用户名: 密码: 验证码:
MC尼龙复合改性与梯度复合管制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步提高MC尼龙管材强度和耐磨性,满足航道疏浚、火力发电、冶金矿山等行业特殊使用要求,采用玻璃纤维、粉煤灰和纳米Si02三种不同形态和尺度的增强体对MC尼龙进行复合改性,分析增强体表面处理对MC尼龙复合改性的影响,以及复合改性的增强效果与增强机理;结合材料综合性能和生产成本分析,实现两相协同增强尼龙复合材料的制备,并开展尼龙梯度复合管的制备与产业化生产。主要研究结论如下:
     (1)增强体表面偶联预处理是MC尼龙复合改性的关键和前提,玻璃纤维、粉煤灰和纳米SiO2三种不同种类增强体,适用的偶联剂及其最佳用量不同。硅烷偶联剂KH-550所含氨基与聚合反应体系加入催化剂之后形成的酰亚胺结构中的羰基反应,使基体与增强体界面形成化学键结合;原状粉煤灰尺寸粗大、疏松多孔,只有在活化偶联处理后才能够均匀分散在尼龙基体中体现增强效果。
     (2)增强体形态对MC尼龙的增强效果具有重要影响,不同形态增强体的强化机制不同。玻璃纤维在复合材料中承载基体通过界面传递的载荷,提高材料强度和模量;粉煤灰颗粒和纳米NiO2粒子在复合材料中改变基体应力场,阻碍裂纹扩展或使裂纹改变方向,提高材料强度和塑性;30%玻璃纤维对尼龙复合材料的增强效果最明显,其拉伸强度较纯尼龙提高46.6%。
     (3)三种增强体都能够有效改善复合材料的摩擦性能。玻璃纤维通过刚度和硬度的增加降低材料的摩擦系数;粉煤灰在磨损表面形成摩擦膜,有效减轻磨损;纳米SiO2粒子在磨损表面微滚动,变滑动摩擦为滚动和滑动复合摩擦,降低摩擦系数和磨损量;1%纳米SiO2对复合材料摩擦性能的改善效果最明显。
     (4)不同形态增强体之间对尼龙基体具有协同增强效果。玻璃纤维与粉煤灰协同增强尼龙复合材料力学性能优于单一组分改性的加和,30%玻璃纤维+10%粉煤灰协同增强尼龙复合材料拉伸强度较30%玻璃纤维复合材料强度提高7.5%,较10%粉煤灰复合材料强度提高47.4%。
     (5)发明了尼龙梯度复合管及其制备技术,并成功实现了产业化。10%玻璃纤维+5%粉煤灰协同复合,利用离心力场使粉煤灰颗粒沿径向由内向外呈负梯度分布,玻璃纤维呈正梯度分布,实现了内壁抗磨、外壁高强度的理想性能组合,梯度复合管耐压强度比MC尼龙管提高1倍,成本降低20%以上,成功应用于航道疏浚、火力发电、冶金矿山等行业,取得了显著的经济效益和社会效益。
In order to further enhance the MC nylon pipe strength and wear resistance, to meet the special requirements of waterway dredging, thermal power, metallurgy, mining and other industries, glass fiber, fly ash and nano-silica particles were selected to modify MC nylon. The effect of different enhancement surface pretreatment and their reinforced mechanisms were respectively investigated. Analysising combined with the material properties and the production cost, two kinds of enhancements synergistic reinforced nylon composite material was prepared and the nylon gradient composite tube was produced, which realize industrial production. The main conclusions are as follows:
     (1) The coupling surface pretreatment for enhancement is the key and prerequisite to composite modification MC nylon. Different enhancements needed different coupling agent with suitable dosage. The amido of silane coupling agent could attack carbonyl group of imido group to form a chemical bond matrix and reinforcement during polymerization reaction. Original fly ash grains were so crassitude and loose that machine milling activation and coupling surface pretreatment were needed before they were added into basement.
     (2) The shape of enhancement has an important influence to strengthen nylon with different forms of reinforcement mechanism. Glass fiber endured most load transferred through interface and increased nylon strength and modulus. Fly ash particles and nanometer SiO2particles could change the stress field in the composite, hinder the crack or change the crack direction, and improve nylon strength and plasticity.30%glass fiber reinforced nylon composite material had the most obvious effect and its tensile strength was46.6%higher than that of pure nylon.
     (3) Three kinds of reinforcement can effectively improve the performance of friction composites. Glass fiber could reduce the friction coefficient just by increasing the stiffness and hardness. Fly ash could form the friction film on the worn surface, which effectively reduce the wear and tear. Nano SiO2particles were micro rolling on the worn surface, so that sliding friction was changed into rolling and sliding friction and the friction coefficient and wear rate were reduced. The most obvious improvement effect was1%nano SiO2.
     (4) Different kinds of enhancements have a synergetic reinforcement effect when they are simultaneously added into nylon composites. The mechanical properties of composites coexistent with fiber glass and fly ash were higher than sum of composites only with one kind of filler. When glass fiber was30%and fly ash10%, the tensile strength of synergetic reinforced composite was7.5%higher than that of30%glass fiber composite and47.4%higher than that of10%fly ash composite.
     (5) Nylon composites pipe with functionally gradient were invented and its industrialization were realized. In the field of centrifugal force, fly ash particle could enrich in inner tube with negative grade distribution from inner to outer and glass fiber enriched in outer, which made ideal structure in nylon composites pipe with inlayer abrasion resistant and outer high strength. Compared with MC nylon, the compressive strength of nylon composites pipe was increased by1times and the costs reduced20%, which made nylon pipe successfully applied in waterway dredging, thermal power, metallurgy, mining and other industries, and achieved remarkable economic and social benefits.
引文
1.彭治汉,施祖培.塑料工业手册(聚酰胺)[M].北京:化学工业出版社,2001
    2.(日)福本修编,施祖培等译.聚酰胺树脂手册[M].北京:中国石化出版社,1994
    3.邓如生,魏运方,陈步宁.聚酰胺树脂及其应用[M].北京:化学工业出版社,2002
    4.刘英俊,刘伯元.塑料填充改性[M].北京:中国轻工业出版社,1998
    5.罗毅,肖勤莎.尼龙6的生产状况及进展趋势[J].现代塑料加工应用,1997,9(6):53-57
    6.张吉林.MC尼龙改性研究进展[J].工程塑料应用,1998,26(1):28-30
    7. Hem R. P., Chan H. P., Leonard D. T., et al. Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via eiectrospinning[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2012,407:121-125
    8. Hem R. P., Madhab P. B., Chuan Y, et al. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2010,370: 87-94
    9. Wei Z., Les J., S. Ravi P. S., et al. The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes[J]. Applied Surface Science,2012,258:8209-8213
    10. Tao S., Juan M. G. High-performance polyproplylene-clay nanocomposites by in-situ polymerization with metallocene/clay catalysts [J]. Adv Mater.,2002,14(2): 128-130
    11. Kojima Y., Usuki A., et al. One-pot synthesis of nylon 6-clay hybrid[J]. J Polym Sci Part A:Polym Chem.,1993,31:1755-1758
    12. Hasegawa N, Okamoto H, Kato M. Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay[J]. Appl. Polym Sci.,2000,78:1918-1922
    13.金国珍.工程塑料[M].北京:化学工业出版社,2001
    14.陈祥宝,包建文,娄葵阳.树脂基复合材料制造技术[M].北京:化学工业出版社,2000
    15.廖亚军,陶兴平,赵文智.己内酰胺低压低温真空脱水制取铸型尼龙的工艺[J].塑料科技,1998,126(4):29-31
    16.孙向东,田桂芝,张建中.甲醇钠催化制取MC尼龙[J].工程塑料应用,2002,30(12):24-25
    17.陈显冲,周郑远,梁立勋.改性MC尼龙护顶顶梁的研制龙[J].工程塑料应用,2002,30(1):27-29
    18.李国禄,王昆林,崔周平.助剂用量对MC尼龙力学和摩擦学性能的影响[J].清华大学学报,1998,38(8):42-45
    19.邢玉清编译.简明塑料大全.第1版[M].哈尔滨:哈尔滨工业大学出版社,2002
    20.邓如生.共混改性工程塑料.第1版[M].北京:化学工业出版社,2003
    21.汪多仁.合成树脂与工程塑料生产技术.第1版[M].北京:中国轻工业出版社,2001
    22.孙向东.MC尼龙的合成、改性研究[D].中国博士学位论文,2006
    23.罗毅,肖勤莎.尼龙6的生产状况及发展趋势[J].现代塑料加工应用,1997,9(6):53-57
    24.孙向东,孙旭东,张慧波.MC尼龙改性研究的新进展[J].工程塑料应用,2003,31(2):59-61
    25. Fernandez C.E., Bermudez M., Alla A., Compared structure and morphology of nylon-12 and 10-polyurethane lamellar crystals[J]. Polymer,2011,52:1515-1522
    26. Jin T. W., Zhi Y. B., Cheng L., et al. Preparation, melting, glass relaxation and nonisothermal crystallization kinetics of a novel dendritic nylon-11[J]. Thermochimica Acta,2011,524:117-127
    27.姚艳梅,王月欣,丁会利.聚甲亚胺尼龙6原位聚合复合材料的力学性能[J].河北工业大学学报,2003,32(4):12-16
    28. Syang P. R., Yu C. T., Kuei C. C., et al. The crystallization kinetics of Nylon 6/6T and Nylon 66/6T copolymers [J]. Thermochimica Acta,2013,555:37-45
    29.杨明山.尼龙6与改性PP的共混研究[J].高分子材料科学与工程,1996,12:86-89
    30.刘长生,王琪.尼龙6/聚丙烯共混改性研究[J].湖北化工,2001,3:1-3.
    31.李笃信,贾德民,洪旭东.新型聚丙烯固相接枝物增容聚丙烯/尼龙6共混物的研究[J].中国塑料,1999,13(6):40-43
    32.冯绍华,王玲玲.聚烯烃相容剂改性尼龙6的研究[J].青岛化工学院学报,1999,20:136-141
    33.熊茂林,马军,朱玉俊.三元乙丙橡胶与尼龙树脂的增容共混[J].合成橡胶工业,2001,24(6):361-364
    34.傅荣政.PA6/SANMAH/GF复合材料的制备及其性能研究[J].工程塑料应用,2005,33(11):10-13
    35.程晓春.聚醚改性铸型尼龙研究[J].江苏化工,1997,25(8):20-22
    36. Yamashita Y, Matsui H., Ito K. Block copolymerization(V):block anionic polymerization of lactase[J]. J Polym Sci., Polymer Chem.,1972,10:3577-3584
    37. Allen W. T., Eaves D. E. Caprolactam based block copolymers using polymeric activators [J]. A new Macromol Chem.,1977,58:321-330
    38. Hedrick R. M., Gabbert J. D., Wahl M. H., Nylon6 RIN/Kresta reaction injection molding[M]. Washington:Americal Chemical Society,1985
    39.丁会利,瞿雄伟,白宗武等.聚甲亚胺/尼龙6分子复合材料的结构与流变性能[J].河北工业大学学报,2001,6:22-26
    40.张胜文,霍雄伟,荆占山.醛/胺摩尔比对己内酰胺聚合及聚甲亚胺/铸型尼龙复合材料性能的影响[J].高分子材料科学与工程,2004,20(3):114-117
    41.张学平.热塑性增强塑料.第1版[M].北京:轻工业出版社,1988
    42.顾里之.纤维增强复合材料[M].北京:机械工业出版社,1988
    43.(美)G.卢宾等.增强塑料手册(聚酰胺).第1版[M].北京:中国建筑工业出版社,1975
    44.周祖福.复合材料学[MJ].武汉:武汉工业大学出版社,1997
    45.陈金周,张书胜,李相魁.玻纤增强石油发酵尼龙的热稳定性研究[J].塑料工业,1995,6:22-23
    46.熊玉竹,王超先,刘滢.短玻璃纤维增强尼龙6的无缺口冲击性能[J].兵器材料科学与工程,2008,31(3):22-26
    47. Hooke C. J, Kukureka S. N, Liao P. et al. Wear and friction of nylon-glass fibre composites in non-conformal contact under combined rolling and sliding [J]. Wear, 1996,197:115
    48.方鲲,吴丝竹,张国荣.LGF增强增韧PA66汽车专用料的制备及力学性能研究[J].工程塑料应用,2009,37(6):48-51
    49. Goshawk J. A., Jones R. S. Structure reorganization during the rheological characterization of continuous fibre-reinforced composites in plane shears [J]. Composites:Part A,1996,27A:219
    50.高志秋.长玻纤增强尼龙6复合材料的研究[J].工程塑料应用,2001,29(7):2-5
    51.刘正军,韩克清,周洪梅.长玻璃纤维增强尼龙6的力学性能研究[J].工程塑料应用,2005,34(5):4-8
    52.姜勇,张平,尹久仁.纳米SiO2与玻璃纤维含量对尼龙6显微硬度的影响[J].高分子材料科学与工程学报,2009,25(9):54-56
    53.贺金瑞,宁荣昌.高含量连续玻璃纤维增强尼龙6复合材料成型工艺的研究[J].玻璃钢/复合材料,2005,5:29-34
    54.王静江.增韧尼龙滑轮专用料的研制及应用[J].工程塑料应用,2005,35(10):49-52
    55.葛世荣,王伟华,王军祥.玻璃纤维增强尼龙1010复合材料的摩擦学性能研究[J].摩擦学学报,2000,20(6):427-430
    56.任紫菊.碳纤维增强MC尼龙的研究[J].复合材料学报,2005,17(2):16-19
    57. Wang Y. L., Wan Y. Z., He B. M., Preparation and properties of three-dimensionally braided carbon fiber-MC nylon composites [J]. J Mater Sci. Letter,2003,22:1797-1800
    58.林志勇,蒋婵杰,林金清.高含量碳纤维增强PA等温结晶动力学[J].塑料工业,2002,30(5):27-28
    59.姚辉梅,黄锦河,林志勇.高含量CF/PA6复合材料的非等温结晶动力学[J].华侨大学学报,2007,28(23):210-213
    60.林金清,黄海,徐旭波.碳纤维/MC尼龙6原位复合材料的制备与表征[J].华侨大学学报,2006,27(1):92-95
    61.张士华,熊党生,崔崇.国内尼龙6增强改性研究进展[J].塑料科技,2003,156(4):57-63
    62.徐风广.漂珠的物性研究及与原始粉煤灰的比较[J].煤炭科学技术,2002,30(9):49-52
    63.罗立群,孙娟娟.某粉煤灰的若干理化性质测定分析[J].中国矿业,2007,16(12):108-112
    64.杨赞中,刘玉金,杨赞国.粉煤灰漂珠的物理化学性能及综合利用[J].矿产保护与利用,2002,5:46-50
    65.汪济奎.粉煤灰填充尼龙6浇铸制品的研究[J].粉煤灰综合利用,1993,4:39-41
    66.王明珠,蔡楚江,沈志刚.粉煤灰空心微珠改善聚合物材料性能的试验研究[J].中国粉体技术,2004,10:178-183
    67.方海林.粉煤灰微珠改性尼龙6的研究[J].粉煤灰综合利用,1997,2:44-45
    68.林薇薇,徐文友,钱鸿萍.漂珠/不饱和聚酯复合材料的耐化学腐蚀性[J].工程塑料应用,1992,20(2):12-16
    69.李国昌,王萍.利用漂珠研制复合保温材料[J].矿产保护与利用,1996,3: 50-52
    70.翟玉生.无石棉自增强摩擦材料的研制与性能研究[J].摩擦学学报,1996,16(3):221-225
    71.尹志辉,张晓民,殷敬华.稀土氧化钕填充尼龙6体系的流变行为研究[J].中国塑料,1996,10(3):34-36
    72.熊党生,陈磊,张德坤.稀土化合物填充PA1010复合材料的摩擦学特性[J].中国矿业大学学报,2001,30(5):476-480
    73.林轩,张兰.稀土氧化物/MC尼龙纳米复合材料的制备及性能研究[J].材料导报,2008,22(5):124-126
    74.欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程,1998,14(2):13-17
    75.杨景海.硅灰石改性尼龙6研究[J].松辽学刊,1996,1:17-20
    76.王新华,应特志,王文敏.超细冰滑粉在MC尼龙中的应用[J].工程塑料应用,2001,29(10):4-7
    77.李国禄.SiC微粒填充铸型尼龙复合材料的研究[J].河北工业大学学报,2000,29(6):69-73
    78.刘学禄,傅世昭,王青思.改性MC尼龙管道的制备与应用[J].工程塑料应用,1998,26(10):14-16
    79.严东升,冯瑞.材料新星-纳米材料科学[M].长沙:湖南科学技术出版社,1998
    80. Xiangmin X., Binjie L., Huimin L. et al. The effect of the interface structure of different surface-modified nano-SiO2 on the mechanical properties of nylon 66 composites [J]. Journal of Applied Polymer Science,2008,107:2007-2014
    81. Reynaud E., Jouen T., Gauthier C. Nanofillers in polymeric matrix:a study on silica reinforced PA6[J]. Polymer,2001,42:8759-8768
    82. Van Rijswijka K., Lindstedta S., Vlasveld D. P. N. Reactive processing of anionic polyamide-6 for application in fiber composites:A comparitive study with melt processed polyamides and nanocomposites[J]. Polymer Testing,2006,25:873-887
    83. Ying L., Jian Y, Zhaoxia G. The influence of interphase on nylon-6/nano-Si02 composite materials obtained from in situ polymerization[J]. Polymer International, 2003,52:981-986
    84.葛世荣,王庆良,李凌.纳米TiO2和SiO2填充尼龙的摩擦磨损行为[J].摩擦学学报,2004,24(2)::152-155
    85. KUROKAWA Y. et al. Structure and properties of a montmorillonite polypropylene nano-composite[J]. Journal of Materials Science letters,1997,16: 1670-1672
    86. Okada A., Kawasumi M. et al. Synthesis and characterization of a nylon 6-clay hybrid[J]. Polym Prepr,1987,28:447-448
    87. Okamoto M, Morita S. Dispersed structure change of smectic clay/poly (methyl methacrylate) nanocomposites by copolymerizationwith polar comonomers[J]. Polymer,2001,42:1201-1206
    88. Amanda M. D. L., Larissa F. M., Osanildo D. P., Mechanical properties of nylon 6/Brazilian clay nanocomposites[J]. Journal of Alloys and Compounds,2010,495: 596-597
    89.马继盛,漆宗能,张树范等.插层聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征[J].高等学校化学学报,2001,10(2):1667-1770
    90.余鼎生,张楠,徐日炜.阴离子开环原位聚合法制备尼龙6/蒙脱土混杂复合材料[J].北京化工大学学报,2000,27(4):32-35
    91.欧育湘,吕连营,吴俊浩.原位插层聚合PA6OMMT纳米复合材料的性能[J].工程塑料应用,2004,32(10):13-16
    92.郝向阳.几种插层剂改性的MMT/PA-66纳米材料的性能[J].中国塑料,2002,7:72-75
    93.吕通建.钛酸钾晶须增强尼龙6的应用[J].工程塑料应用,1995,23(6):5-7
    94.田雅娟.四脚状氧化锌晶须增强尼龙6复合材料的研究[J].塑料工业,2002,30(5):32-34
    95. Demei Yu, Jingshen Wu, Limin Zhou. The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend[J], Composites Science and Technology,2000,60(4):499-508
    96.葛铁军,张红霞,刘义.反应挤出制备尼龙66/弹性体/玻璃纤维三元复合材料[J].石化技术与应用,2007,25(2):110-113
    97.刘卫平.硅灰石玻璃纤维掺混增强尼龙6的研究[J].中国塑料,1998,12(1):52-57
    98.王小红.增强耐磨改性尼龙6的研制[J].塑料工业,1995,6:5-6
    99.赵才贤,张平,许福.新型PA6/EP/SiO2纳米复合材料的制备[J].应用化工,2008,25(9):1042-1046
    100.林大杰,付绍云,李艳.短玻纤和SiO2颗粒增强PA66/UHMWPE复合材料的力学性能[J].应用化工,2005,22(2):57-62
    101.张玲,杨建民,冯超伟.表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6 的结构与性能[J].高分子学报,2010,11:1333-1339
    102.王有槐.铸型尼龙实用技术[M].北京:中国石化出版社,1994
    103.徐国平.改性MC尼龙管道的研制及其在铁矿的应用[J].工程塑料应用,2002,30(1):30-32
    104.邢亚博.改性MC尼龙/玻璃钢复合管的制备与应用[J].玻璃钢/复合材料,2005,4:45-46
    105.刘伯元,王建军,桂先伦.大口径、高性能塑料管材的制备与应用[J].2001年塑料高新科技成果交流会论文集,2001,130-135
    106.刘学禄,傅世昭,王青思.改性MC尼龙管道的制备与应用[J].工程塑料应用,1998,26(5):14-16
    107.李守新.功能梯度材料基础[M].北京:国防工业出版社,2000
    108.傅正义,袁润章,赵修建.梯度功能材料的研究[J].复合材料学报,1992,9(1):23-28
    109.穆中国,罗一丁.聚合物梯度材料的制备及应用研究[J].化工新型材料,2010,38(5):37-40
    110.康圆,郑水蓉,孙曼灵.聚合物基功能梯度复合材料的研究进展[J].热固性树脂,2011,26(5):56-58
    111.温变英,吴刚,侯少华.新型聚合物基复合梯度材料的制备及材料结构性能[J].复合材料学报,2004,21(3):151-156
    112.福井泰好,木之下广幸,中西贤二.日本机械学会论文集(A),1991,535(57):579-584
    113.于思荣,张新平,何镇明.离心铸造梯度功能材料的研究现状[J].功能材料.2003,34:24-26
    114.邹茂华.离心铸造SiC颗粒局部增强铝基复合材料活塞的组织性能研究[D].重庆大学博士学位论文,2010
    115.王开.功能梯度复合材料制动盘设计及制备成形工艺、组织与性能研究[D].重庆大学博士学位论文,2008
    116.翟彦博.离心铸造自生颗粒增强铝基骤变梯度功能复合材料气缸套的制备技术[D].重庆大学博士学位论文,2009
    117.秦孝华.功能梯度复合管的制备、微观组织及性能研究[D].中国科学院金属研究所博士学位论文,2002
    118.Krishnan B. P., Shetty H. R. Centrifugally cast graphitic aluminum with segregated graphite particles[J]. AFS Trans.,1976,66:73-80
    119.Fukui Y, Okada H., Kumazawa B. Near-net-shape forming of Al and Ni functionally graded material over eutectic melting temperature [J]. Metal Mater Trans.,2000,31(10):2627-2636
    120.Lee N. J., Jang J., Park M. et al. Characterization of functionally gradient epoxy /carbon fibre composite prepared under centrifugal force[J]. J. Mater. Sci.,1997, 32:2013-2020
    121.Hashmi S. A. R. Attaining a controlled graded distribution of particles in polymerizing fluid for functionally graded materials[J]. Journal of Applied Polymer Science,2006,99(6):3009-3017
    122.Hashmi S. A. R., Dwivedi U. K. Estimation of concentration of particles in polymerizing fluids centrifugal casting of functionally graded polymer composites[J]. Journal of Polymer Research,2007,14(1):5249-5253
    123.Funabashi M. Gradient composite of metal particle filled epoxy resin moulded under centrifugal force field[J]. Transaction of the Japan Society of Mechanical Engineers Part A,1997,63(6):1022-1027
    124.Funabashi M. Control of filler distribution in polymer composite[J]. Journal of the National Institute of Materials and Chemical Research,2000,8(1):19-34.
    125.贡长生,张克力.新型功能材料[M].北京:化学工业出版社,2000
    126.刘相果,彭晓东,刘江等.偶联剂对短玻纤增强PA66微观结构及性能影响研究[J].工程塑料应用,2003,31(7):1-4
    127.杨明.塑料添加剂应用手册[M].南京:江苏科学技术出版社,2002
    128.王荣国,武卫莉,谷万里.复合材料概论第1版[M].哈尔滨:哈尔滨工业大学出版社,1999
    129.韩怀强,蒋挺大.粉煤灰利用技术[M].北京:化学工业出版社,2002
    130.Suryasarathi B., Mahanwar P.A. Effects of titanate coupling agent on the properties of mica-reinforced nylon-6 composites [J]. Polymer Engineering and Science,2005,10:1479-1486
    131.Monserrat G., Matthijn D. R., Louis W.. Friction and Wear Studies on Nylon-6/SiO2 Nanocomposites [J]. Journal of Applied Polymer Science,2004,92: 1855-1862
    132.王世博,刘洪涛,葛世荣.硅灰石增强铸型尼龙复合材料摩擦学行为研究[J].中国矿业大学学报,2010,39(5):721-727
    133.王承鹤.塑料摩擦学第1版[M].北京:机械工业出版社,1994
    134.邹祖讳编,吴人洁译.复合材料的结构与性能[M].北京:科学出版社,1999
    135.Plueddeman E P. Silane Coupling Agents[M]. New York:Plenum Press.1982
    136.胡福增,柴田健一,堤和男.硅烷偶联剂对玻璃纤维表面性能的影响[J].复合材料学报,1989,6(1):7-14
    137.杜仕国.复合材料用硅烷偶联剂的研究进展[J].玻璃钢/复合材料,1996,4:32-35
    138.杨俊,蔡力锋,林志勇.增强树脂用玻璃纤维的表面处理方法及其对界面的影响[J].塑料,2004,33(1):5-8
    139.刘力洵,李俊伟,张志谦等.玻璃纤维/聚丙烯复合材料界面研究[J].材料科学与工艺,2000,8(2):105-107
    140.Ishida H., Koening J. L. Fourier Transform Infrared spectroscopic study of the silane coupling agent/porous silica interface[J]. J. Coll Inter Sci.,1978,64: 555-564
    141.Mobarakeh H. S., Brisson J., Kadi A. Ionic interphase of glass fiber/polyamide6,6 composites[J]. Polym. Composites,1998,19(3):264-274
    142.Schrader M. E., Lerner I., Oria D. Radioisotope study of coupling agents in reinforced plastics[J]. Mod. Plast.,1967,45:195-200
    143.Crespy A., Franon J. P., Turenne S. et al. Effect of silanes on the glass fiber/polypropylene matrix interface [J]. Macromolecular Chemistry, Macromolecular Symp,1987,9:89-98
    144.Ferreira J. A. M., Costa J. D. M., Richardson M. O. W. Effect of notch and test conditions on the fatigue of a glass-fiber-reinforced polypropylene composite[J]. Composites Science and Technology,1997,57(9):1243-1248
    145.王汝敏.聚合物基复合材料及工艺[M].北京:科学出版社,2004
    146.汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998
    147.曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002
    148.姚辉梅,黄锦河,林志勇.高含量CF/PA6复合材料的非等温结晶动力学[J].华侨大学学报,2007,4:159-160
    149.郑玉婴,王灿耀,傅明连.尼龙6/Kevlar纤维复合材料的非等温结晶行为及熔融特性[J].高分子材料科学与工程,2006,3:127-130
    150.Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate)determined by DSC [J]. Polymer, 1978,19(10):1142-1144
    151.Klein N., Selivansky D., Marom G. The effects of fibers agent and the crystallization of nylon66 Matrices[J]. Polymer composites,1995,16:1892-1897
    152.Yu L., Robert A. Kinetics of polymer crystallization [J]. Prog. Polym. Sci.,1995, 20(4):651-680
    153.Xiongwei Q., Huili D., Jianying L. Isothermal and nonisothermal crystallization kinetics of MC nylon and polyazomethine MC nylon composites [J]. Journal of Applied Polymer Science,2004,93:2844-2855
    154.Helen C. Y. C., Caroline A. B. Studies of microstructural and mechanical properties of nylon/glass composite, Part II. The effect of microstructures on mechanical and interfacial properties [J]. J. Mater Sci.,1999,34:5113-5126
    155.陶婉蓉,吴叙勤,张元民.高性能聚合物基复合材料(第1版)[M].上海:上海科学技术出版社,1989
    156.Chen J. C., Harrison I. R. Modification of nylon-polyethylene blends via in situ fiber formation[J]. Polymer Engineering and Science,1998,37(2):371-383
    157.Kyu T., Zhou Z. L., Zhu G. C. Novel filled polymer composites prepared from in situ polymerization via a colloidal approach. I. Kaolin/Nylon-6 in situ composites[J]. Journal of Polymer Science:Part B:Polymer Physics,1996,34: 1761-1768
    158.Wade G. A., Cantwell W. J., Pond R.C. Plasma surface modification of glass fibre-reinforced nylon-6,6 thermoplastic composites for improved adhesive bonding[J]. Interface Science,2000,8:363-373
    159.王军祥,葛世荣,李凌.偶件表面粗糙度对碳纤维增强尼龙复合材料摩擦学性能的影响[J].摩擦学学报,2001,21(2):106-109
    160.王鹤泉,曹立礼,孙淑琴.尼龙1010在水润滑下的摩擦学特性和磨损机理[J].摩擦学学报,1997,17(2):152-159
    161.李国禄,王昆林,林金海.纤维增强铸型尼龙在水润滑条件下的摩擦磨损性能研究[J].摩擦学学报,2001,21(3):210-213
    162.Hammel A. E., Tang A. X., Trampert A. M. Carbon nanofibers for composite applications [J]. Carbon,2004,42:1153-1158
    163.Lin Y., Phuc H L. Sliding friction and wear of a continuous glass fiber/Nylon composite against steel [J]. Journal of Meterials Science Letters,1994,13: 1684-1690
    164.Liping N., Lingqi J., Shengrong Y., Effect of carbon black on triboelectrification electrostatic potential of MC nyloncomposites[J] Tribology International,2010,43: 568-576
    165.G.W.埃伦斯坦著,张萍,赵树高译.聚合物材料结构.性能.应用[M],北京:化学工业出版社,2007
    166.徐国财,张立德.纳米复合材料[M],北京:化学工业出版社,2002
    167.王晓钧,周洪庆.磨细粉煤灰作为树脂基复合材料填料的研究[J].材料科学与工程,2004,22(2):228-232
    168.欧玉春,于中摄.界面粘附对玻璃微珠填充尼龙6损伤过程的影响究[J].高分子学报,1994,8:98-100
    169.唐忠锋,王继虎,陈有双.活化粉煤灰/NR复合材料的制备与性能研究[J].橡胶工业,2009,56(10):611-614
    170.倪礼忠,陈麒.聚合物基复合材料[M],武汉:华东理工大学出版社,2007
    171.何春霞.聚合物复合材料摩擦学研究进展[J].材料科学与工艺.2003,11(4):445-448.
    172.王占红,侯贵华.粉煤灰增强树脂基复合材料力学性能和摩擦学性能的研究[J].润滑与密封,2009,34(4):46-50
    173.曲烈,杨久俊,乐俐.改性粉煤灰微珠摩擦材料摩擦磨损性能的研究[J].橡胶工业,2008,3:47-54
    174.李国禄,刘金海,李玉平.纳米Si3N4颗粒填充铸型尼龙的摩擦学性能研究[J].河北工业大学学报,2002,31(1:):92-94
    175.王美英,余庆彦,刘国栋等.硅烷偶联剂表面接枝包覆纳米SiO2的研究[J].高分子材料科学与工程,2005,21(6):228-231
    176.Jia X, Ling XM. Influence of Al2O3 reinforcement on the abrasive wear characteristic of Al2O3/PA1010 composite coatings [J]. Wear,2005,258:1342
    177.Minzhi R., Mingqiu Z., Shunlong P. et al. Interfacial effects in polypropylene-silica nanocomposites[J]. App1. Polym. Sci.,2004,92:1771-1777
    178.薛奇.高分子结构研究中的光谱方法[M].北京:高等教育出版社,1995,80-88
    179.柯扬船,皮特.斯壮.聚合物-无机纳米复合材料[M].北京:化学工业出版社,1995
    180.Xiongwei Q., Huili D., Jianying L. Isothermal and nonisothermal crystallization kinetics of MC nylon and polyazomethine/MC nylon composites[J]. Journal of Applied Polymer Science,2004,93:2844-2855
    181.蔡立峰,林志勇.纳米SiO2的均匀分散及其对MC尼龙6晶型结构及晶型转变的影响[J].化工新型材料,2010,38(11):96-99
    182.Dongsik K., Jun S. L., Carol M. F. Microscopic measurement of the degree of mixing for nanoparticles in polymer nanocomposites by TEM images[J]. Microscopy Research and Technique,2007,70:539-546
    183.方秀苇,李小红,余来贵等.可反应性纳米SiO2/尼龙1010复合材料的制备 和力学性能[J].材料研究学报,2008,22(5):521-525
    184.Friedrich K., Sreekala M. S., Lehmann B纳米SiO2/聚丙烯复合材料的微观结构[J].复合材料学报,2006,23(1):44-50
    185.张以河,付绍云,李国耀等.聚合物基纳米复合材料的增强增韧机理[J].高技术通讯,2005,5:99-105
    186.葛世荣,张德坤,李凌.纳米Al2O3和Fe2O3填充尼龙PA1010的摩擦磨损行为[J].摩擦学学报,2004,24(1):25-28
    187.Xuemin Y., Jiabao Y, Ping M. Synthesis, charaeterizatiOn and catalytic properties of mesoporous HPMo/SiO2 composite[J]. Journal of Wuhan University of Technology. Mate. Sci.,2008,23(6):824-828
    188.刘付胜聪,肖汉宁,李玉平.纳米SiO2对聚丙烯酸酯复合涂层在水润滑下摩擦学性能的影响[J].复合材料学报,2004,21(5:):42-47
    189.Kanga S. C., Chung D. W. Improvement of frictional properties and abrasive wear resistance of nylon/graphite composite by oil impregnation[J]. Wear,2003,254: 103-110
    190.姜振华.先进聚合物基复合材料技术[M],北京:科学出版社,2007
    191.San J. A., Wang Z. A. Nano-hardness and wear properties of C-implanted Nylon 6 [J]. Surface & Coatings Technology,2006,200:5245-5252
    192.D.R.保罗,C.B.巴克纳尔编,殷敬华译.聚合物共混物:组成与性能(上)[M],北京:科学出版社,2004
    193.Mo Y. M., Pan Y. P., Wang X. M. The tribological properties of the hot-extrusion nylon coating in the oil well environment[J]. Journal of Wuhan University of Technology Mater. Sci. Ed.,2003,18:58-60
    194.徐燕君.功能梯度高分子材料连续制备技术的开发研究[D].中国硕士学位论文,2005
    195 Jang J., Han S. Mechanical properties of glass-fibre mat /PMMA functionally gradient composite[J]. Composites:Part A,1999,30A(9):1045-1053
    196.Huang Z. M., Wang Q. A., Ramakrishna S. Tensile behaviour of functionally graded braided carbon fibre/epoxy composite material[J]. Polym. & Polym. Compos.,2002,10:307-317
    197.张云国,赵顺波,张天光.离心成型钢纤维混凝士纤维分布规律试验研究[J].材料科学与工程,2004,22(4):602-605
    198.秦孝华,韩维新,范存淦.颗粒增强铝基功能梯度复合管研究[J].材料科学与工程,2001,19(3):290-292
    199.Lajoye L, Suery M. Modeling of particle segregation during centrifugal casting of al-matrix composites[A]. A SM International[C]. Metals Park, OH,1988.15-20
    200.Watanabe Y, Yamanaka N. Control of composition gradient in a metal-ceramic functionally graded material manufactured by the centrifugal method[J]. Composite Parts A,1998,29A:595-601
    201.孙向东,孙旭东,张慧波.MC尼龙制备工艺中存在的问题及解决方案[J].工程塑料应用,2003,31(12):69-71
    202.刘信声,徐秉业.工程塑性力学[M].北京:清华大学出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700