用户名: 密码: 验证码:
铝硅矿物转型氧氮化物及其在耐高温材料中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为应对天然高品质高铝矾土矿物资源的匮乏对铝硅体系耐高温材料带来的严重挑战,针对目前非氧化物复相耐火材料Si3N4/Sialon基质存在合成原料成本高以及非氧化物复相耐火材料的高温烧成过程存在耗能高的突出问题,本论文利用天然铝硅矿物(特别是中低品位的铝矾土和高铝含量固废资源)通过碳热/铝热还原氮化等技术转型为非氧化物耐火原料,进行合成的非氧化物复合SiC系耐火材料免烧成技术和性能优化的研究,并利用过渡金属原位催化氮化反应制备新一代高性能Si3N4/Sialon结合SiC复相耐火材料,取得了一些重要的研究成果。
     论文系统研究了天然铝硅矿物原料配比、合成温度和还原剂加入量等工艺参数对非氧化物转型后材料物相组成、显微结构的影响规律。以天然石英、中低品位的铝矾土和菱镁矿等铝硅矿物以及煤矸石、高铝粉煤灰和铝灰等工业固体废弃物为原料,在1400℃-1600-C通过碳热/铝热还原氮化非氧化物转型合成得至β-Si3N4、β-Sialon、Ca-α-Sialon、镁铝尖晶石-刚玉-Sialon等材料;对比研究的化学纯原料在高温1700℃下非氧化物转型合成得至Ca-Dy-α-Sialon和Li-α-Sialon,为矿物转型后的非氧化物在耐火材料中的应用奠定了技术依据。
     过渡金属Fe、Co、Ni能够促进Si粉、Si-Al-Al2O3粉氮化形成Si3N4/β-Sialon及提高其纳米纤维含量,通过催化热化学气相沉积法制备得到一维α-Si3N4、Sialon纳米线/带。在1400℃氮化烧结后,当Co加入量为0.5%-1.0%时,制备的Si3N4/Sialon结合SiC试样的抗折强度能够提高50%-80%,达到60MPa。催化剂促进氮化反应结合Si3N4/Sialon-SiC复相材料强度提高的机制为“催化剂促进液相烧结”和“原位自生纤维(晶须)强化”机制,为免烧成耐火材料在高温使用条件下的高温在线烧结和强度获得提供理论基础。
     研究了低品位铝矾土和锆英石非氧化物转型后在免烧成耐火材料的应用,讨论了材料组成、结构、力学性能与高温抗渣侵蚀性能之间的关系,借鉴结晶学和矿物学理论探讨其抗渣侵蚀机理。低品位铝矾土和锆英石在1600℃非氧化物转型为Sialon-ZrN及其作为基质以酚醛树脂为结合剂制备获得Sialon-ZrN-SiC复相非氧化物免烧成耐火材料,常温强度由树脂提供,高温强度由材料的烧结而获得,基质中的Sialon柱状晶呈穿晶断裂有助于强度的提高。高炉渣对免烧成Sialon-ZrN-SiC复相耐火材料的侵蚀存在两个方面:耐火材料熔蚀到渣中的溶解以及熔渣在耐火材料内的渗透。本研究工作制备的免烧成的Sialon-ZrN-SiC耐火材料中ZrN氧化后形成的ZrO2,不与渣中的其他氧化物反应形成低熔点的物质,能够起到抵抗渣侵蚀的作用。
In oder to cope with the serious challeges of the scarcity of the high-quality bauxite mineral resources on alumina-silica system refractories and aim at the problems of Si3N4/Sialon matrix in traditional non-oxide composite refractories (i.e., high cost of synthetic raw materials) and the problems raised during the firing process of non-oxide composite refractories at high temperature (e.g., high energy consumption, unstable quality and high cost), in this doctoral dissertation, we advanced an idea, namely, the oxynitride transformation of natural minerals with high Al2O3/SiO2(including high-alumina-content solid waste resources) by carbothermal/aluminothermic reduction-nitridation technologies. The studies on firing-free technologies and performance optimization of the as-synthesized oxynitride composite SiC refractories were performed. Meanwhile, a new generation high-performance Si3N4/Sialon bonded SiC composite refractories by in-situ transition metal-catalytic nitride reaction was investigated. Many important researches were made.
     The process parameters effects, such as the raw materials components, synthesis temperature and reductant amount, on the phase compositions, morphologies/microstructures of the transformed products were analyzed systematically.The natural minerals, i.e., quartz, low-grade bauxite and magnesite, as well as industrial solid wastes, i.e., fly ash, coal gangue, aluminum ash were transformed to β-Si3N4, P-Sialon, Ca-a-Sialon and spinel-corundum-Sialon composite materials via CRN/ARN at1400℃-1600℃.The chemically pure raw materials for comparative study were transformed to Ca-Dy-a-Sialon and Li-a-Sialon at higher temperature of1700℃. The above results provided technical and theoretical basis for the application of the related non-oxides transformation of minerals in refractories.
     Transition metals Fe, Co and Ni could promote the nitridation of Si powders as well as Si-Al-Al2O3powders to form Si3N4/β-Sialon and improve their nano-fibers contents. One-dimensional α-Si3N4,β-Sialon nanowire/nanobelts were synthesized by catalytic thermal chemical vapor deposition method. Si3N4/Sialon bonded SiC composites were prepared by in-situ Co-catalytic nitridation reaction at1350-1450℃.When the added amount of Co is0.5%-1.0%, the bending strength of the composites fired at1400℃could be improved by50%-80%(reaching60MPa) compared to that without Co.The mechanisms of strength improvement in the Si3N4/Sialon bonded SiC composites through in-situ Co-catalytic nitridation reaction are proposed to be co-dominated by "catalyst promoting liquid phase sintering " and "strengthen via in-situ fibers (whiskers)" mechanisms.
     The oxynitride transformed from the natural minerals was applied in the firing-free refractories. The relationships among the material compositions, microstructure, mechanical properties and high temperature slag-resistance properties was discussed, and the slag erosion mechanism of prepared firing-free refractories also discussed by means of crystallography and mineralogy theory. Sialon-ZrN composites were synthesized from low-grade bauxite and zircon by CRN at1600℃, and the Sialon-ZrN-SiC firing-free composite refractories were prepared by using phenolic resin as the binder. The room-temperature strength of the as-prepared samples was provided by the resin, and the high-temperature strength is obtained by the sintering of the materials. The long-columnar Sialon grains with transgranular fracture are benefit to the strength improvement. There are two aspects erosion of blast furnace slag to firing-free Sialon-ZrN-SiC composite refractories:the refractories dissolved in the slag and slag penetrated into the refractories. In this work, the as-prepared Sialon-ZrN-SiC firing-free refractories have good slag erosion resistance, resulted from the ZrO2which was oxidated from ZrN and didn't react with the oxides in the slag to the formation of low-melting substances, consequently play a key role in resistance to slag erosion.
引文
[1]洪彦若,孙加林,王玺堂,黄朝晖,等.非氧化物复合耐火材料.冶金工业出版社:2003.
    [2]钟香崇,钟焰,钟香崇.耐火材料研究.河南科学技术出版社:2001.
    [3]钟香崇.展望新一代优质高效耐火材料.耐火材料2003,37(1),1-10.
    [4]Mohapatra D, Sarkar D. Preparation of MgO-MgAl204 composite for refractory application. Journal of Materials Processing Technology,2007,189 (1),279-283.
    [5]钟香崇.氧化物-非氧化物复合材料研究开发进展.耐火材料,2009,42(1),1-4.
    [6]Jones M I, Etzion R, Metson J, Zhou Y, Hyuga H, Yoshizawa Y I, Hirao K. Corrosion behavior of reaction bonded Si3N4-SiC and SiAlON-SiC composites in simulated aluminum smelting conditions. Journal of the Ceramic Society of Japan,2008,116 (1354),712-716.
    [7]李庭寿.依靠科技进步,发展高水平的中国耐火材料工业.耐火材料1998,32(001),4-8.
    [8]Bavand-Vandchali M, Sarpoolaky H, Golestani-Fard F, Rezaie H. Atmosphere and carbon effects on microstructure and phase analysis of in-situ spinel formation in MgO-C refractories matrix. Ceramics International,2009,35 (2),861-868.
    [9]黄朝晖,王金相β-Sialon-Al2O3-SiC系复相材料的研制和性能.耐火材料2002,36(1),1-4.
    [10]黄朝晖β-Sialon-Al203-SiC系复相材料的制备、性能及显微结构研究.北京科技大学,博士学位论文2002.
    [11]李亚伟,刘静.β-赛隆(Sialon)/刚玉复相耐火材料研究.无机材料学报2000,15(4),612-618.
    [12]Riley F L. Silicon nitride and related materials. Journal of the American Ceramic Society 2000,83 (2),245-265.
    [13]宋希文,安胜利.耐火材料概论.化学工业出版社2009.
    [14]Oyama Y, Kamigaito O. Solid Solubility of Some Oxides in Si3N4. Japanese Journal of Applied Physics,1971,10(11),1637-1637.
    [15]Jack K, Wilson W. Ceramics based on the Si-Al-ON and related systems. Nature,1972,238 (80), 28-29.
    [16]Hampshire S, Park H, Thompson D, Jack K. a'-Sialon ceramics. Nature,1978,274 (5674), 880-882.
    [17]都兴红,张广荣,隋智通Sialon陶瓷的结构.中国陶瓷,1997,2.
    [18]Trigg M B, Jack K H. The fabrication of O'-sialon ceramics by pressureless sintering. Journal of Materials Science,1988,23 (2),481-487.
    [19]Anya C, Hendry A. Hardness indentation fracture toughness and compositional formula of X-phase sialon. Journal of Materials Science,1994,29 (2),527-533.
    [20]Komeka K, Tsuge A. Formation of AIN polytype ceramics and some of their properties. J. CERAM. SOC. JAP. J. Ceram. Soc. Jap.1981,89 (1035),615.
    [21]石玉敏,赵婷,都兴红,张广荣. SiAlON粉体合成的研究进展.耐火材料2004,38(1),46-49.
    [22]Goto Y, Komatsu M. Fracture Strength and Microstructure of β-SiAlON with Hafnia Addition. Journal of the American Ceramic Society,1999,82 (6),1467-1472.
    [23]杨景周. Fe-Mo-Sialon系复相材料的制备、结构与性能研究.中国地质大学(北京),博士学位论文,2012.
    [24]Liu G, Chen K, Zhou H, Ren K, Li J, Pereira C Ferreira. Formation of β-SiAlON micropalings consisting of nanorods during combustion synthesis. Scripta Materialia,2006,55 (10),935-938.
    [25]Lee. Sinterable sialon powder by reaction of clay with carbon and nitrogen. Journal of American Ceramic Society. Bull.,1979,58 (9),869.
    [26]Li F J, Wakihara T, Tatami, Komeya K, Meguro T, Mackenzie K. J. D. Elucidation of the Formation Mechanism of β-SiAlON from a Zeolite. Journal of the American Ceramic Society, 2007,90(5),1541-1544.
    [27]Barsoum M W, Houng B. Transient plastic phase processing of titanium-boron-carbon composites. Journal of the American Ceramic Society,1993,76 (6),1445-1451.
    [28]涂军波,孙加林,洪彦若.硅在刚玉-氮化硅系统中的作用.耐火材料,2004,38(3),165-167.
    [29]薛文东,曲殿利.塑性相结合刚玉复合材料的力学性能.耐火材料,2001,35(6),311-313.
    [30]Rakshit Das P. Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Bulletin of Materials Science,2002,25 (5),387-390.
    [31]李红霞.耐火材料手册.冶金工业出版社:2007.
    [32]Reddy N K, Mukerji. Silicon nitride-silicon carbide refractories produced by reaction bonding. J. Journal of the American Ceramic Society,1991,74 (5),1139-1141.
    [33]张治平,黄辉煌,黄朝晖Si3N4/SiAlON结合碳化硅窑具材料的研究.中国第二届国际耐火材料学术会议论文集,1992,297-299.
    [34]郝小勇.氮化硅结合碳化硅材料反应烧结时杂相行为分析.陶瓷工程,1998,32(3),24-26.
    [35]潘裕柏,江东亮.氮化硅结合碳化硅耐火材料在钢水中的腐蚀行为.耐火材料,1995,29(2),72-74.
    [36]于永启,闫海,郝岩.氮化硅结合碳化硅窑具的开发与生产.辽宁建材,2001,4,18-19.
    [37]吴小贤.SiC质复相耐高温材料的碳化氮化制备及性能研究.中国地质大学(北京),2009.
    [38]Kishi K, Umebayashi S, Tani E, Kobayashi K, Nakamura H. Some properties of β-Sialon and β-Sialon-SiC composite annealed under high N2 gas pressure. International Journal of High Technology Ceramics,1988,4 (1),88.
    [39]徐国涛,杨熹文,赛隆结合碳化硅耐火材料的微观结构与性能分析.陶瓷工程,1999,33(1),1-4.
    [40]Hirota T. Silicon carbide refractories for blast furnace. Taikabutsu Overseas,1995,15 (4),19-25.
    [41]卜景龙,李福燊,孙加林,巩甘雷,于天来,陈峰.凝胶注模成型制备SiAlON-SiC材料料浆的流变特性.耐火材料,2004,38(1),32-34.
    [42]黄朝晖,潘伟,孙加林,王金相,洪彦若,β-sialon-Al2O3-SiC系复相材料的高温强度和显微结构.硅酸盐学报,2004,32(007),862-867.
    [43]乐红志,彭达岩,文洪杰.氮化物结合碳化硅耐火材料的研究现状.耐火材料,2004,38(6),435-438.
    [44]马鸿文.工业矿物与岩石.化学工业出版社:2005.
    [45]Komnitsas K, Zaharaki D, Geopolymerisation:A review and prospects for the minerals industry. Minerals Engineering,2007,20 (14),1261-1277.
    [46]王福元,吴正严.粉煤灰利用手册.中国电力出版社:1997.
    [47]Iyer R, Scott J. Power station fly ash-a review of value-added utilization outside of the construction industry. Resources, Conservation and Recycling,2001,31 (3),217-228.
    [48]阎云胜,张凤辰.煤矸石及其综合利用.节能2005,2.
    [49]David E, Kopac J. Hydrolysis of aluminum dross material to achieve zero hazardous waste. Journal of Hazardous Materials,2012.
    [50]李晓明,材料学,吴清顺,蔡飞虎.特种不定形耐火材料及不烧耐火砖.冶金工业出版社:1992.
    [51]于涌.不烧耐火材料的市场及使用价值.上海金属1988,3,016.
    [52]李静,李健,杨大正,孙冬梅.不烧Al2O3-C质耐火材料在水蒸气中的抗氧化性能.耐火材料,2001,6,009.
    [53]牛巧玲,石干.耐火材料用酚醛树脂的发展状况.耐火材料,2006,40(3),221-224.
    [54]黄朝晖,李小超,刘艳改,房明浩.免烧成非氧化物复相相耐火材料强度获得技术基础,2011全国不定形耐火材料学术会议论文集,2011.
    [55]宋希文,安.耐火材料概论.化学工业出版,2009,1 88-189.
    [56]董文麟.氮化硅陶瓷.北京:中国建筑工业出版社,1987,4-5.
    [57]李应泉,廖际常.二氧化硅碳还原法制取Si3N4粉的研究.稀有金属材料与工程,1994,23(1),40-49.
    [58]丘泰,徐洁.SiO2-C-N2系统中气相对相稳定的影响.无机材料学报,1995,10(003),326-330.
    [59]陈肇友.化学热力学与耐火材料.耐火材料,2003,(G00),13-14.
    [60]Pawelec A, Strojek B, Weisbrod G, Podsiadlo S. Preparation of silicon nitride powder from silica and ammonia. Ceramics International 2002,28 (5),495-501.
    [61]王成训,侯瑾,张义先.复合不定形耐火材料.北京:冶金工业出版社:2005.
    [62]高振听.耐火材料显微结构.冶金工业出版社:2002.
    [63]唐仁政,田荣璋.二元合金相图及中间相晶体结构.中南大学出版社:2009.
    [64]Jovanovic Z, Kimura S, Levenspiel O. Effects of Hydrogen and Temperature on the Kinetics of the Fluidized-Bed Nitridation of Silicon. Journal of the American Ceramic Society,1994,77 (1), 186-192.
    [65]Islam S, Kim M S, Lee B T. Fabrication and characterization of porous unidirectional Si2N2O-Si3N4 composite. Materials Letters,2009,63 (2),168-170.
    [66]Antsiferov V, Gilyov V, Karmanov V. IR-spectra and phases structure of sialons. Vibrational spectroscopy,2002,30 (2),169-173.
    [67]Wild S, Grieveson P, Jack K. The crystal structure of alpha and beta silicon and germanium nitrides. Special Ceramics,1972,5,385-96.
    [68]Malgorzata Sopicka-Lizer M, Tancula M, Wlodek T, Rodak K, Huller M, Kochnev V, Fokina E, MacKenzie K. The effect of mechanical activation on the properties of β-sialon precursors. Journal of the European Ceramic Society,2008,28 (1),279-288.
    [69]Hamadache F, Duvail J, Scheuren V, Piraux L, Poleunis C, Bertrand P, Belkaid M. Electrodeposition of Fe-Co alloys into nanoporous p-type silicon:Influence of the electrolyte composition. Journal of Materials Research,2002,17 (5),1074-1084.
    [70]Mizuno H, Koyama H, Koshida N. Oxide-free blue photoluminescence from photochemically etched porous silicon. Applied Physics Letters,1996,69 (25),3779-3781.
    [71]Marcolli C, Calzaferri G. Vibrational structure of monosubstituted octahydrosilasesquioxanes. The Journal of Physical Chemistry B,1997,101 (25),4925-4933.
    [72]Langkau S, Heuer M, Hobler H J, Bente K, Kloess G. Miscibility of NiSi2, FeSi2 and Cu3Si. Journal of Alloys and Compounds,2009,474 (1),334-340.
    [73]Baldan R, Faria M. I. S. T, Nunes C A, Coelho G C, Chad V M, de Avillez R R. Microstructural Evidence of β-Co2-Si phase Stability in the Co-Si System. Journal of Phase Equilibria and Diffusion,2008,29(6),477-481.
    [74]Hsu J F, Huang B R. The growth of silicon nanowires by electroless plating technique of Ni catalysts on silicon substrate. Thin Solid Films,2006,514 (1),20-24.
    [75]Xie Z P, Cheng Y B, Huang Y. Formation of silicon nitride bonded silicon carbide by aqueous gelcasting. Materials Science and Engineering:A,2003,349 (1),20-28.
    [76]Revesz A. Noncrystalline silicon dioxide films on silicon:a review. Journal of Non-Crystalline Solids,1973,11 (4),309-330.
    [77]Pavarajarn V, Vongthavorn T, Praserthdam P. Enhancement of direct nitridation of silicon by common metals in silicon nitride processing. Ceramics International,2007,33 (4),675-680.
    [78]Wang Q, Daggubati M, Yu R, Zhang X F. High temperature nitrogen annealing induced interstitial oxygen precipitation in silicon epitaxial layer on heavily arsenic-doped silicon wafer. Applied Physics Letters 2006,88 (24),242112-242112-3.
    [79]Jennings H. On reactions between silicon and nitrogen. Journal of Materials Science,1983,18 (4), 951-967.
    [80]Pigeon R, Varma A, Miller A. Some factors influencing the formation of reaction-bonded silicon nitride. Journal of Materials Science,1993,28 (7),1919-1936.
    [81]Boyer S, Moulson A. A mechanism for the nitridation of Fe-contaminated silicon. Journal of Materials Science,1978,13 (8),1637-1646.
    [82]Kokmeijer E, Scholte C, Blomer F, Metselaar R. The influence of process parameters and starting composition on the carbothermal production of sialon. Journal of Materials Science,1990,25 (2), 1261-1267.
    [83]张宏泉.用不同粘土矿物合成Sialon粉末的研究.中国陶瓷,1998,34(1),16-19.
    [84]Higgins I, Hendry A. Production of β'-sialon by carbothermal reduction of kaolinite. British ceramic. Transactions and journal,1986,85 (5),161-166.
    [85]Aksel C, Rand B, Riley F L, Warren P D. Mechanical properties of magnesia-spinel composites. Journal of the European Ceramic Society,2002,22 (5),745-754.
    [86]Ghosh A, Sarkar R, Mukherjee B, Das S. Effect of spinel content on the properties of magnesia-spinel composite refractory. Journal of the European Ceramic Society,2004,24 (7), 2079-2085.
    [87]Mandal H. New developments in α-SiAlON ceramics. Journal of the European Ceramic Society, 1999,19 (13),2349-2357.
    [88]Mazdiyasni K, West R, David L D. Characterization of Organosilicon-Infiltrated Porous Reaction-Sintered Si3N4. Journal of the American Ceramic Society,2006,61 (11-12),504-508.
    [89]Licko T, Figusch V, Puchyova. Synthesis of silicon nitride by carbothermal reduction and nitriding of silica:control of kinetics and morphology. J. Journal of the European Ceramic Society,1992,9 (3),219-230.
    [90]Kijima K, Shirasaki S. Nitrogen self-diffusion in silicon nitride. The Journal of Chemical Physics, 1976,65,2668.
    [91]Zenotchkine M, Shuba R, Kim J S, Chen I W. Effect of Seeding on the Microstructure and Mechanical Properties of a-SiAlON:I, Y-SiAlON. Journal of the American Ceramic Society, 2002,85 (5),1254-1259.
    [92]Shuba R, Chen I W. Effect of Seeding on the Microstructure and Mechanical Properties of α-SiA1ON:Ⅱ, Ca-α-SiAlON. Journal of the American Ceramic Society,2002,85 (5),1260-1267.
    [93]Liu G, Chen K, Zhou H, Pereira C, Quaresma S, Ferreira. Preparation of Y-SiAlON rod-like crystals and whiskers by combustion synthesis. Materials Letters,2005,59 (29),3955-3958.
    [94]Chen W, Sun W, Li Y, Yan D. Microstructure of (YSm)-a-SiAlON with a-SiAlON Seeds. Journal of Materials Research,2000,15(10),2223-27.
    [95]Brandon D, Chen D, Chan H. Control of texture in monolithic alumina. Materials Science and Engineering:A,1995,195,189-196.
    [96]Zenotchkine, M., Shuba, R., Chen, I. W. Liquid-Phase Growth of Small Crystals for Seeding a-SiAlON Ceramics. Journal of the American Ceramic Society,2008,87 (6),1040-1046.
    [97]Li Y W, Wang P L, Chen W W, Cheng Y B, Yan D S. Phase formation and microstructural evolution of Ca a-sialon using different Si3N4 starting powders. Journal of the European Ceramic Society,2000,20 (11),1803-1808.
    [98]James P. Nucleation in glass-forming systems. A review. Advances in Ceramics,1981,4,1.
    [99]Hotta M, Tatami J, Komeya K, Zhang C, Meguro T, Terner M R, Cheng Y B. Formation Process of Calcium-a SiAlON Hollow Balls Composed of Nanosized Particles by Carbothennal Reduction-Nitridation. Journal of the American Ceramic Society,2008,91 (3),860-864.
    [100]Ostwald W. Lehrbruck der Allgemeinen Chemie. Leipzig, Germany.1896, Volume 2 (part 1).
    [101]Chen X, Qiao M, Xie S, Fan K, Zhou W, He H. Self-construction of core-shell and hollow zeolite analcime icositetrahedra:a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core. Journal of the American Chemical Society,2007,129(43),13305-13312.
    [102]Jackson K A. Mechanism of Growth. Cleveland,1958,174.
    [103]Kuang S F, Sun W Y, Yen T S. Phase Relationships in the Li2O-Si3N4-AlN System and the Formation of Lithium-a'-Sialon. Journal of Material Science Letter,1990,9,12-74.
    [104]Yu Z, Thompson D, Bhatti A. Preparation of single phase lithium a-sialons. British ceramic transactions,1998,97 (2),41-47.
    [105]Peng H, Shen Z, Nygren M. Reaction sequences occurring in dense Li-doped sialon ceramics: influence of temperature and holding time. Journal of Materials Chemistry,2003,13 (9), 2285-2289.
    [106]Shen Z, Peng H, Nygren M. Rapid Densification and Deformation of Li-Doped Sialon Ceramics. Journal of the American Ceramic Society,2004,87 (4),727-729.
    [107]Yu Z, Thompson D, Bhatti A. Transformation and thermal stability of Li-a-sialon ceramics. Journal of the European Ceramic Society,2000,20 (11),1815-1828.
    [108]Xu X, Mei S, Ferreira J M F. Fabrication of a-sialon sheets by tape casting and pressureless sintering. Journal of Materials Research,2003,18 (6),1363-1367.
    [109]Chen W W, Su X L, Wang P L, Yan D S, Cheng Y B, Watari K. Optical Properties of Gd-a-Sialon Ceramics:Effect of Carbon Contamination. Journal of the American Ceramic Society,2005,88 (8),2304-2306.
    [110]张宏泉.用不同粘土矿物合成Sialon粉末的研究.中国陶瓷,1998,34(001),16-19.
    [111]Panda P, Mariappan L, Kannan T. Carbothermal reduction of kaolinite under nitrogen atmosphere. Ceramics International,2000,26 (5),455-461.
    [112]黄军同,房明浩,王欣颖,夏银凤,刘艳改,黄朝晖.低Al2O3矾土碳热还原氮化合成复相Sialon的研究.稀有金属材料与工程2007,36(A01),373-375.
    [113]王福元,吴正严.粉煤灰综合利用手册.2004.
    [114]鲁晓勇,张德,朱小燕.燃煤发电厂粉煤灰在材料科学中的应用.中国非金属矿工业导刊2006,(4),18-20.
    [115]鲁晓勇,张德,蔡水洲.粉煤灰合成SiAlON粉体研究.耐火材料2005,39(4),259-262.
    [116]白志民,李桂金,金明,付瀛.硅酸盐固体废弃物(煤矸石)应用的研究进展.硅酸盐学报2010,(7),1357-1361.
    [117]谢德瑜,张凤辰,煤矸石及其综合利用.中国资源综合利用,2004,(010),20-23.
    [118]李剑,刘贤群.我国煤矸石制砖的现状与发展.煤炭加工与综合利用,2001,(006,),24-25.
    [119]吕淑珍,方荣利.利用煤矸石制备超细A1(OH)3.矿产综合利用,2004,(3),34-37.
    [120]金祖权,张义顺,洪黎明,姚嵘.煤矸石复合球团技术冶炼硅铝铁合金.矿产综合利用,2003,(3),13-16.
    [121]李尉卿,崔淑敏.硫酸-高压蒸汽法活化煤矸石制作吸附材料的研究.粉煤灰综合利用,2004,(006),32-34.
    [122]李素平,钟香崇Fe2O3在煤矸石碳热还原氮化合成Sialon时的作用.非金属矿,2007,30(2),18-19.
    [123]丁贺玮,黄朝晖,秦开明,王成彪,刘艳改,房明浩,Al2O3-MgO (尖晶石)-Sialon复合耐火材料的制备.稀有金属材料与工程,2007,36(A02),383-385.
    [124]Yamamoto O, Ishida M, Saitoh Y, Sasamoto T, Shimada S. Influence of Mg2+ on the formation of β-SiAlON by the carbothermal reduction-nitridation of homogeneous gel. International Journal of Inorganic Materials,2001,3 (7),715-719.
    [125]Feng X M, Lian X Q, Jiang M X, He Y N. The Influences of TiN Content on the Properties of the In Situ Al2O3-TiN Composites. Advanced Materials Research,2011,311,1906-1910.
    [126]Cai Y, Shen Z, Grins J, Esmaeilzadeh S. Sialon Ceramics Prepared by Using CaH2 as a Sintering Additive. Journal of the American Ceramic Society,2008,91 (9),2997-3004.
    [127]Matsui K, Yamakawa T, Uehara M, Enomoto N, Hojo J. Mechanism of Alumina-Enhanced Sintering of Fine Zirconia Powder:Influence of Alumina Concentration on the Initial Stage Sintering. Journal of the American Ceramic Society,2008,91 (6),1888-1897.
    [128]Shizaki K, Nanko M. Porous Materials:Process Technology and Applications. Kluwer Academic Publishers 1998, Dordrecht, the Netherlands.
    [129]Perry D L. Handbook of Inorganic Compounds.2nd Ed., CRC Publishing Company, Boca Raton, Florida,2011.1985.
    [130]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354 (6348),56-58.
    [131]Wang X, Zhou J, Lao C, Song J, Xu N, Wang Z L. In Situ Field Emission of Density-Controlled ZnO Nanowire Arrays. Advanced Materials,2007,19 (12),1627-1631.
    [132]Zang J, Xu Z H, Webb R A, Li X. Electrical self-healing of mechanically damaged zinc oxide nanobelts. Nano Letters,2011,11 (1),241.
    [133]Pan Z W, Wang Z L. Nanobelts of semiconducting oxides. Science 2001,291 (5510),1947-1949.
    [134]Chen Y, Somsen C, Milenkovic S, Hassel A. W. Fabrication of single crystalline gold nanobelts. Journal of Material Chemistry,2008,19 (7),924-927.
    [135]Bai L, Fan J, Cao Y, Yuan F, Zuo A, Tang Q. Shape-controlled synthesis of Ni particles via polyol reduction. Journal of Crystal Growth,2009,311 (8),2474-2479.
    [136]Liu L, Yoo S H, Lee S A, Park S. Electrochemical Growth of Silver Nanobelts in Cylindrical Alumina Nanochannels. Crystal Growth & Design,2011,11 (9),3731-3734.
    [137]Tian L, Zou H, Fu J, Yang X, Wang Y, Guo H, Fu X, Liang C, Wu M, Shen P K. Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance. Advanced Functional Materials,2010,20 (4),617-623.
    [138]Zheng F L, Li G R, Ou Y N, Wang Z L, Su C Y, Tong Y X. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chemical Communications,2010,46 (27), 5021-5023.
    [139]Wang Z, Daemen L L, Zhao Y, Zha C, Downs R T, Wang X, Wang Z L, Hemley, R. J. Morphology-tuned wurtzite-type ZnS nanobelts. Nature Materials,2005,4(12),922-927.
    [140]Fan X, Zhang M L, Shafiq I, Zhang W J, Lee C S, Lee S T. Bicrystalline CdS Nanoribbons. Crystal Growth and Design,2009,9 (3),1375-1377.
    [141]Xi G, Peng Y, Wan S, Li T, Yu W, Qian Y. Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts. The Journal of Physical Chemistry B,2004,108 (52), 20102-20104.
    [142]Sun Y, Cui H, Gong L, Chen J, Shen P, Wang C. Field nanoemitter:One-dimension Al4C3 ceramics. Nanoscale,2011,3 (7),2978-2982.
    [143]Xue, S., Zhang, X., Huang, R., Tian, D., Zhuang, H., Xue, C. A study on self-assembled GaN nanobelts by a new method:Structure, morphology, composition, and luminescence. Crystal Growth and Design,2008,8 (7),2177-2181.
    [144]Hu M S, Wang W M, Chen T T, Hong L S, Chen C W, Chen C C, Chen Y F, Chen K H, Chen L C. Sharp Infrared Emission from Single-Crystalline Indium Nitride Nanobelts Prepared Using Guided-Stream Thermal Chemical Vapor Deposition. Advanced Functional Materials,2005,16 (4),537-541.
    [145]Sun X, Hagner M. Organic Solvent-Induced Crystallization of Water-Soluble Inorganic Salt of Na3Au (SO3)2 into Ultralong Nanobelts on a Large Scale. Chemistry of Materials,2008,20 (9), 2869-2871.
    [146.]Chithaiah P, Chandrappa G, Livage J. Formation of Crystalline Na2V6O16·3H2O Ribbons into Belts and Rings. Inorganic Chemistry,2012,51 (4),2241-2246.
    [147]Li L, Lee P S, Yan C, Zhai T, Fang X, Liao M, Koide Y, Bando Y, Golberg D. Ultrahigh-Performance Solar-Blind Photodetectors Based on Individual Single-crystalline In2Ge2O7 Nanobelts. Advanced Materials,2010,22 (45),5145-5149.
    [148]Yang W, Gao F, Wei G, An L. Ostwald ripening growth of silicon nitride nanoplates. Crystal Growth & Design,2009,10(1),29-31.
    [149]Zhang L, Jin H, Yang W, Xie Z, Miao H, An L. Optical properties of single-crystalline a-Si3N4 nanobelts. Applied Physics Letters,2005,86 (6),061908-061908-3.
    [150]Yang W, Zhang L, Xie Z, Li J, Miao H, An L. Growth and optical properties of ultra-long single-crystalline a-Si3N4 nanobelts. Applied Physics A:Materials Science & Processing,2005, 80(7),1419-1423.
    [151]Yang W, Xie Z, Miao H, Zhang L, Ji H, An L. Synthesis of Single-Crystalline Silicon Nitride Nanobelts Via Catalyst-Assisted Pyrolysis of a Polysilazane. Journal of the American Ceramic Society 2008,88 (2),466-469.
    [152]Huo K, Ma Y, Hu Y, Fu J, Lu B, Lu Y, Hu Z, Chen Y. Synthesis of single-crystalline a-Si3N4 nanobelts by extended vapour-liquid-solid growth. Nanotechnology,2005,16(10),2282.
    [153]Yin L W, Bando Y, Zhu Y C, Li Y B. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si3N4) single-crystalline nanobelts. Applied physics letters, 2003,83(17),3584-3586.
    [154]Wada N, Solin S, Wong J, Prochazka S. Raman and IR absorption spectroscopic studies on α,β, and amorphous Si3N4. Journal of Non-Crystalline Solids,1981,43 (1),7-15.
    [155]Luongo. Infrared Characterization of α-and β-Crystalline Silicon Nitride. J. Journal of the Electrochemical Society,1983,130(7),1560-1562.
    [156]Ryu K, Yang. Microstructure and properties of nanosemicrystalline Si3N4 ceramics with doped sintering additives:Part Ⅱ. Phase transformation and microstructural control. J. Journal of Materials Research,1998,13 (09),2588-2596.
    [157]解挺,叶敏,吴玉程,张立德,a-Si3N4单晶纳米线的Fourier变换红外光谱和Raman光谱分析.硅酸盐学报,2008,36(1),44-48.
    [158]Kim T Y, Lee S H, Mo Y H, Nahm K S, Kim J Y, Sun E K, Kim M. Growth mechanism of needle-shaped ZnO nanostructures over NiO-coated Si substrates. Korean Journal of Chemical Engineering,2004,21 (3),733-738.
    [159]Wagner R, Ellis W. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters,1964,4 (5),89-90.
    [160]Wu L, Liu F, Chu Z, Liang Y, Xu H, Lu H, Zhang X, Li Q, Hark S. High-yield synthesis of In2-xGaxO3(ZnO)3 nanobelts with a planar superlattice structure. CrystEngComm,2010,12 (7), 2047-2050.
    [161]Kramer M, Hoffmann M J, Petzow G. Grain growth studies of silicon nitride dispersed in an oxynitride glass. Journal of the American Ceramic Society,2005,76 (11),2778-2784.
    [162]Hwang C J, Tien T Y. In Microstructural development in silicon nitride ceramics, Materials Science Forum, Trans Tech Publ:1991, pp 84-109.
    [163]Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes:a review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology,2010,10 (6), 3739-3758.
    [164]Bozack M, Swanson L, Bell A. Wettability of transition metal boride eutectic alloys to graphite. Journal of Materials Science,1987,22 (7),2421-2430.
    [165]Idrobo J C, Iddir H, Ogiit S, Ziegler A, BrowningN. D, Ritchie R. Ab initio structural energetics of P-Si3N4 surfaces. Physical Review B,2005,72 (24),241301.
    [166]Lin L, He Y. Synthesis and optical property of ultra-long alpha-Si3N4 nanowires under superatmospheric pressure conditions. CrystEngComm,2012,14 (9),3250-3256.
    [167]Robertson J, Powell M J. Gap states in silicon nitride. Applied Physics Letters,1984,44 (4), 415-417.
    [168]Robertson J. Electronic structure of silicon nitride. Philosophical Magazine B,1991,63 (1), 47-77.
    [169]Deshpande S V, Gulari E, Brown S W, Rand S C. Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition. Journal of Applied Physics,1995,77 (12), 6534-6541.
    [170](a) Gupta P, Ramrakhiani M. Influence of the Particle Size on the Optical Properties of CdSe Nanoparticles. Open Nanoscience Journal,2009,3,15-19, (b) Wu, J., Xue, D., In situ precursor-template route to semi-ordered NaNbO3 nanobelt arrays. Nanoscale Research Letter, 2011,6,14.
    [171]Zerr A, Riedel R, Sekine T, Lowther J E, Ching W Y, Tanaka I. Recent Advances in New Hard High-Pressure Nitrides. Advanced Materials,2006,18 (22),2933-2948.
    [172]Kimoto K, Xie R J, Matsui Y, Ishizuka K, Hirosaki N. Direct observation of single dopant atom in light-emitting phosphor of β-SiAlON:Eu2+. Applied Physics Letters,2009,94 (4), 041908-041908-3.
    [173]Huang S, Huang Z, Fang M, Liu Y, Huang J, Yang J. Nd-Sialon Microcrystals with an Orthogonal Array. Crystal Growth & Design,2010,10 (6),2439-2442.
    [174]Liu T C, Cheng B M, Hu S F, Liu R S. Highly Stable Red Oxynitride β-SiAlON:Pr3+ Phosphor for Light-Emitting Diodes. Chemistry of Materials,2011,23 (16),3698-3705.
    [175]Shen Z, Zhao Z, Peng H, Nygren M. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature,2002,417 (6886),266-269.
    [176]Hou X, Yu Z, Chen Z, Zhao B, Chou K C. Single crystalline β-SiAlON nanowhiskers: preparation and enhanced properties at high temperature. Dalton Transactions,2012.
    [177]Liu G. Growth mechanism of crystalline SiAlON microtubes prepared by combustion synthesis. CrystEngComm,2012.
    [178]Qin C, Wen G, Wang X, Song L, Huang X. Ultra-long Sialon nanobelts:large-scale synthesis via a pressure enhanced CVD process and photoluminescence characteristics. Journal of Materials Chemistry,2011,21 (16),5985-5991.
    [179]Ksiazek M, Sobczak N, Mikulowski B, Radziwill W, Surowiak I. Wetting and bonding strength in Al/Al2O3 system. Materials Science and Engineering:A,2002,324 (1),162-167.
    [180]Fang X S, Ye C H, Zhang L D, Xie T. Twinning-Mediated Growth of Al2O3 Nanobelts and Their Enhanced Dielectric Responses. Advanced Materials,2005,17(13),1661-1665.
    [181]Dong P, Wang X, Zhang M, Guo M, Seetharaman S. The Preparation and Characterization of β-SiAlON Nanostructure Whiskers.2008.
    [182]Xu B, Yang D, Wang F, Liang Ma, S, Liu X. Synthesis of large-scale GaN nanobelts by chemical vapor deposition. Applied Physics Letters,2006,89 (7),074106-074106-3.
    [183]Ho Ryu, Park Y G, Sik Won H, Hyun Kim S, Suzuki H, Yoon C. Luminescence properties of Eu2+-doped β-Si6-zAl2O2N8-z microcrystals fabricated by gas pressured reaction. J. Journal of Crystal Growth,2009,311 (3),878-882.
    [184]Xie R J, Hirosaki N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review. Science and Technology of Advanced Materials,2007,8 (7),588-600.
    [185]Liu R, Bell A, Ponce F, Chen C, Yang J, Khan M A. Luminescence from stacking faults in gallium nitride. Applied Physics Letters,2005,86 (2),021908-021908-3.
    [186]Tham D, Nam C Y, Fischer J E. Defects in GaN nanowires. Advanced Functional Materials,2006, 16(9),1197-1202.
    [187]关振铎,张中太,无机材料物理性能.清华大学出版社有限公司:1992.
    [188]崔国文,缺陷,扩散与烧结.清华大学出版社:1990.
    [189]Aveston J, Cooper G, Kelly A. In The properties of fibre composites, Conference Proceedings, National Physical Laboratory, Guildford, IPC Science and Technology Press Ltd,1971, pp 15-26.
    [190]李友芬.复相β-Sialon结合A12O3复和材料的制备、显微结构和性能:博士学位论文.北京:北京科技大学,1998
    [191]D A Gunn. A Theoretical Evaluation of the Stability of Sialon-bonded Silicon Carbide in the Blast Furnace Environment. Journal of European Ceramic Society,1993 (11):35-41
    [192]武汉科技大学.硅酸盐物理学.高等学校教材.
    [193]王减训,栾永杰著.炉外精炼用耐火材料.北京:冶金工业出版社,1996
    [194]陈肇友.陈肇友碳耐火材料论文选.冶金工业出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700