用户名: 密码: 验证码:
负载型Pt催化剂在乙二醇水相催化重整制氢反应中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“石油危机”的出现以及化石能源利用所带来的环境和气候变化问题,使得世界能源战略的重点开始转向可再生清洁能源的研究和开发,其中氢能作为一种清洁、高效、安全、可持续的新能源,被视为二十一世纪最具发展潜力的新能源。2002年,Dumesic研究小组报道了生物质衍生物—多元醇水相重整制氢的工作,将氢能与可再生的生物质资源联系起来,以实现温室气体—CO2的零排放,引起了研究人员的广泛关注。
     本论文选择最简单的多元醇分子—乙二醇为反应模型原料,从负载型Pt催化剂入手,研究了载体的种类及制备方法对乙二醇水相重整反应催化性能的影响,并通过设计不同的反应及各种表征手段对乙二醇水相重整反应的机理进行了初步探讨,加深了对乙二醇水相重整反应的认识。
     通过不同温度焙烧拟薄水铝石(AlOOH)得到y-Al2O、δ-Al2O3和α-Al03载体。将等体积浸渍法制备的Pt/γ-Al2O3、Pt/δ-Al2O3和Pt/α-Al203催化剂用于乙二醇水相重整反应,其催化活性顺序为Pt/α-Al2O3> Pt/δ-Al2O3> Pt/γ-Al2O3。在225℃,29.0KPa和乙二醇水溶液(乙二醇的体积百分比为10%)进液流速为6ml/h的条件下,负载量为1%的Pt/α-Al2O3催化乙二醇水相重整反应的产氢速率达到452μmol·min-1·gCat-1。XRD、H2-TPR、TEM-EDX、CO化学吸附和XPS等表征结果表明,与Pt/γ-Al2O3和Pt/δ-Al2O3催化剂相比,Pt/α-Al2O3催化剂表面没有含氯铂物种的存在,避免了氯的最终去除导致的Pt颗粒的烧结,提高了催化剂表面Pt的分散度;此外,Pt与羟基较少的α-Al203载体发生较强的相互作用使Pt/α-Al2O3催化剂表面形成了部分较低氧化态的氧化铂物种,这两者可能是导致Pt/α-Al2O3催化剂具有较高乙二醇水相重整反应活性的原因。
     采用溶剂蒸发诱导自组装法、硬模板法、固体热分解法以及沉淀法制备了比表面积和相组成各不相同的氧化铁载体。对Pt/Fe-O催化剂的乙二醇水相重整反应研究表明,Fe-O载体中Si或C的残留会影响活性组分Pt与Fe-O载体间的相互作用,抑制乙二醇水相重整反应的催化活性。大比表面积的Fe3O4载体将是Fe-O载体中的一个较好选择。
     对Pt/Al-O、Pt/Fe-O(?)口Pt/Ce-O催化剂分别进行了水气变换反应、甲醇和乙二醇水相重整反应研究,乙二醇水相重整反应催化活性顺序为Pt/Al-O> Pt/Fe-O> Pt/Ce-O,而水气变换反应催化活性顺序为Pt/Ce-O> Pt/Fe-O> Pt/Al-O,并且三种催化剂的乙二醇水相重整反应活性均高于其甲醇水相重整反应活性,由此推断乙二醇水相重整的催化活性与其水气变换反应的催化活性以及C-C断键的能力没有必然的关联。这一结论在对Pt/γ-Al2O3、Pt/δ-Al2O3、Pt/α-Al2O3以及掺杂Ce的Pt/Al-O催化剂的研究中得到进一步的证实。结合Pt/γ-Al2O3和Pt/α-Fe2O3催化剂的H2-TPD,乙二醇-TPD以及Pt/γ-Al2O3、Pt/δ-Al2O3和Pt/α-Al2O3催化剂上的乙二醇原位红外漫反射表征结果,发现乙二醇分子中O-H键的断键以及催化剂表面形成的碳酸氢盐或甲酸盐物种的脱除是乙二醇水相重整反应的关键。
The research & development of renewable clean energy is becoming the focus in the worldwide, due to the "oil crisis" and the environmental and climate problems brought by the use of fossil fuels. Hydrogen, because of its cleanness, efficiency, safety and sustainability, is the most promising candidate in this area. In 2002, Dumesic reported aqueous-phase reforming of polyols (a kind of biomass derivatives) to produce hydrogen, which realized zero emission of CO2 and connected the hydrogen with renewable biomass resources.
     In this dissertation, ethylene glycol, the simplest polyol molecule, was chosen as reactant. The effect of supports and preparation methods of supported platinum catalysts on aqueous-phase reforming of ethylene glycol was investigated. And the reaction mechanism was discussed through the variation of reaction and characterization results of catalysts.
     The supports ofγ-Al2O3,δ-Al2O3 andα-Al2O3 were obtained through calcination of AlOOH at different temperatures. After impregnation with Pt, the catalysts were evaluated by aqueous-phase reforming of ethylene glycol. The results showed that the catalytic activities decreased in order of Pt/α-Al2O3> Pt/δ- Al2O3> Pt/γ- Al2O3. The yield of hydrogen reached 452μmol·min-1·gCat-1 at the condition of 225℃,29.0 KPa and 6 ml/h of ethylene glycol solution (volume percentage of ethylene glycol was 10%) with 1% Pt/α-Al2O3. The characterization of XRD, H2-TPR, TEM-EDX, CO chemisorption and XPS evidenced that no chlorinated platinum species was presented on Pt/α-Al2O3, which favored the improvement of the dispersion of surface species and avoided the sintering of Pt. Furthermore, the strong interaction between Pt andα-AI2O3 with less surface hydroxyl groups led to the formation of platinum species with low oxidation state. As a result, the combination of the above arguments was assumed to be the reasons for the higher catalytic activity of Pt/α-Al2O3.
     Iorn oxide supports with different surface area and phase composition were prepared by using evaporation-induced self-assembly method, hard template method, thermal solid decomposition method and precipitation method. The study on aqueous-phase reforming of ethylene glycol with Pt/Fe-0 catalysts indicated that the interaction between Pt and support would be influenced by Si or C reminded in iron oxide supports, which consequently inhibited the activity of catalysts. The results showed that Fe3O4 with large surface area should be a good choice of iorn oxide supports.
     Water-gas shift reaction, aqueous-phase reforming of methanol and ethylene glycol were carried out on Pt/Al-O, Pt/Fe-0 and Pt/Ce-O, respectively. For aqueous-phaes reforming of ethylene glycol, the catalytic activities decreased in order of Pt/Al-O> Pt/Fe-O> Pt/Ce-O. While, it changed as Pt/Ce-O> Pt/Fe-O> Pt/Al-O for water-gas shift reaction. Moreover, all the activities for aqueous-phase reforming of ethylene glycol were higher than those for aqueous-phase reforming of methanol. Therefore, the catalytic activity of aqueous-phase reforming of ethylene glycol did not involve any relationship with the activity of water-gas shift reaction or the catalyst capacity for C-C bond breakage. This conclusion was also confirmed by the study on Pt/γ-Al2O3, Pt/δ-Al2O3, Pt/α-Al2O3 and Ce-doped Pt/Al-0 catalyst. The H2-TPR and ethylene glycol-TPD of Pt/γ-Al2O3 and Pt/α-Fe2O3 and diffuse reflectance infrared Fourier transform spectroscopy of ethylene glycol on Pt/γ-Al2O3, Pt/δ-Al2O3 and Pt/α-Al2O3 revealed that the breakage of O-H bond in ethylene glycol and the removal of surface bicarbonate or formate species should be the crucial steps in aqueous-phaed reforming of ethylene glycol.
引文
[1]Tanksale A, Beltramini JN, Lu GM. A review of catalytic hydrogen production processes from biomass. RENEWABLE & SUSTAINABLE ENERGY REVIEWS.2010,14 (1): 166-182
    [2]颜宁,赵晨,甘维佳,寇元.多元醇:新一代的能源平台?催化学报.2006,27(12):1159-1163
    [3]Cortright RD, Davda RR, Dumesic JA.Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. NATURE.2002,418:964-967
    [4]Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA. Aqueous-phase reforming of ethylene glycol over supported platinum catalysts. CATALYSIS LETTERS. 2003,88(1-2):1-2
    [5]Hefner RA. Toward sustainable economic growth:The age of energy gases. INTERNATIONAL JOURNALOF HYDROGEN ENERGY. 1995,20(12):945-948
    [6]Kogan A. Direct solar thermal splitting of water and on site separation of the products 1:theoretical evaluation of hydrogen yield. INTERNATIONAL JOURNALOF HYDROGEN ENERGY. 1997,22(5):481-486,
    [7]Kogan A. Direct solar thermal splitting of water and on-site separation of the products-Ⅱ:-Experimental feasibility study. INTERNATIONAL JOURNALOF HYDROGEN ENERGY.1998,23(2):89-98
    [8]Baykara SZ. Experimental solar water thermolysis. INTERNATIONAL JOURNALOF HYDROGEN ENERGY.2004,29(14):1459-1469
    [9]Haueter P, Moeller S, Palumbo R, Steinfeld A. The production of Zinc by thermal dissociation of Zinc oxide-solar chemical reactor design. SOLAR ENERGY.1999,67(1-3): 161-167
    [10]Lede J, Elorza-Ricart E, Ferrer M. Solar thermal splitting of Zinc oxide:a review of some of the rate controlling factors. JOURNAL OF SOLAR ENERGY ENGINEERING. 2001, 123(2):91-97
    [11]Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. INTERNATIONAL JOURNALOF HYDROGEN ENERGY.2002,27(6):611-619
    [12]Steinfeld A, Palumbo R. Solar thermochemical process technology. ENCYCLOPEDIA OF PHYSICAL SCIENCE& TECHNOLOGY.2001,15:237-256
    [13]Gafron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. J GEN PHYSIOL.1942,26:219-240
    [14]管英富,邓麦村,金美芳,虞星炬,张卫.微藻光生物水解制氢技术.中国生物工程杂志.2003,23(4):8-13
    [15]Das D, Veziroglu TN. Hydrogen production by biological process:a survey of literature. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY.2001,26:13-28
    [16]Melis A, Zhang LP, Forestier M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomanasreinhardtii. PLANT PHYSJOL.2000,122:127-136
    [17]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. NATURE,1972,238:37-38
    [18]Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides. SCIENCE.2001,293:269-271
    [19]Zou Z, Ye J, Sayama K. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. NATURE.2001,414:625-627
    [20]Khan SUM, Shahry M, Ingler W B. Response to comments on'Efficient photochemical water splitting by a chemically modified n-TiO2'.SCIENCE.2002,297:2243-2245
    [21]Tsuji I, Kato H, Kobayashi H.Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-X)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. AM. CHEM. SOC.2004,126: 13406-13413
    [22]Maeda K, Teramura K, Lu D.Photocatalyst releasing hydrogen from water-Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. NATURE.2006,440:295-295
    [23]Lei ZB, You WS, Liu MY. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. CHEM. COMMUN.2003:2142-2143
    [24]Liu MY, You WS, Lei ZB.Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. CHEM. COMMUN.2004:2192-2193
    [25]Lei ZB, Ma GJ, Liu MY. Sulfur-substituted and zinc-doped In(OH)3:A new class of catalyst for photocatalytic H-2 production from water under visible light illumination. J. CATAL.2006,237:322-329
    [26]Shi JY, Chen J, Feng Z C. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture [J].J. PHYS. CHEM. C. 2007,111:693-699
    [27]Chen T, Feng ZC, Wu GP.Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. J. PHYS. CHEM. C.2007,111:8005-8014
    [28]Zhang J, Xu Q, Feng Z. Importance of the relationship between surface phases and photocatalytic activity of TiO2. ANGEW. CHEM. INT. ED.2008,47:1766-1769
    [29]Zong X, Yan H, Wu G. Enhancement of photocatalytic H2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation. J. AM. CHEM. SOC.2008,130:7176-7177
    [30]温福宇,杨金辉,宗旭,马艺,徐倩,马保军,李灿.太阳能光催化制氢研究进展.化学进展.2009,21(11):2285-2302
    [31]吴川,张华民,衣宝廉.化学制氢技术研究进展.化学进展.2005,17(3):423-429
    [32]http://wwwl.eere.energy.gov/hydrogenandfuelcells/production/natural_gas.html
    [33]John Turner, George Sverdrup, Margaret K. Mann, Pin-Ching Maness, Ben Kroposki,MariaGhirardi, Robert J. Evans, Dan Blake. Renewable hydrogen production. INT. J. ENERGY RES.2008,32:379-407
    [34]王继华,赵爱萍.生物制氢技术的研究进展与应用前景.环境科学研究.2005,18(4):129-135
    [35]Bridgwater AV, Peacocke GVC. Fast Pyrolysis Processes for biomass. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS. 2000,4(1):1-73
    [36]WilliamsPaul T, Brindle Alexander J. Catalytic Pyrolysis of Tyres:Influence of Catalyst Temperature. FUEL. 2002,81(18):2425-2434
    [37]Chen G, Andries J, Spliethoff H. Catalytic Pyrolysis of Biomass for Hydrogen Rich Fuel Gas Production. ENERGY CONVERSION AND MANAGEMENT. 2003,44(14):2289-2296
    [38]SuttonD, Kelleher B, Ross JRH.Catalytic Conditioning of Organic Volatile Products Produced by Peat Pyrolysis. BIOMASS AND BIOENERGY. 2002,23(3):209-216
    [39]Milne TA, Abatzoglou N, Evans RJ. Biomass Gasifier Tars:Their Nature, Formation, and Conversion. NREL/TP- 570-25357,1998, National Renewable Energy Laboratory, USA
    [40]Demirbas A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. ENERGY CONVERSION AND MANAGEMENT. 2002, 43: 897-909
    [41]Zhang RQ, Brown RC, Suby A, Cummer K. Catalytic destruction of tar in biomass derived producer gas. Energy Conversion and Management. 2004,45(7-8):995-1014
    [42]Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ. Hydrogen Production From Glucose Used as a Model Compound of Biomass Gasified in Supercritical Water. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2003,28(1):55-64
    [43]Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering. CHEM REV. 2006,106(9):4044-4098.
    [44]Cortright RD, Davda RR, Dumesic JA.Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. NATURE. 2004,418(6901):964-967
    [45]Davda RR, Shabaker JW, Huber GW, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL. 2005,56(1-2):171-186
    [46]Mariefel B Valenzuela, Christopher W Jones,Pradeep K Agrawal. Batch Aqueous-Phase Reforming of Woody Biomass. ENERGY & FUELS.2006,20:1744-1752
    [47]Meryemoglu B, Hesenov A, Irmak S, Atanur OM, Erbatur O. Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2010,35: 12580-12587
    [48]Chang Alex CC, Louh RF, Wong Dale. Hydrogen production by aqueous-phase biomass reforming over carbon textile supported Pt-Ru bimetallic catalysts. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2011,36(14):8794-8799
    [49]Davda RR, Dumesic JA. Renewable hydrogen by aqueous-phase reforming of glucose. CHEM COMMUN.2004,1:36-37
    [50]Hongyu Li, QingliXu, HanshenXue, Yongjie Yan. Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass. RENEWABLE ENERGY.2009,34:2872-2877
    [51]VisputeTushar P, Huber George W. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. GREEN CHEMISTRY. 2009, 11 (9):1433-1445
    [52]KechagiopoulosPanagiotis N, Voutetakis Spyros S, LemonidouAngeliki A. Hydrogen Production via Reforming of the Aqueous Phase of Bio-Oil over Ni/Olivine Catalysts in a Spouted Bed Reactor. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH.2009, 48(3):1400-1408
    [53]Wen Guodong, XuYunpeng,XuZhusheng. Characterization and Catalytic Properties of the Ni/Al2O3 Catalysts for Aqueous-phase Reforming of Glucose. CATAL LETT. 2009, 129 (1-2):250-257
    [54]Irmak Sibel, Ozturkllker. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2010,35(11):5312-5317
    [55]Zakzeski Joseph, Weckhuysen Bert M. Lignin Solubilization and Aqueous Phase Reforming for the Production of Aromatic Chemicals and Hydrogen. CHEMSUSCHEM. 2011,4(3):369-378
    [56]Li XiaoNian, Kong LingNiao, Xiang YiZhi. A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater. SCIENCE IN CHINA SERIES B-CHEMISTRY.2008,51(11):1118-1126
    [57]L T Fan, M MGharpuray, Y-H Lee. CELLULOSE HYDROLYSIS. Springer, Berlin,1987
    [58]A Fukuoka, PLDhepe. Catalytic conversion of cellulose into sugar alcohols. ANGEW. CHEM. INT. ED.2006,45:5161-5163
    [59]N Yan, C Zhao, CLuo.One-step conversion of cellobiose to C-6-alcohols using a ruthenium nanocluster catalyst. J. AM. CHEM. SOC.2006, 128:8714-8715
    [60]C Luo, S Wang, HC Liu. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. ANGEW. CHEM. INT. ED.2007, 46:7636-7639
    [61]Wen GD, Xu YP, Xu ZS, Tian ZJ. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. CATAL.COMMUN.2010,11(6):522-526
    [62]You Su Jin, BaekInGu, Kim Yong Tae. Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5. KOREAN JOURNAL OF CHEMICAL ENGINEERING. 2011,28(3): 744-750
    [63]Davda RR, Alcala R,Shabaker J. DFT and experimental studies of C-C and C-O bond cleavage in ethanol and ethylene glycol on Pt catalysis. STUDIES IN SURFACE SCIENCE AND CATALYSIS.2003,145:79-84
    [64]R. Alcala, M. Mavrikakis, J.A. Dumesic. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111). JOURNAL OF CATALYSIS.2003, 218:178-190
    [65]Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA. A queous-phase reforming of ethylene glycol on silica-supported metal catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL.2003,43(1):13-26
    [66]LuoN, Cao F, Zhao X. Thermodynamic analysis of aqueous-reforming of polylols for hydrogen generation. FUEL.2007,86:1727-1736
    [67]JW Shabaker, RR Davda, GW Huber, RD Cortright, JADumesic. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. CATAL.2003,215:344-352
    [68]Davda RR, Dumesic JA. Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.2003,42 (34):4068-4071
    [69]Shabaker JW, Dumesic JA. Kinetics of aqueous-phase reforming of oxygenated hydrocarbons:Pt/Al2O3 and Sn-modified Ni catalysts. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH.2004,43 (12):3105-3112
    [70]Sinfelt JH, Yates DJC. Catalytic hydrogenolusis of ethane over the noble metals of group Ⅷ. J CATAL.1967,8:82-90
    [71]Grenoble DC, Estadt MM. Ollis DF. The chemistry and catalysis of the water gas shift reaction. 1. The kinetics over supported metal catalysts. J CATAL.1981,67:90-102
    [72]Vannice MA. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group Ⅷ metals V. the catalytic behavior of silica-supported metals. J CATAL.1977,50: 228-236
    [73]Wen Guodong, XuYunpeng, Ma Huaijun. Production of hydrogen by aqueous-phase reforming of glycerol. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2008,33 (22):6657-6666
    [74]Lehnert Kerstin. Claus Peter. Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol. CATAL COMMUN.9 (15):2543-2546
    [75]Chu Xianwen, Liu Jun, Sun Bo. Aqueous-phase reforming of ethylene glycol on Co/ZnO catalysts prepared by the coprecipitation method. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL.2011,335(1-2):129-135
    [76]Manfro Robinson L, da Costa Aline F, Ribeiro Nielson FP. Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2. FUEL PROCESSING TECHNOLOGY. 2011,92(3):330-335
    [77]Roy B, Loganathan K, Pham H. N. Surface modification of solution combustion synthesized Ni/Al2O3 catalyst for aqueous-phase reforming of ethanol. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2010,35(21):11700-11708
    [78]Huber GW, Shabaker JW, Dumesic JA. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. SCIENCE.2003,300:2075-2077
    [79]Shabaker JW, Huber GW, Dumesic JA. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J. CATAL.2004,222:180-191
    [80]Shabaker JW, Simonetti DA, Cortright RD, Dumesic JA. Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies. J. CATAL. 2005,231: 67-76
    [81]Tanksale A, Beltramini JN, Dumesic JA, Lu GQ. Effect of Pt and Pd promoter on Ni supported catalysts-A TPR/TPO/TPD and microcalorimetry study. J. CATAL. 2008,258: 366-377
    [82]褚娴文,刘俊,乔明华,庄继华,范康年,张晓听,宗保宁.Sn修饰的猝冷骨架NiMo催化剂上的乙二醇液相重整制氢.催化学报.2009,30(7):595-600
    [83]Iwasa Nobuhiro, Yamane Toshiyuki, Arai Masahiko. Influence of alkali metal modification and reaction conditions on the catalytic activity and stability of Ni containing smectite-type material for steam reforming of acetic acid. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2011,36(10):5904-5911
    [84]FuzhongXie, Xianwen Chu, Huarong Hu. Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol. J. CATAL. 2006,241:211-220
    [85]Zhu LJ, Guo PJ, Chu XW, Yan SR, Qiao MH, Fan KN, ZhangXX, Zong BN.An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol. GREEN CHEM.2008,10:1323-1330
    [86]Cruz Ivna O, Ribeiro Nielson FP, ArandaDonato AG. Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors. CATAL COMMUN.2008,9(15):2606-2611
    [87]胡华荣,王友臻,乔明华,范康年,宗保宁,张晓听,李和兴.Mo对猝冷Ni-Mo骨架催化剂结构和催化性能的影响.化学学报,2004,62:1281
    [88]Tanksale A, Zhou CH, Beltramini JN, Lu GQ. Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni-Pt catalysts:metal support interaction. J INCL PHENOM MACROCYCL CHEM.2009,65(1-2):83-88
    [89]GW Huber, JW Shabaker, ST Evans, JA Dumesic. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. APPL. CATAL. B.2006,62:226-235
    [90]LuoNianjun, Ouyang Kun, Cao Fahai.Hydrogen generation from liquid reforming of glycerin over Ni-Co bimetallic catalyst. BIOMASS & BIOENERGY.2010,34 (4):489-495
    [91]King David L, Zhang Liang, Xia Gordon.Aqueous phase reforming of glycerol for hydrogen production over Pt-Re supported on carbon. APPLIED CATALYSIS B-ENVIRONMENTAL.2010,99(1-2):206-213
    [92]Wang Xiaoming, Li Nan,Pfefferle Lisa D.Pt-Co bimetallic catalyst supported on single walled carbon nanotube:XAS and aqueous phase reforming activity studies. CATALYSIS TODAY.2009,146(1-2):160-165
    [93]Wang Xiaoming, Li Nan,Pfefferle Lisa D.Pt-Co Bimetallic Catalyst Supported on Single-Walled Carbon Nanotubes:Effect of Alloy Formation and Oxygen Containing Groups. JOURNAL OF PHYSICAL CHEMISTRY C.2010,114(40):16996-17002
    [94]KarthikeyanDhanapalan, Shin Gwan Su, Moon Dong Ju. Aqueous Phase Reforming of Glycerol Over the Pd Loaded Ni/Al2O3 Catalysts. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY.2011,11(2):1443-1446
    [95]温国栋,徐云鹏,魏莹,裴仁彦,李科达,徐竹生,田志坚.负载型Pt催化剂上生物质水相重整制氢.催化学报.2009,30(8):830-835
    [96]白赢,卢春山,马磊,陈萍,郑遗凡,李小年.Ce和Mg改性的γ-Al203负载Pt催化剂催化乙二醇水相重整制氢.催化学报.2006,27(3):275-280
    [97]Iriondo A, Barrio V. L,Cambra J. F. Hydrogen production from glycerol over nickel catalysts supported on A12O3 modified by Mg, Zr, Ce or La. TOPICS IN CATALYSIS.2008, 49(1-2):46-58
    [98]Kim TW, Kim HD, Jeong KE. Catalytic production of hydrogen through aqueous-phase reforming over platinum/ordered mesoporous carbon catalysts. GREEN CHEMISTRY. 2011, 13(7):1718-1728
    [99]Wang Xiaoming, Li Nan, Webb Jeffrey A. Effect of surface oxygen containing groups on the catalytic activity of multi-walled carbon nanotube supported Pt catalyst. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010,101(1-2):21-30
    [100]Wen Guodong,XuYunpeng,XuZhusheng.Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. CATAL.COMMUN.2010,11(6):522-526
    [101]Tang Zhong, Monroe Justin, Dong Junhang.Platinum-Loaded NaY Zeolite for Aqueous-Phase Reforming of Methanol and Ethanol to Hydrogen. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH.2009,48(5):2728-2733
    [102]Liu Jun, Chu Xianwen, Zhu Lingjun. Simultaneous Aqueous-Phase Reforming and KOH Carbonation to Produce COx-Free Hydrogen in a Single Reactor. CHEMSUSCHEM. 2010,3(7):803-806
    [1]. Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA. Aqueous-phase reforming of ethylene glycol over supported platinum catalysts. CATALYSIS LETTERS. 2003,88(1-2):1-2
    [2].吴越.催化化学.科学出版社.1995,1040-1041
    [3]. Lehnert Kerstin; Claus Peter. Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol. Catal Commun.9(15):2543-2546
    [4]. Mortola VB, Ruiz JAC, Mattos LV, Noronha FB, Hori CE. Partial oxidation of methane using Pt/CeZrO2/Al2O3 catalyst-Effect of the thermal treatment of the support. Catal Today. 2008,133-135:906-912
    [5]. Borgna A, Garetto TF, Apesteguia CR, Le Normand F, Moraweck B. Sintering of Chlorinated Pt/γ-Al2O3 Catalysts:An In Situ Study by X-Ray Absorption Spectroscopy. J Catal.1999,186:433-441
    [6]. Lieske H, Lietz G, Spindler H, Volter J. Reactions of Platinum in Oxygen- and Hydrogen-Treated Pt/γ-Al2O3 Catalysts Ⅰ. Temperature-Programmed Reduction, Adsorption, and Redispersion of Platinum J Catal.1983,81:8-16
    [7]. Lietz G, Lieske H, Spindler H, Hamke W, Volter J. Reactions of Platinum in Oxygen- and Hydrogen-Treated Pt/γ-Al2O3 Catalysts Ⅱ. Ultraviolet-Visible Studies, Sintering of Platinum, and Soluble Platinum. J Catal.1983,81:17-25
    [8]. Le Normand F, Borgna A, Garetto TF, Apesteguia CR, Moraweck B. Redispersion of Sintered Pt/Al2O3 Naphtha Reforming Catalysts:An in Situ Study Monitored by X-ray Absorption Spectroscopy. J Phys Chem. 1996, 100:9068-9076
    [9]. Borgna A, Le Normand F, Garetto TF, Apesteguia CR, Moraweck B. Sintering of Pt/ Al2O3 reforming catalysts:EXAFS study of the behavior of metal particles under oxidizing atmosphere. Catal Lett.1992,13:175-188
    [10].Iida H, Igarashi A. Structure characterization of Pt-Re/TiO2 (rutile) and Pt-Re/ZrO2 catalysts for water gas shift reaction at low-temperature. Appl Catal A:Gen.2006, 303:192-198
    [11].Morterra C, Magnacca G. A case study:surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed Species. Catal Today. 1996,27:497-532
    [12].Xiao L, Schneider WF. Surface termination effects on metal atom adsorption on a-alumina. Surf Sci.2008,602:3445-3453
    [13].Briquet LGV, Catlow CRA, French SA. Platinum Group Metal Adsorption on Clean and Hydroxylated Corundum Surfaces. J Phys Chem C.2009,113:16747-16756
    [14].Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA. A queous-phase reforming of ethylene glycol on silica-supported metal catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL.2003,43(1):13-26
    [1]. Cortright RD, Davda RR, Dumesic JA.Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. NATURE.2002,418:964-967
    [2]. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. CATAL.2003,215:344-352
    [3].蔡启瑞等.碳一化学中的催化作用.化学工业出版社.1995年4月第1版.127页.
    [4]. Garcia C, Zhang Y, DiSalvo F, et al., Mesoporous aluminosilicate materials with superparamagnetic gamma-Fe2O3 particles embedded in the walls, Angewandte Chemie International Edition 2003,42(13):1526-1530
    [5]. Choi M, Heo W, Kleitz F, Ryoo R, Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness, Chemical Communications 2003,12:1340-1341.
    [6]. Wang YG, Ren JW, Liu XH, Wang YQ, Guo Y, Guo YL, Lu GZ. Facile synthesis of ordered magnetic mesoporous y-Fe2O3/SiO2 nanocomposites with diverse mesostructures. Journal of Colloid and Interface Science.2008,326(1):158-165
    [7].王燕刚.功能性有序介孔材料的合成与应用研究.博士学位论文.2008
    [8]. Delahaye E, Escax V, El Hassan N, et al., "Nanocasting":Using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed gamma-Fe2O3 nanoparticles, Journal of Physical Chemistry B 2006,110(51):26001-26011
    [9]. YangangWang, Fengyuan Zhang, YanqinWang, Jiawen Ren, Changlin Li, Xiaohui Liu, Yun Guo, Yanglong Guo, Guangzhong Lu. Synthesis of length controllable mesoporous SBA-15 rods. Materials Chemistry and Physics 115(2-3)(2009)649-655
    [10].Wang YG, Yuan XH, Liu XH, Ren JW, Tong WY, Wang YQ, Lu GZ. Mesoporous single-crystal Cr2O3:Synthesis, characterization, and its activity in toluene removal. Solid State Science.2008,10 (9):1117-1123
    [11].Li L, Yan ZF, Lu GQ, Zhu ZH. Synthesis and Structure Characterization of Chromium Oxide Prepared by Solid Thermal Decomposition Reaction. J Phys Chem B.2006,110(1): 178-183
    [12].南京大学化学系催化教研室,南京化学工业公司催化剂厂.一氧化碳中温变换催化剂.化学工作出版社.1979:73.
    [13].Edwards MA, Whittle DM, Rhodes C, Ward AM., Rohan D, Shannon MD, Hutchings GJ, Kiely CJ. Microstructural studies of the copper promoted iron oxide/chromia water-gas shift catalyst. Phys. Chem. Chem. Phys.2002,4:3902-3908
    [14].Basinska A, Maniecki TP, Jozwiak WK. Catalytic activity in water-gas shift reaction of platinum group metals supported on iron oxides. React. Kinet. Catal. Lett.2006,89 (2): 319-324.
    [15].Natesakhawat S, Wang XQ, Zhang LZ, Ozkan US. Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. J. Mol. Catal. A 2006, 260(1-2):82-94
    [16].Gonzalez JC, Gonzalez MG, Laborde MA, Moreno N. Effect of temperature and reduction on the activity of high temperature water gas shift catalysts. Appl.Catal.1986,20 (1-2):3-13
    [17].Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W. Structural Features and Catalytic Properties of Pt/CeO2 Catalysts Prepared by Modified Reduction-Deposition Techniques. Catal. Lett.2004,97(3-4):163-169
    [18].Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S. Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts. J. Catal.2006,240(2):114
    [19].Iida H, Igarashi A. Difference in the reaction behavior between Pt-Re/TiO2 (Rutile) and Pt-Re/ZrO2 catalysts for low-temperature water gas shift reactions. Appl. Catal. A:Gen.2006, 303(1):48-55
    [20].Stefanescu M, Stefanescu O, Stoia M, Lazau C. Thermal Decomposition of Some Metal-organic Precursors Fe2O3 nanoparticles. J Therm Anal Calorim 2007; 88:27-32.
    [21].李东平,车成彬,赵春山.热解法制备氧化铁纳米晶及其表征.哈尔滨理工大学学报.2003,8(5):3-5
    [22].Cornell RM, Schwertmann U. The Iron Oxides:Structure, Properties, Reactions Occurrence and Uses, VCH:Weinheim,1996.
    [1]JW Shabaker, RR Davda, GW Huber, RD Cortright, JADumesic. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. CATAL.2003,215:344-352
    [2]Martos C, Dufour J, Ruiz A. Synthesis of Fe3O4-based catalysts for the high-temperature water gas shift reaction. Int. J. Hydrogen Energy.2009,34 (10):4475-4481
    [3]Souza JMT, Rangel MC. Catalytic activity of aluminium-rich hematite in the water gas shift reaction. React. Kinet. Catal. Lett.2004,83 (1):93-98
    [4]Lin J, Li L, Huang YQ, Zhang WS, Wang XD, Wang AQ, Zhang T. In Situ Calorimetric Study: Structural Effects on Adsorption and Catalytic Performances for CO Oxidation over Ir-in-CeO2 and Ir-on-CeO2 Catalysts. J. Phys. Chem. C 2011,115,16509-16517.
    [5]Hilaire S; Wang X, Luo T, Gorte RJ, Wagner J. A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl. Catal. A. 2001,215(1-2):271-278.
    [6]Deluga GA, Salge JR, Schmidt LD, Verykios XE. Renewable Hydrogen from Ethanol by Autothermal Reforming. Science 2004,303,993-997.
    [7]Marino, F.; Descorme, C.; Duprez, D. Appl. Catal., B 2004,54,59-66.
    [8]Wang, X. Q.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martinez-Arias, A.; Fernandez-Garcia, M. J. Phys. Chem. B 2006,110,428-434.
    [9]白赢,卢春山,马磊,陈萍,郑遗凡,李小年.Ce和Mg改性的γ-Al203负载Pt催化剂催化乙二醇水相重整制氢.催化学报.2006,27(3):275-280
    [10]Bazin P, Saur O, Lavalley JC, Daturia M. Blanchard G. FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles. Phys Chem Chem Phys.2005,7:187-194
    [11]Grillo F, Natile MM, Glisenti A. Low temperature oxidation of carbon monoxide:the influence of water and oxygen on the reactivity of a Co3O4 powder surface. APPLIED CATALYSIS B-ENVIRONMENTAL.2004,48(4):267-274
    [12]Igor Yuranov, Lioubov Kiwi-Minsker, Albert Renken. One-step vapour-phase synthesis of 2-methyl-l-naphthol from 1-tetralone. Applied Catalysis A:General.2002,226(1-2): 293-303.
    [13]Clarke DK, Lee DK, Sandovl MJ. Infrared Studies of the Mechanism of Methanol Decomposition on Cu/SiO2. J. Catal.1994,150(1):81-93
    [14]Borello E, Zecchina A, Morterra C. Infrared study of methanol adsorption on Aerosil. I. Chemisorption at room temperature. J. Phys. Chem.1967,71(11):2938-2945
    [15]Michael Salciccioli, Weiting Yu, Mark A. Barteau, Jingguang G. Chen,* and Dionisios G. Vlachos. Differentiation of O「H and C「H Bond Scission Mechanisms of Ethylene Glycol on Pt and Ni/Pt Using Theory and Isotopic Labeling Experiments. J. Am. Chem. Soc.2011,133, 7996-8004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700