用户名: 密码: 验证码:
纤维矿渣微粉混凝土高温性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过1232个不同尺寸的纤维矿渣微粉混凝土试件在常温、高温中和高温后力学性能试验,并结合微观测试及机理分析,重点探讨温度、矿渣微粉掺量、聚丙烯纤维掺量、钢纤维体积率和混凝土强度等级对纤维矿渣微粉混凝土力学性能的影响,主要研究内容和结论如下:
     1.进行了纤维矿渣微粉混凝土常温力学性能试验研究。结果表明,矿渣微粉和钢纤维使纤维矿渣微粉混凝土抗压强度、劈拉强度和变形、抗折强度和变形均有不同程度提高;聚丙烯纤维对纤维矿渣微粉混凝土抗压强度、弹性模量和劈拉变形均有不同程度改善;随混凝土强度等级提高,纤维矿渣微粉混凝土劈拉强度和变形、抗折强度和变形均有不同程度提高。根据对试验结果的统计分析,建立了考虑矿渣微粉掺量、聚丙烯纤维掺量和钢纤维体积率影响的纤维矿渣微粉混凝土常温抗压强度、劈拉强度、抗折强度和弹性模量的计算模型。
     2.进行了纤维矿渣微粉混凝土高温后扫描电镜分析和机理分析。结果表明,温度、矿渣微粉、聚丙烯纤维、钢纤维和混凝土强度等级对纤维矿渣微粉混凝土烧失率有不同程度影响。随着温度升高,纤维矿渣微粉混凝土内部水分逐渐蒸发分解,水泥浆体以及骨料与水泥浆体的界面过渡区内C-S-H凝胶,钙矾石AFt晶体和氢氧化钙Ca(OH)2晶体等水泥水化物的形貌、状态和数量以及孔隙与裂缝均发生了不同程度地变化,其高温爆裂和微观组织高温损伤发展过程与其组织内部水的分解汽化与迁移过程有关。
     3.进行了纤维矿渣微粉混凝土高温中和高温后力学性能试验研究。结果表明,高温作用使纤维矿渣微粉混凝土抗压强度比、劈拉强度比、抗折强度比和弹性模量比均有不同程度降低。矿渣微粉和聚丙烯纤维掺量变化对纤维矿渣微粉混凝土高温抗压强度比、劈拉强度比、抗折强度比和弹性模量比影响较小;随钢纤维体积率增大,纤维矿渣微粉混凝土高温抗压强度比、劈拉强度比和抗折强度比有不同程度提高,其中劈拉强度比和抗折强度比的提高幅度较大。对比分析高温和常温试验研究结果,建立了纤维矿渣微粉混凝土高温抗压强度、劈拉强度、抗折强度和弹性模量的计算模型。
     4.测试了纤维矿渣微粉混凝土高温变形性能,系统分析了温度、矿渣微粉掺量、聚丙烯纤维掺量、钢纤维体积率和混凝土强度等级对纤维矿渣微粉混凝土抗压、劈拉和弯曲变形的影响,建立了考虑温度、矿渣微粉掺量、聚丙烯纤维掺量和钢纤维体积率影响的纤维矿渣微粉混凝土高温受压应力-应变曲线方程。
Experiments and microscopic analysis were carried out to investigate the mechanical properties of fiber reinforced concrete (FRC) with slag powder at normal temperature, during and after high temperatures. Based on experimental studies, the effects of temperature, slag powder content, polypropylene fiber content, steel fiber fraction and concrete strength grade on mechanical properties of FRC with slag powder were systematically analyzed. The main research results are as follows:
     1. The mechanical properties of FRC with slag powder were tested at ambient temperature. The experiment results shows:slag powder and steel fiber contribute to improving of compressive strength, splitting tensile strength, flexural strength and deformation of FRC with slag powder with different degree; Polypropylene fiber is more beneficial to improve compressive strength, elastic modulus and splitting deformation behavior of FRC with slag powder; The splitting tensile strength, flexural strength and deformation behavior of FRC with slag powder are enhanced along with increasing of concrete strength grade. According to the statistical analysis of experimental results, theoretical equations were proposed to predict compressive strength, splitting tensile strength, flexural strength and elastic modulus of FRC with slag powder at ambient temperature, considering the influences of slag powder content, polypropylene fiber content, steel fiber volume ratio and concrete strength grade.
     2. The SEM and mechanism analysis of FRC with slag powder subjected to high temperature were researched. The temperature, slag powder, polypropylene fiber, steel fiber and concrete strength grade have different effects on the mass loss rate. The appearance, status, amount, pores and cracks of cement hydrates, such as C-S-H gel, AFt and Ca(OH)2, change with different degree varying to temperature increasing. The spalling and microstructure damage process of FRC with slag powder is revealed to be associated to vaporization, decomposition and migration of the water within concrete.
     3. The mechanical property experiments were researched of FRC with slag powder during and after high temperature. The results shows:The ratios of compressive strength, splitting strength, flexural strength and elastic modulus are decreased due to high temperature; The content change of slag powder and polypropylene fiber have little effects on the ratios of compressive strength, splitting strength, flexural strength and elastic modulus; The ratios of compressive strength, splitting strength, and flexural strength are improved along with increase of steel fiber volume ratio. Compared with the test results at ambient and high temperature, theoretical equations are proposed to predict compressive strength, splitting tensile strength, flexural strength and elastic modulus at high temperature.
     4. The deformation performance of FRC with slag powder subjected to high temperature was tested. The influences of temperature, slag powder content, polypropylene fiber amount, steel fiber volume ratio and concrete strength grade on deformation of compression, splitting tension and flexure of FRC with slag powder were researched systematically. Compressive stress-strain equation of FRC with slag powder subjected to high temperature were deduced considering more factors such as temperature, slag powder content, polypropylene fiber content, steel fiber volume ratio and concrete strength grade.
引文
[1]阂明保,李延和,高本立等.建筑物火灾后诊断与处理[M].南京:江苏科学技术出版社,1994
    [2]高丹盈,刘建秀.钢纤维混凝土基本理论[M].上海:科学技术文献出版社,1994
    [3]黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004
    [4]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003
    [5]杨淑慧,高丹盈,曾力.纤维混凝土高温力学性能研究综述[J].第十二届全国纤维混凝上学术会议论文集,2008,(13):124-127
    [6]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003
    [7]钱在兹,金贤玉.钢筋混凝土受明火作用的综合研究[C].第三届全国结构上程学术会议论文集,1994:108~113
    [8]熊向军.钢筋砼材料抗火性能研究动态述评[J].四川建筑科学研究,1999,(3):24~28
    [9]陈荣毅,沈祖炎.钢筋混凝土结构抗火设计述评[J].工业建筑,1999,29(8):13-16
    [10]肖建庄,李杰,孙振平.高性能混凝土结构抗火研究最新进展[J].工业建筑,2001,31(6):53~56
    [11]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析[J].建筑材料学报,2003,6(2):182-189
    [12]杜红秀,张雄.HSC/HPC的火灾(高温)性能研究进展[J].建筑材料学报,2003,6(4):391~396
    [13]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,18(3):287~297
    [14]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990,1:37-43
    [15]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16
    [16]过镇海,李卫.混凝土在不同应力-温度途径下的变形性能和本构关系[J].土木工程学报,1993,26(5):58~69
    [17]南建林,过镇海,时旭东.混凝土的温度应力耦合本构关系[J].清华大学学报,1997,37(6):87~90
    [18]胡倍雷,宋玉普,赵国藩.高温后混凝土在复杂应力状态下的变形和强度特征的试验研究[J].四川建筑科学研究,1994,20(1):47-50[19]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报,1999,20(5):42~49[20]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2):8~12
    [21]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究[J].土木工程学报,2000,6:6-16
    [22]李固华,凤凌云,郑盛娥.高温后混凝土及其组成材料性能研究[J].四川建筑科学研究,1991,2:1~5
    [23]李翔宇.高温后纤维矿渣微粉混凝土力学性能研究[D].[硕士学位论文],郑州:郑州大学,2009
    [22]徐或,徐志胜.高温作用后混凝土强度试验研究[J].混凝土,2000,2:44-45
    [23]徐或,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究[J].长沙铁道学院学报,2000,2:13-16.
    [24]刘利先,吕龙,刘铮.高温下及高温后混凝土的力学性能研究[J].建筑科学,2005,21(3):16-20
    [25]Pierre Kalifa, Francois-Dominique Menneteau, Daniel Quenard. Spalling and pore pressure in HPC at high temperatures, Cement and Concrete Research,2000,30:1915-1927
    [26]Pierre Kalifa, Gregoire Chene, Christophe Galle. High-temperature behavior of HPC with polypropylene fibers from spalling to microstructure, Cement and Concrete Research, 2001,31 (10):1487-1499
    [27]李敏,钱春香,王珩等.高性能混凝土火灾条件下抗爆裂性能的研究[J].工业建筑,2001,31(1):47~49
    [28]王珩,钱春香,李敏等.高强混凝土湿扩散与火灾爆裂关系研究[J].东南大学学报(自然科学版),2003,33(4):454-457
    [29]游有鲲,钱春香,缪昌文等.高强混凝土高温爆裂抑制措施研究[J].混凝土,2005,10:7-15
    [30]傅宇方,黄玉龙,潘智生等.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报,2006,33(2):323-329
    [31]朋改非,陈延年,Mike A.高性能硅灰混凝土的高温爆裂与抗火性能[J].建筑材料学报,1999,3(2):193~198
    [32]朋改非,段旭杰,黄广华.钢纤维对高性能混凝土高温爆裂行为的抑制作用[C].全国特种混凝土技术及工程应用学术交流会暨2008年混凝土质量专业委员会年会,2008.9
    [33]朋改非,陈延年,Mike A.高性能硅灰混凝土的火灾高温行为[C].高强与高性能混凝土应用第三届学术讨论会议论文集.1998:374-383
    [34]Castillo Carlos, Durant A J. Effect of Transient High Temperature to high-strength Concrete. ACI Material Journal,1990,87(1):47-53
    [35]肖建庄,王平,李杰等.矿渣高性能混凝土高温后抗压强度[C].高强与高性能混凝土及其应用第四届学术讨论会,2001:204-210
    [36]肖建庄,王平,谢猛等.矿渣高性能混凝土高温后受压本构关系试验[J].同济大学学报,2003,31(2):186-190
    [37]肖建庄,任红梅,王平.高性能混凝土高温后残余抗折强度研究[J].同济大学学报,2006,34(5):580~585
    [38]胡海涛.高温时高强混凝土压弯构件的试验研究[D].[博士学位论文],西安:西安建筑科技大学,2002
    [39]胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究[J].土木工程学报,2003,35(6):44~47
    [40]BAZANT Z P. Analysis of pore pressure thermal stresses and fracture in rapidly heated concrete[A]. Proceedings of International Workshop on Fire Performance of High-Strength Concrete (NIST Special Publication 919).Gaithersburg. NIST,1997:155-164
    [41]CHAN Y N, PENG G F, ANSON M. Fire behavior of high-performance concrete made with silica fume at various moisture contents[J]. ACI Materials Journal,1999, (3):405-411
    [42]S. Y. N. Chan, X. Luo, W. Sun. Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete [J]. Construction and Building Materials,2000,14:261-266
    [43]G. Y. KIM, Y. S. KIM, T. G. LEE. Mechanical properties of high-strength concrete subjected to high temperature by stressed test [J]. Transactions of Nonferrous Metal Society of China,2009,19:128-133
    [44]Khaliq, Wasim, Kodur. High temperature properties of fiber reinforced high strength concrete. American Concrete Institute, ACI Special Publication,2008.279:77-118
    [45]孙伟,罗欣,Sammy Yin Nin Chan.高性能混凝土的高温性能研究[J].建筑材料学报,2000,3(1):27-32
    [47]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报,1998,32(5):597-602.
    [46]吕天启,赵国藩,林志伸等.高温后静置混凝土力学性能试验研究[J].建筑结构学报,2004,25(1):63-70
    [47]林志威.PPF高性能混凝土高温后性能试验研究[D].[硕士学位论文],武汉:武汉理工大学,2007
    [48]鞠丽艳,张雄.聚丙烯纤维对高温下混凝土性能的影响研究[J].全国混凝土工程结构裂缝控制与混凝土新技术新材料交流会,2002,10:312-321
    [49]鞠丽艳,张雄.混杂纤维对高性能混凝土高温性能的影响[J].同济大学学报,2006,34(1):89-92,101
    [50]袁杰,吴波.PP纤维高强混凝土的和易性及高温后抗压强度的试验研究[J].混凝土,2001,3:30-33
    [51]赵莉弘,朋改非,祁国梁等.高温对纤维增韧高性能混凝土残余力学性能的试验研究[J].混凝土,2003,12:8-11
    [52]肖建庄,王平.掺聚丙烯纤维高性能混凝土高温后的抗压性能[J].建筑材料学报,2004,7(3):281-285
    [53]肖建庄,谢猛,李杰.聚丙烯纤维对火灾后高性能混凝土结构行为影响的试验研究[C].中国土木工程学会高强与高性能混凝土委员会第五届学术讨论会,2004,(4):213-218
    [54]王平,方晓,陈瑞生.聚丙烯纤维在混凝土高温后抗压抗折中不同表现的分析[J].浙江工业大学学报,2004,32(3):333-337,348
    [55]王平,肖建庄,陈瑞生,郑学斌.聚丙烯纤维对高性能混凝土高温后力学性能的影响试验研究[J].工业建筑,2005,35(11):67-69
    [56]游有鲲,钱春香,缪昌文.掺聚丙烯纤维的高强混凝土高温性能研究[J].安全与环境工程,2004,11(1):63~66
    [57]边松华.混杂纤维与冷却制度对高性能混凝土高温力学性能的影响[D].[硕士学位论文],北京:北京交通大学,2005
    [58]边松华,朋改非,赵章力等.含湿量和纤维对高性能混凝土高温性能的影响[J].建筑材料学报,2005,8(3):321-327
    [59]赵军,邱计划,高丹盈.高温后聚丙烯纤维高强混凝土力学性能试验研究[C].纤维混凝土的技术进展与工程应用·第十一届全国纤维混凝士学术会议论文集,2006:80-83
    [60]赵军,高丹盈.高温后聚丙烯纤维高强混凝土力学性能试验研究[J].四川建筑科学研究,2008,34(1):133-135
    [61]刘沐宇,林志威,丁庆军等.不同PPF掺量的高性能混凝土高温后性能研究[J].华中科技大学学报,2007,24(2):14-17
    [62]徐晓勇,马彦飞,石国柱.聚丙烯纤维对改善高强混凝土高温作用后劣化性能的研究[J].吉林建筑工程学院学报,2009,26(1):5-8
    [63]T. T. Lie. A Procedure to Calculate Fire Resistance of Structural Members [J]. International Seminar of Three Decades of Structural Fire Safety, February 1983.2:139-153
    [63]T. T. Lie, Kodur, V. K. R. Thermal and mechanical properties of steel-fiber-reinforced concrete at elevated temperatures [J]. Canadian Journal of Civil Engineering,1996,23 (2): 511-517
    [65]Poon C. S, Shui Z. H, Lam L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures [J]. Cement and Concrete Research, 2004,34(12):2215-2222
    [66]张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学性能研究[J].混凝土,2001,9:50-53
    [67]董香军,丁一宁,王岳华.高温条件下混凝土的力学性能与抗爆裂[J].工业建筑,2005,35:703~705,716
    [68]董香军,丁一宁.高温后钢纤维高性能混凝土力学性能试验研究[C].纤维混凝土的技术进展与工程应用第十一届全国纤维混凝士学术会议论文集,2006:69-75
    [69]赵军,张明,高丹盈.高温后钢纤维高强混凝土力学性能试验研究[C].纤维混凝土的技术进展与工程应用·第十一届全国纤维混凝士学术会议论文集,2006:76-79
    [70]赵军,高丹盈,王邦.高温后钢纤维高强混凝土力学性能试验研究[J].混凝土,2006,(11):4-6
    [71]徐晓勇,马彦飞,石国柱.钢纤维对高强混凝土高温作用后力学性能影响的研究[J].江苏建材,2008,4:37-39
    [72]巴恒静,杨少伟.钢纤维混凝土高温应力损伤性能[J].混凝土,2009,1:15-17,22
    [73]杨少伟,巴恒静.钢纤维混凝土高温损伤及温度应力模拟[J].武汉理工大学学报,2009,31(2):50~54
    [74]董香军,王岳华,高淑玲.钢纤维和聚丙烯纤维混凝土的试验研究[J].混凝土,2003,11:14~15,47
    [75]董香军.纤维高性能混凝土高温、明火力学与爆裂性能研究[D].[博士学位论文],大连:大连理工大学,2006
    [76]刘沐宇,程龙,丁庆军等.不同混杂纤维掺量混凝土高温后的力学性能[J].华中科技大学学报,2008,36(4):123-125
    [77]李晗,高丹盈,赵军.高温后混杂纤维高强混凝土基本力学性能[C].新型建筑材料,第十二届全国纤维混凝士学术会议论文集,2008,13:132-134
    [78]李晗.高温后纤维矿渣微粉混凝上力学性能研究[D].[硕士学位论文],郑州:郑州大学,2009
    [79]高丹盈,杨淑慧,赵军.高温后纤维矿渣微粉混凝土抗压强度[J].建筑材料学报,2010,13(6):711-715
    [80]杨淑慧,高丹盈,赵军.高温后矿渣微粉纤维混凝土抗压强度试验研究[J].工业建筑,2011,41(1):101~104,119
    [81]Nakamura N.Effect of slag fineness on the development of concrete strength and microstructure[A]. Malhotra VM.Fly ash, silica fume, slag and natural pozzolans in concrete. Istanbul:Turkey Press,1992:1343-1366
    [82]蒋家奋.矿渣微粉在水泥混凝土中应用的概述[J].混凝土与水泥制品,2002,3:3-6
    [83]牛全林,冯乃谦,杨静.矿渣超细粉作用机理的探讨[J].建筑材料学报,2002,15(1):84~89
    [84]王秀娟,陆文雄,邵霞等.高炉矿渣用作高性能混凝土掺合料的研究进展[J].上海大学学报(自然科学版),2004,10(2):170-175
    [85]高怀英,马树军,黄国泓.大掺量磨细矿渣混凝土国内外研究与应用综述[J].海河水利,2006,(3):47~50
    [86]GB175-1999硅酸盐、普通硅酸盐水泥[S].北京:中国标准出版社,1999
    [87]GB/T14684-2001建筑用砂[S].北京:中国标准出版社,2001
    [88]GB/T18046-2000用于水泥和混凝土中的粒化高炉矿渣粉[S].北京:中国标准出版社,2000
    [89]CECS13:89《钢纤维混凝土试验方法》[S].北京:中国标准出版社,1989
    [90]Commission of the European Communities. Eurocode No.2, Design of Concrete Structures. Part 10:struetural Fire Design [S].1990
    [91]ASTM Designation E119-97. Standard test methods for fire tests of building construction and materials[S]. ASTM Committee E-5,1998
    [92]汤寄予,高丹盈,赵广田.钢纤维高强混凝土劈拉强度-变形曲线的测试技术[J].仪器仪表学报,2004.25(4):54~56,69[93]朱海堂,高丹盈,张启明.钢纤维高强混凝土的劈拉及剪切变形性能[J].水利水电 科技进展,2008.28(6):5~8
    [94]高丹盈,赵军,汤寄予.掺有纤维的高强混凝土劈拉性能试验研究[J].土木工程学报,2005.(7):21-26
    [95]高丹盈,赵军,汤寄予.钢纤维高强混凝土劈拉强度尺寸效应试验研究[J].建筑材料学报,2004.7(3):295-298
    [96]朱海棠,高丹盈,谢丽等.钢纤维高强混凝土弯曲韧性研究[J].硅酸盐学报,2004,32(5):656~660
    [97]杨淑慧,孙钢柱,高丹盈等.矿渣微粉对复合纤维混凝土抗压性能的影响[J].施工技术,2009,38(6):73~75
    [98]赵军,高丹盈,汤寄予.聚丙烯纤维高强混凝土的力学性能[J].混凝土,2006.5:10-12
    [99]姚武,马一平,谈慕华.聚丙烯纤维水泥基复合材料物理力学性能研究[J].建筑材料学报,2000.3(3):235~239
    [100]Ju liyan, Zhangxiong. Effects of hybrid fiber on high performance concrete properties under high temperature [J]. Tongji Daxue Xuebao/Journal of Tongji University,2006,34 (1):89-92,101
    [101]B. Chen, J. Liu. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures [J]. Cement and Concrete Research,2004,34:1065-1069
    [102]A. Lau, M. Anson. Effect of high temperatures on high performance steel fiber reinforced concrete [J]. Cement and Concrete Research,2006,36:1698-1707
    [103]A. Behnood, M. Ghandehari. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures [J]. Fire Safety Journal,2009,44:1015-1022
    [104]姚武.钢纤维高强混凝土的力学性能研究[J].新型建筑材料,1999.10:18-19
    [105]赵军,高丹盈,汤寄予.纤维高强混凝土轴心抗压强度的试验研究[J].混凝土,2003.12:23-24,56
    [106]朱海堂,高丹盈,汤寄予.钢纤维高强混凝土的强度指标及其相互关系[J].建筑材料学报,2009.12(2):323-327
    [107]谢晓鹏,杨广军,高丹盈.钢纤维高强混凝土抗压强度[J].河南科技大学学报,2008.29(5):54~56,69
    [108]高丹盈,汤寄予,赵军.纤维高强混凝土弹性模量的试验研究[J].工业建筑,2004.34(10):47~49
    [109]任峰,陈营明,曲华明.对混凝土弹性模量影响因素的探讨[J].济南大学学报,1997.7(2):91~93
    [110]姚武,李杰,周钟铭.聚丙烯纤维对混凝土抗拉强度的影响[J].混凝土,2001.10:40-42
    [111]高丹盈,赵亮平,杨淑慧.纤维矿渣微粉混凝土高温中的劈拉性能[J].硅酸盐学报,2012,40(5):677~684
    [112]高丹盈,李翔宇,杨淑慧等.高温后纤维矿渣微粉混凝土的劈拉性能[J].混凝土, 2012,(5):133~137
    [113]杨淑慧,高丹盈,赵军.高温后纤维矿渣微粉混凝土抗折强度试验研究[J].混凝土,2010,(4):71~73
    [114]高丹盈,李翔宇,杨淑慧.高温后纤维矿渣微粉混凝土的弯曲性能[J].混凝上与水泥制品,2012,(5):44-47
    [115]Yang Shuhui, Gao Danying, Zhaojun. Fexural strength of fiber reinforced concrete with slag powder after high temoerature.6th int'l Specialty Conference on FIBER REINFORCED MATERIALS,2010.4:405-412
    [116]赵顺波,孙晓燕,李长永等.高强钢纤维混凝土弯曲韧性试验研究[J].建筑材料学报,2003,6(1):95~99
    [117]戴民,盖永丰,张敬会等.钢纤维混凝土弯曲韧性实验研究[J].沈阳建筑大学学报,2004,20(4):308~311
    [118]丁一宁,董香军,王岳华.钢纤维混凝土弯曲韧性测试方法与评价标准[J].建筑材料学报,2005,8(6):660-664
    [119]管品武,唐国斌,孟会英等.钢纤维混凝土弯曲韧性试验研究[J].工业建筑,2007,37(7):63~65
    [120]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    [121]水中和,万惠文.老混凝土中骨料-水泥界面过渡区(ITZ)(Ⅰ)——元素及化合物在界面区的分布特征[J].武汉理工大学学报,2002,24(4):21-23
    [122]水中和,万惠文.老混凝土中骨料-水泥界面过渡区(ITZ)(Ⅱ)——元素在界面区的分布特征[J].武汉理工大学学报,2002,24(5):22~25
    [123]P. Kumar Mehta, Paulo J. M. Monteiro.覃维祖,王栋民,丁建彤译.混凝土微观结构、性能和材料[M].中国电力出版社,2008
    [124]杨淑慧,高丹盈,赵军.高温作用后矿渣微粉纤维混凝土的微观结构[J].东南大学学报(自然科学版),2011,40 Sup(2):102-106
    [125]黄晓战.纤维矿渣微粉混凝土高温损伤机理与力学性能研究[D].[硕士学位论文],郑州:郑州大学,2010
    [126]金贤玉,钱在兹.混凝土受高温作用的破坏机理[C].第三届全国结构工程学术会议论文集,山西太原,1994:580-583
    [127]钱在兹,吴慧.混凝土高温后的扫描电镜实验研究[J].福州大学学报(自然科学版增刊),1996,24:34-38
    [128]金贤玉,吴慧,钱在兹.混凝土受温后的电镜及X衍射观测[C].第五届全国结构工程学术会议论文集(第二卷),海南海口,1996:64-68
    [129]吴波,袁杰,杨成山.高温后高强混凝土的微观结构分析[J].哈尔滨建筑大学学报,1999,32(3):8-12
    [130]吕天启,赵国藩,林志伸等.高温后静置混凝上的微观分析[J].建筑材料学报,2003,6(2):135~]41
    [131]柳献,袁勇,叶光等.高性能混凝土高温微观结构演化研究[J].同济大学学报(自然科学版),2008,37(11):1473-1478
    [132]FU Y F, WONG Y L, TANG C A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures (Part I):Thermal cracking around single inclusion [J]. Cement & Concrete Composites,2004,26 (2):99-111
    [133]FU Y F, WONG Y L, POON C S, et al. Experimental study of micro/macro crack development and stress strain relations of cement based composite materials at elevated temperatures [J]. Cement and Concrete Research,2004,34 (5):789-797
    [134]ASTM C1018-85. Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading) [S].
    [135]ASTM C1018-97. Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading) [S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700