. Journal of the American Chemical Society,2009,131(31):10838-10839.
    [101]Boyer J C, Carling C J, Gates B D, et al. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity [J]. Journal of the American Chemical Society,2010,132(32):15766-15772.
    [102]Zhang C. Zhou H P, Liao L Y, et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene:rewritable optical storage with nondestructive readout [J]. Advanced Materials,2010,22(5):633-637.
    [103]Lim S F, Riehn R, Ryu W S, et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans [J]. Nano letters,2006,6(2):169-174.
    [104]Nyk M, Kumar R, Ohulchanskyy T Y, et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm and Yb doped fluoride nanophosphors [J]. Nano letters,2008,8(11):3834-3838.
    [105]Hu H, Xiong L, Zhou J, et al. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells [J]. Chemistry-A European Journal,2009,15(14):3577-3584.
    [106]Zhou J, Sun Y, Du X, et al. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties [J]. Biomaterials,2010,31(12):3287-3295.
    [107]Xia A, Gao Y, Zhou J, et al. Core-shell NaYF4:Yb, Tm@ FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node [J]. Biomaterials,2011,32(33)7200-7208.
    [108]Cao T, Yang Y, Gao Y, et al. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging [J]. Biomaterials,2011,32(11):2959-2968.
    [109]熊丽琴.上转换发光稀土纳米材料和磷光铱配合物的合成及生物成像应用研究[D]:(博士学位论文).上海:复旦大学,2010.
    [110]胡鹤.稀土上转换发光纳米材料的制备及其在生物医学成像中的应用[D]:(博士学文论文).上海:复旦大学,2009.
    [111]Wang M, Mi C C, Wang W X, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles [J]. ACS NANO,2009,3(6):1580-1586.
    [112]Kumar R, Nyk M, Ohulchanskyy T Y, et al. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals [J]. Advanced Functional Materials,2009,19(6):853-859.
    [113]Cheng L, Yang K, Li Y, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy [J]. Angewandte Chemie International Edition,2011,123(32):7523-7528.
    [114]Wang M, Mi C, Zhang Y, et al. NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells [J]. The Journal of Physical Chemistry C,2009,113(44): 19021-19027.
    [115]Wang L, Yan R, Huo Z, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angewandte Chemie International Edition,2005, 44(37):6054-6057.
    [116]Wang L, Li Y. Green upconversion nanocrystals for DNA detection [J]. Chemical Communications, 2006,24:2557-2559.
    [117]Zhang P, Rogelj S, Nguyen K, et al. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles [J]. Journal of the American Chemical Society,2006, 128(38):12410-12411.
    [118]Chen Z, Chen H, Hu H. et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J]. Journal of the American Chemical Society, 2008,130(10):3023-3029.
    [119]Rantanen T, Jarvenpaa M L, Vuojola J, et al. Fluorescence-quenching-based enzyme-activity assay by using photon upconversion [J]. Angewandte Chemie International Edition,2008,120(20): 3871-3873.
    [120]Zhang P, Steelant W, Kumar M, et al. Versatile photosensitizers for photodynamic therapy at infrared excitation [J]. Journal of the American Chemical Society,2007,129(15):4526-4527.
    [121]Guo Y, Kumar M, Zhang P. Nanoparticle-based photosensitizers under CW infrared excitation [J]. Chemistry of materials,2007,19(25):6071-6072.
    [122]Qian H S, Guo H C, Ho P C L, et al. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy [J]. Small,2009,5(20):2285-2290.
    [123]Guo H, Qian H, Idris N M, et al. Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer [J]. Nanomedicine: Nanotechnology, Biology and Medicine,2010,6(3):486-495.
    [124]Shan J, Budijono S J, Hu G, et al. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy [J]. Advanced Functional Materials,2011,21(13):2488-2495.
    [125]Gai S, Yang P, Li C, et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers [J]. Advanced Functional Materials,2010, 20(7):1166-1172.
    [126]Carling C J, Nourmohammadian F, Boyer J C, et al. Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles [J]. Angewandte Chemie International Edition,2010,49(22):3782-3785.
    [127]Ehlert O, Thomann R, Darbandi M, et al. A four-color colloidal multiplexing nanoparticle system [J]. ACS NANO,2008,2(1):120-124.
    [128]Chen G, Ohulchanskyy T Y, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb/Tm nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. ACS NANO, 2010,4(6):3163-3168.
    [129]Chen G, Liu H, Somesfalean G, et al. Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ions [J]. Nanotechnology,2009, 20(38):5704-5709.
    [130]Mai H X, Zhang Y W, Sun L D, et al. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals [J]. The Journal of Physical Chemistry C,2007,111(37):13721-13729.
    [131]Yang L, Han H, Zhang Y, et al. White emission by frequency up-conversion in Yb-Ho-Tm triply doped hexagonal NaYF4 nanorods [J]. The Journal of Physical Chemistry C,2009,113(44): 18995-18999.
    [132]Chen S, Dierre B, Lee W, et al. Suppression of concentration quenching of Er-reiated luminescence in Er-doped GaN [J]. Applied Physics Letters,2010,96(18):1901-1903.
    [133]Gorris H H, Ali R, Saleh S M, et al. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding [J]. Advanced Materials,2011,23(14):1652-1655.
    [134]Yan C, Dadvand A, Rosei F, et al. Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb, Er nanoheterostructures [J]. Journal of the American Chemical Society,2010,132(26):8868-8869.
    [135]Klokkenburg M, Hilhorst J, Erne B. Surface analysis of magnetite nanoparticles in cyclohexane solutions of oleic acid and oleylamine [J]. Vibrational spectroscopy,2007,43(1):243-248.
    [136]Roberts J E. Lanthanum and neodymium salts of trifluoroacetic acid [J]. Journal of the American Chemical Society,1961,83(5):1087-1088.
    [137]Wu H, Yang Y, Cao Y C. Synthesis of colloidal uranium-dioxide nanocrystals [J]. Journal of the American Chemical Society,2006,128(51):16522-16523.
    [138]Cherneva E, Kolev T. Solid-state linear polarized IR-spectroscopic and theoretical analysis of methioninamide ester amide of squaric acid diethyl ester [J]. Journal of molecular structure,2007, 829(1):65-73.
    [139]Mai H X, Zhang Y W, Sun L D, et al. Size-and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy [J]. The Journal of Physical Chemistry C,2007,111(37):13730-13739.
    [140]Charville H, Jackson D, Hodges G, et al. The thermal and boron-catalysed direct amide formation reactions:mechanistically understudied yet important processes [J]. Chemical Communications, 2010,46(11):1813-1823.
    [141]Li Y, Liu J, Wang Y, et al. Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes [J]. Chemistry of materials,2001,13(3):1008-1014.
    [142]Jursic B S, Zdravkovski Z. A simple preparation of amides from acids and amines by heating of their mixture [J]. Synthetic communications,1993,23(19):2761-2770.
    [143]Wu N, Fu L, Su M, et al. Interaction of fatty acid monolayers with cobalt nanoparticles [J]. Nano letters,2004,4(2):383-386.
    [144]Ahrenstorf K, Heller H, Kornowski A, et al. Nucleation and growth mechanism of NixPt1-x nanoparticles [J]. Advanced Functional Materials,2008,18(23):3850-3856.
    [145]Ji X, Copenhaver D, Sichmeller C, et al. Ligand bonding and dynamics on colloidal nanocrystals at room temperature:The case of alkylamines on CdSe nanocrystals [J]. Journal of the American Chemical Society,2008,130(17):5726-5735.
    [146]Fritzinger B, Capek R K, Lambert K, et al. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots [J]. Journal of the American Chemical Society,2010, 132(29):10195-10201.
    [147]Holland G P, Shanna R, Agola J O, et al. NMR characterization of phosphonic acid capped SnO2 nanoparticles [J]. Chemistry of materials,2007,19(10):2519-2526.
    [148]Mohamed M B, AbouZeid K M, Abdelsayed V, et al. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis:formation of dioleamide by gold nanocatalysis [J]. ACS NANO,2010,4(5):2766-2772.
    [149]Sahoo Y, Pizem H, Fried T, et al. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids [J]. Langmuir,2001,17(25):7907-7911.
    [150]Hyeon T. Chemical synthesis of magnetic nanoparticles [J]. Chemical Communications,2003: 927-934.
    [151]Cheon J, Kang N J, Lee S M, et al. Shape evolution of single-crystalline iron oxide nanocrystals [J]. Journal of the American Chemical Society,2004,126(7):1950-1951.
    [152]Jun Y, Lee J H, Choi J, et al. Symmetry-controlled colloidal nanocrystals:Nonhydrolytic chemical synthesis and shape determining parameters [J]. The Journal of Physical Chemistry B,2005,109(31): 14795-14806.
    [153]Suyver J, Aebischer A, Biner D, et al. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion [J]. Optical Materials,2005,27(6): 1111-1130.
    [154]Steigerwald M L, Brus L E. Semiconductor crystallites:a class of large molecules [J]. Accounts of Chemical Research,1990,23(6):183-188.
    [155]Du Y P, Zhang Y W, Yan Z G, et al. Single-crystalline and near-monodispersed NaMF3 (M= Mn, Co, Ni, Mg) and LiMAlF6(M= Ca, Sr) nanocrystals from cothermolysis of multiple trifluoroacetates in solution [J]. Chemistry-an Asian Journal,2007,2(8):965-974.
    [156]Sun X, Zhang Y W, Du Y P, et al. From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase [J]. Chemistry-A European Journal.2007,13(8):2320-2332.
    [157]Kromer K W, Biner D, Frei G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors [J]. Chemistry of materials,2004,16(7):1244-1251.
    [158]Murray C, Norris D, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [159]Tang Y, Ouyang M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering [J]. Nature materials,2007,6(10):754-759.
    [160]Liu Y, Wang C, Wei Y, et al. Surfactant-Induced Postsynthetic Modulation of Pd Nanoparticle Crystallinity [J]. Nano letters.
    [161]Portales H, Goubet N, Saviot L, et al. Crystallinity Dependence of the Plasmon Resonant Raman Scattering by Anisotropic Gold Nanocrystals [J]. ACS NANO,4(6):3489-3497.
    [162]Lee S M, Jun Y, Cho S N, et al. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks [J]. Journal of the American Chemical Society. 2002,124(38):11244-11245.
    [163]Peng Z A, Peng X. Mechanisms of the shape evolution of CdSe nanocrystals [J]. Journal of the American Chemical Society,2001,123(7):1389-1395.
    [164]Reddy K N, Shareef M, Pandaraiah N. Growth and X-ray study of NaYF4 crystals [J]. Journal of Materials Science Letters,1983,2(2):83-84.
    [165]Niu W, Zhang L, Xu G. Shape-controlled synthesis of single-crystalline palladium nanocrystals [J]. ACS NANO,2010,4(4):1987-1996.
    [166]Yi G S, Chow G M. Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chemistry of materials,2007,19(3): 341-343.
    [167]Yogamalar R, Srinivasan R, Vinu A, et al. X-ray peak broadening analysis in ZnO nanoparticles [J]. Solid State Communications,2009,149(43):1919-1923.
    [168]Biju V, Sugathan N, Vrinda V, et al. Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening [J]. Journal of Materials Science,2008,43(4):1175-1179.
    [169]Kerber M B, Schafler E, Zehetbauer M J. Processing and evaluatuin of X-ray line profiles measured from nanostructured materials produced by severe plastic deformation [J]. Rev Adv Mater Sci,2005, 10:427-433.
    [170]Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis [J]. Physica B:Condensed Matter,2010, 405(20):4256-4261.
    [171]Velazquez-Palenzuela A, Centellas F, Garrido J A, et al. Structural properties of unsupported Pt-Ru nanoparticles as anodic catalyst for proton exchange membrane fuel cells [J]. The Journal of Physical Chemistry C,2010,114(10):4399-4407.
    [172]The Landolt-Bornstein Datebase,http://springer.lib.tsinghua.edu.cn.
    [173]Van Dijk J, Schuurmans M. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions [J]. The Journal of Chemical Physics,1983,78:5317-5323.
    [174]王小红.硝酸按与乳化炸药典型组分混合物的热分解特性研究[D]:(硕士学位论文).安徽:安徽理工大学,2005.
    [175]Patil D G, Jain S R, Brill T B. Thermal decomposition of energetic materials 56. On the fast thermolysis mechanism of ammonium nitrate and its mixtures with mangnesium and carbon [J]. Propellants, explosives, pyrotechnics,1992,17(3):99-105.
    [176]Turcotte R, Lightfoot P, Fouchard R, et al. Thermal hazard assessment of AN and AN-based explosives [J]. Journal of hazardous materials,2003,101(1):1-27.
    [177]李新蕊,古积博.法国硝酸馁化肥工厂爆炸事故介绍及调查.[J].爆破器材,2003,3(4):31-36.
    [178]Auerbach I, Verhoek F H, Henne A. Kinetic studies on the decarboxylation of sodium trifluoroacetate in ethylene glycol [J]. Journal of the American Chemical Society,1950,72(1): 299-300.
    [179]Liang H, Zheng Y, Wu L, et al. Enhancing upconversion emissions of NaTm0.02YbxY0.98.xF4 nanocrystals through increasing Yb3+doping [J]. Journal of luminescence.2011,131(8):1802-1806.
    [180]Liang L, Wu H, Hu H, et al. Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1-xYbxF4:Ln (Ln=Er or Tm) [J]. Journal of Alloys and compounds,2004,368(1): 94-100.
    [181]Wang Z L, Hao J, Chan H L W. Down-and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4:Yb, Er submicron disks assembled from primary nanocrystals [J]. Journal of Materials Chemistry,2010.20(16):3178-3185.
    [182]Chen D, Yu Y, Huang F, et al. Lanthanide activator doped NaYb1-xGdxF.4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties [J]. Journal of Materials Chemistry, 2010,21(17):6186-6192.
    [183]Peng S, Sun S. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles[J]. Angewandte Chemie International Edition,2007,119(22):4233-4236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700