用户名: 密码: 验证码:
污泥超声破解反应器工况优化与破解污泥中温厌氧消化能效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥厌氧消化是实现污泥减量化和资源化的最佳途径,污泥超声破解能提高厌氧消化速率,增大生物气产率。但目前我国没有专门用于污泥破解的超声波反应器,实验室用的微生物细胞破壁超声波反应器或超声清洗器破解污泥时,最大缺陷是能耗高。为推动污泥超声破解技术在我国的应用,本文从减少反应器能耗的角度出发,对污泥超声破解反应器的工作原理、工况参数、能耗分析进行了探讨和研究。
     以实验室小型静态和动态试验为手段,采用热敏探头法和染色法测量不同频率超声波在蒸馏水中和不同浓度污泥中的声场分布和空化场分布。同时,针对超声场参数(频率和功率)、污泥性质(浓度、pH值和初始温度)和试验条件(曝气和搅拌)等对超声破解效果的影响,以污泥溶解性化学需氧量增加值( )、污泥的破解度( )及污泥粒径分布等参数为评价指标,分析超声波频率、功率、污泥特性和试验条件对超声破解污泥效果的影响。SCOD+ DDSCOD
     采用热敏探头法和染色法测量蒸馏水中三种频率(20kHz、28kHz和40kHz)超声波场和空化场分布。发现单一换能器作用时,任何频率超声波声强和空化强度沿换能器轴线成起伏状和葫芦状分布,且随距离增大而逐渐衰减,空化强度衰减较快;不同频率的声强大小和空化作用强弱各不相同,28kHz的声强和空化强度最强,40kHz次之,而20kHz最差;两个换能器同时作用时,超声波强度和空化强度沿换能器轴线变化趋势与单一换能器作用时相同,而沿两换能器中心线声强和空化强度在一定范围内都由于声波的干涉叠加原理有所增强,沿中心线的衰减速率减慢。综合分析,两个换能器同时作用时,反应器整体声场和空化场都比单一换能器的均匀。同时,采用热敏探头法测量不同频率超声波在污泥中的声场分布,发现超声波声强在换能器表面附近骤然降低,并沿换能器轴线随距离快速衰减。
     分析评价超声波参数(频率和功率)对超声破解污泥效果影响。利用槽式超声反应器分析比较三种频率(20kHz、28kHz和40kHz)及频率组合对污泥破解效果的影响。发现比能耗相等时,单频率时,28kHz最佳;多频率组合时,换能器28kHz和40kHz平行相对布置效果最好。利用槽式超声波反应器和探头式超声波反应器分析多种功率(50W、400W、800W和1200W)及功率组合对污泥破解效果的影响。发现单功率作用,低功率长时间利于污泥超声破解,但速率较低,低功率组合可提高破解速率。组合功率模式中,低功率组合更利于污泥超声破解。另外,还发现污泥的初始温度、pH值和污泥浓度等参数污泥对破解效果有重要影响。增加间歇搅拌和曝气辅助条件也能增强污泥超声破解效果。
     为进一步验证超声破解污泥的实际应用效果,进行动态试验研究。结果发现相同浓度,相同体积比能耗时,动态破解效果远比静态的好。在本试验时间范围内,无循环扰动时,超声破解连续流污泥反应相对于水力停留时间符合一级反应动力学规律。
     在超声破解污泥中温厌氧消化的能量效益研究中,分析了不同挥发性有机物含量污泥不同溶出率时,日总能耗、日生物气能量和日净能量与超声破解时间的关系。比较超声破解污泥与未破解污泥在不同投配率时的日净能量、比净能量和周期净能量。发现任何方式破解污泥中温厌氧消化净能量都随着污泥挥发性有机物含量的增大而增大。污泥挥发性有机物含量较低时,不宜采用中温厌氧消化工艺,更不宜增加超声破解工艺。污泥挥发性有机物含量较高时,槽式动态破解污泥促进厌氧消化。
Anaerobic digestion is considered as the best way of decreasing and reusing waste activated sludge. Ultrasonic disintegration of waste activated sludge can accelerate anaerobic digestion of waste activated sludge and increase biogas yield. But, at present, professional ultrasonic reactor in the field of disintegration of waste activated sludge is not found in China. Ultrasonic reactor of microbial cell lysing or ultrasonic cleaner is used in laboratory, and it is low efficient and high energy-consuming. In order to reduce the energy-consuming of ultrasonic reactor and help it to be used in waste activated sludge pretreatment field in China, the optimal analysis and study of ultrasonic reactor principle, work parameters and energy-consuming were completed in this dissertation.
     The static experiment and dynamic experiment were finished in laboratory. Ultrasound field and ultrasonic cavitation field were measured by thermoelectric probe method and dyeing method. At same time, the effect of ultrasonic parameters (frequency and power), characters of waste activated sludge (concentration, pH and initial temperature), experimental conditions (stirring or blowing) on ultrasonic disintegration of waste activated sludge was analyzed with SCOD+, DDSCOD and flocs size of waste activated sludge.
     Analyzing ultrasonic field and cavitation field of three kinds of frequency (20kHz, 28kHz and 40kHz), when one transducer is working, it is concluded that ultrasound intensity and cavitation intensity are fluctuant and liking cucurbits along the axes of transducer in distilled water, and reduce gradually with distance increase. But, cavitation intensity reduction is faster than ultrasound intensity. And ultrasound intensity and cavitation intensity of different frequency are different: ultrasound intensity and cavitation intensity of 28kHz are all strongest, and then 40kHz’s second place, finaly, 20kHz’s the weakest. When two transducers are working simultaneously, wave of ultrasound intensity and cavitation intensity along the axes of transducer are accordant with one transducer’s. The reduction of ultrasound intensity and cavitation intensity along the centre line of two transducers is lesser than that along the axes of transducer because of interference and overlap. And ultrasound field and cavitation field of two transducers are better-proportioned than one transducer’s. Another conclusion in waste activated sludge is obtained that ultrasonic intensity of any frequency reduces suddenly nearby transducer face and reduces quickly along the axes of transducer.
     Effect of three kinds of frequency (20kHz, 28kHz and 40kHz) and frequency combination on ultrasonic disintegration of waste activated sludge by using ultrasonic bath was analyzed. At single frequency working, 28kHz is the best; at more frequencies working, disposal of transducers parallel and opposite of 28kHz and 40kHz is the best. Furthermore, analysis of more ultrasonic powers combination was carried out. Single power working, low power with long treatment time is advantaged, but with lower disintegration speed. Power combination working, low power combination can enhance efficiency. Another found proves that characters of waste activated sludge (concentration, pH and initial temperature) and experimental conditions (stirring or blowing) are also increase the efficiency of disintegration of waste activated sludge.
     In addition, data of dynamic experiment indicates dynamic disintegration is better than static disintegration when the concentration and volume specific energy consume are the same value. And during experimental time, the reaction of ultrasonic disintegration of dynamic waste activated sludge is also accord with one-order reaction.
     At the same time, analysis of energy benefit on mesophilic anaerobic digestion of ultrasonic treated waste activated sludge was finished. Compare of treated sludge and untreated sludge was also completed with, specific net energy and periodic net energy. It is found that net energy of ultrasonic disintegrated and untreated sludgy is increasing with percent of volatile solid increasing, and mesophilic anaerobic digestion technology is not fit for the sludge with low percent of volatile solid. Dynamic disintegration sludge with ultrasonic bath with proper time can accelerate anaerobic digestion of waste activated sludge when percent of volatile solid is higher.
引文
[1] 南映景,可持续发展战略中的太阳能[J]. 甘肃科学学报, 1997, 12:78-81
    [2] 刘万福,温室气体CO2减排机制及内燃机驱动热泵的研究[D]. 博士学位论文,天津:天津大学,2002:1-3
    [3] 丁立义,陈文,从煤的燃烧技术浅析能源利用的可持续发展[J]. 西北电建,2000, 2:16-18
    [4] 张永照,能源与环境问题探讨[J]. 工锅技术,1991, 6:64-66
    [5] 李孝仁,胡屯兰,21 世纪世界能源发展趋势向[J]. 未来与发展, 2000, 12:54-55
    [6] 霍雅勤,中国能源现状及可持续利用对策[J]. 中国能源, 1999, 2:42-44
    [7] 曹文红,董秀威,未来世界能源消费趋势综述[J]. 国际石油经济, 1998, 3:3-5
    [8] 曹凤中,2010 年世界能源与环境的预测[J]. 国外环境科学技术, 1995, 1:1-4
    [9] Boshu He, Changhe Chen, Energy, ecological efficiency of coal fired plant in China[J]. Energy Conversion & Management, 2002, 43:2553-2567
    [10] 梁俊国,我国能源现状分析与对策[J]. 西山科技, 1994, 5:5-7
    [11] 张自杰,排水工程下册[M]. 北京:中国建筑工业出版社,2002, 353-372
    [12] 徐强,污泥处理处置技术及装置[M]. 北京:化学工业出版社, 2003, 1-10
    [13] 黄雅曦,李季,李国学,黄妍,施用污泥堆肥对土壤和生菜重金属积累特性的影响[J]. 黑龙江农业科学, 2005, 6:15-18
    [14] 姜泳文,城市污水处理厂污泥的管道运输[J]. 冶金矿山设计与建设, 2000, 32(2):32-36
    [15] U S. Environmental Protection Agency Municipal and Industrial Solid Waste Division Office of Solid Waste EPA530-R-99-009.Biosolids Generation, Use, and Diposal in the United States, September 1999.www.epa.gov.
    [16] 周群英,环境工程微生物学[M]. 北京:高等教育出版社,2002, 240-245
    [17] J.A.Eastman and J.F.Ferguson, Solubilization of particulate organic carbon during the acid phase of anaerobic digestion[J]. Journal of Water Pollution Control Federation, 1981, 53(3),352-366
    [18] 周少奇,城市污泥处理处置与资源化[M]. 广州:华南理工大学出版社,2002,10-15
    [19] 何品晶,顾国维,李笃中,城市污泥处理与利用[M]. 北京,科学出版社,2003,52-53
    [20] M.P.J. Weemaes, W.H .Verstraete, Evaluation of current wet sludge disintegration techniques[J]. Journal of Chemical Technology Biotechnology, 1998, 73(7):83-92
    [21] J.A.Muller, Prospects and problems of sludge pre-treatment processed[J]. Water Science and Technology, 2001, 44(10):121-128
    [22] R.V. Rajan, J. G. Lin, B. T. Ray, Low-level chemical pretreatment for enhanced sludge solubilizatioin[J]. Journal of Water Pollution Control Federation, 1989, 61(11-12):1678-1683
    [23] Jih-Gaw Lin, Cheng-Nan Chang, Shou-Chung Chang, Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization[J].Bioresource Technology, 1997, 62:85-90
    [24] Jih-Gaw Lin, Ying-Shih Ma, Chun-Chih Huang, Alkaline hydrolysis of the sludge generated from a high-strength, nitrogenous-wastewater biological-treatment process[J]. Bioresource Technology, 1998, 65:35-42
    [25] Jih-Gaw Lin, Ying-Shih Ma, Alle C. Chao, Chun-Chih Huang, BMP test on chemically pretreated sludge[J]. Bioresource Technology, 1999, 68: 187-192
    [26] J. S. Kim, C. H. Park, T.H.Kim, Effects of various pretreatment for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience Bioengeer, 2003, 95(3): 271-275
    [27] 肖本益,刘俊新,污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学, 2006, 27(2):319-323
    [28] Cheng-Nan Chang, Ying-Shih Ma, Chun-Wei Lo, Application of oxidation-redution potential as a controlling parameter in waste activated sludge hydrolysis[J]. Chemical Engineering Journal, 2002, 90:273-281
    [29] A. Scheminski, R. Krull, D. C. Hempel, Oxidative treatment of digested sewage sludge with ozone[J]. Water Science and Technology, 2000, 42(9): 10-15
    [30] M. Weemaes, H. Grootaerd, F. Simoens, W. Verstraete, Anaerobic digestion of ozonized biosolids[J]. Water Research, 2000, 34(8):2330-2336
    [31]王琳,孙德栋,臭氧氧化分解污泥的试验研究[J]. 中国海洋大学学报, 2005, 35(1):83-86
    [32] A. Bernal-Martinez, H. Carrere, D. Patureau, J.P. Delgenes, Combing anaerobic digestion and ozonation to remove PAH from urban sludge[J]. Process Biochemistry, 2005, 40:3244-3250
    [33] He Shengbing, Xue Gang, Wang Baozhen, Wang Lin,Experimental study on minimization of sludge production by ozonation process[J]. Journal of Donghua University(English Edition), 2003, 20(3):69-71
    [34] Kyung-Guen Song, Youn-Kyoo Choung, Kyu-Hong Ahn, Jinwoo Cho, Performance of membrane bioreactor system with sludge ozonation process for minimization of excess sludge production[J]. Desalination, 2003, 157:353-359
    [35] In Wook Nan, Yun Whan Kang, Kyung-Yub Hwang, Woong-Ki Song, Mechanical pretreatment of waste activated sludge for anaerobic digestion process[J]. Water Research, 2000, 34(8):2362-2368
    [36] Kyung-Yub Hwang, Eung-Bai Shin, Hong-Bok Choi, A mechanical pretreatment of waste activated sludge for improvement of anaerobic[J]. Water Science and Technology, 1997, 12(36):111-116
    [37] Hong-Bok Choi, Kyung-Yub Hwang, Eung-Bai Shin, A mechanical pretreatment of waste-activated sludge for H2S decrease on anaerobic digeation[J]. Biotechnology Letters, 1997, 19(2):101-104
    [38] P. Camacho, S.Deleris, V.Gesugey, P.Ginestet, E.Paul, A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge[J]. Water Science and Technology, 2002, 46(10):79-87
    [39] 王治军,王伟,夏州,吴舒旭,热水解污泥的厌氧消化试验研究[J]. 中国给水排水, 2003, 19(9):1-4
    [40] A.Tiehm, K.Nickel, U.Neis, The use of ultrasound to accelerate the anaerobic digestion of sewage sludge[J]. Water Science and Technology, 1997, 36(11):121-128
    [41] Fen Wang, Shan Lu, Min Ji, Components of released liquid from ultrasonic waste activated sludge disintegration[J]. Ultrasonics Sonochemistry, 2006, 13(4):334-338
    [42] Qunhui Wang, Masaaki Kuninobu, Kohji Kakimoto, Hiroaki I.Ogawa, Yasunhiko Kato, Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment[J]. Bioresource Technology, 1999, 68:309-313
    [43] C.P.Chu, D.J.Lee, C.S.You, J.H.Tay, “Weak” ultrasonic pre-treatment onanaerobic digestion of flocculated activated bioslolids[J]. Water Research, 2002, 36(5):2681-2688
    [44] Shuzo Tanaka, Toshio Kobayashi, Ken-ichi Kamiyama, Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge[J]. Water Science and Technology, 1997, 35(8):209-215
    [45] E.Neyens, J.Baeyens, C.Creemers, Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials, 2003, B97:295-314
    [46] Ying-Chih Chiu, Cheng-Nan Chang, Jih-Gaw Lin and Shwu-Jiuan Huang, Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water. Science and Technology, 1997, 36(11):155-162
    [47] Seung M.Hong, Jae K.Park, Y.O.Lee, Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids[J]. Water Research, 2004, 38(9):1615-1625
    [48] Yinguang Chen, Yin-Sheng Chen, Guowei Gu, Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering[J]. Chemical Engineering Journal, 2004, 99:137-143
    [49] Hanna Choi, Seung-Woo Jeong, Youn-jin Chung, Enhanced anaerobic gas production of waste activated sludge pretreated by pulse power technique[J]. Bioresource Technology, 2006, 97:198-203
    [50] Q.H.Wang, J.C.Chen, K.Kakimoto,H.I. Ogawa, Y.Kato, Pretreatment of waste activated sludge results in enhancement of its anaerobic digestion efficiency[J]. Journal of the Society of Water Environment(Japan), 1995, 18:875-882
    [51] 尹军,谭学军,污水污泥处理处置与资源化利用[M]. 北京:化学工业出版社,2005, 12-23
    [52] 李廷盛,尹其光,超声化学[M]. 北京,科学出版社,1995 132-156
    [53] T.I.,Onyeche, O.Schlafer. H.Bormann. C.Schroder, M. Sievers, Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion[J]. Ultrasonics, 2002, 40(1-8):31~35
    [54] 魏复盛,水和废水监测分析方法[M],北京:中国环境科学出版社,1997, 353-356
    [55] S. T. L. Harrison, Bacterial cell disruption: a key unit operation in the recovery of intracell ular products[J]. Biotechnology Advance, 1991, 9: 217-240
    [56] S. R. Soudagar, S. D. Samant, Seniquantitative characterization of ultrasonic cleaner using a novel piezoelectric pressure intensity measurement probe[J]. Ultrasonics Sonochemistry, 1995, 2(1):49-53
    [57] 贾志福,测量超声场声强用组合式水听器的设计方案[J]. 声学技术, 2001, 20(2):92-94
    [58] G. Servant, J. P.Caltagirone, A. Gerard, Numerical simulation of cavitation bubble dynamics induced by ultrasound wave in a high frequency reactor[J]. Ultrasonics Sonochemistry, 2000, 7(4):217-227
    [59] J. L. Laborde, A. Hita, J. P. Caltagirone, A. Gerard, Fluid dynamics phenomena induced by power ultrasounds[J]. Ultrasonics, 2000, 38(1-8):297-300
    [60] M. Romdhane, C. Gourdon, G. Casamatta, Development of a thermoelectric sensor for ultrasonic intensity measurement[J]. Ultrsonics, 1995, 33(2):139-146
    [61] M. Romdhane, C. Gourdon, G. Casamatta, Local investigation of some ultrasonic devices by means of a thermal sensor[J]. Ultrsonics, 1995, 33(3):221-227
    [62] Christian Koch, Coated fiber-optic hydrophone for ultrasonic measurement[J]. Ultrasonics, 1996, 34(6):687-689
    [63]Christian Koch, Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor[J]. Applied Optics, 1999, 38(13): 2812-2819
    [64]A. D. Phelps, T. G. Leighton, The subharmonic oscillations and combination-frequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms[J]. Acustica-Acta Acustica, 1997, 83(1): 59-66
    [65] M. B. Shiran, K. M. Quan, D. J. Watmough, Some of the factors involved in the sarvazyan method for recording ultrasound field distributions with special reference to the application of ultrasound in physiotherapy[J]. Ultrasonics, 1990, 28(6):411-414
    [66] 方启平,颜忠余,黄金兰,何北星, 林仲茂,用染色法记录液体中大功率超声场的分布[J]. 声学技术, 1996, 15(4):177-179
    [67] B. D. Cook, R. E. Werchan, Mapping ultrasonic fields with cholesteric liquid crystals[J]. Ultrasonics, 1991, 9(2):101-102
    [68] 李化茂,贺梅英,李萍,LUMINOL 及其 NaOH 水溶液的吸收光谱[J]. 声学技术, 2000, 19(1):23-25
    [69] 李化茂,谢安东,钟凡,超声空化场的影响研究[J].声学技术, 1997,16(3):117-118
    [70] 刘岩,王志刚,用声致发光记录脉冲声场中的空化峰[J]. 声学技术, 2003, 19(3):144-145
    [71] Vijayanand S Moholkar, Shishir P Sable, Aniruddha B Pandit, Mapping the cavitation intensity in an ultrasonic bath using the acoustic emission [J]. American Institute of Chemical Engineers Journal, 2000, 46(4):684-693
    [72] F. Faid, F. Contamine, A. M. Wilhelm, Comparison of ultrasound effects in different rectors at 20kHz[J]. Ultrasonics Sonochemistry, 1998, 5(3): 119-124
    [73] 冯若,超声手册[M]. 南京:南京大学出版社,1999,565-717
    [74] M. Romdhane, A. Gadri, F. Contamine, C. Gourdon and G.. Casamatta, Experimental study of the ultrasound attenuation in chemical reactors[J]. Ultrasonics Sonochenistry, 1997, 4(3):135-343
    [75] 应崇福,超声学[M],北京:科学出版社,1990,8-15
    [76] 冯若,李化茂,声化学及其应用[M]. 合肥:安徽科技出版社,1992, 136-142
    [77] Portenlanger G, Mechanical and radical effects of ultrasound. Ultrasound in Environmental Egineering[C]. TU Hubuig—Harburg Reports on Sanitery Engineering, 1999, 32-37
    [78][英]J.布利茨著,李东林译,超声技术及其应用[M]. 北京:海洋出版社,1992, 18-32
    [79] Evelyne Gonze, Yves Gonthier, Alain Bernis, Characterization of ultrasonic activity in high frequency reactor for wastewater treatment. Ultrasound in Environmental EngineeringⅡ,TU Hubuig—Harburg Reports on Sanitery Engineering, 2002, (35):41~59
    [80] 张涛,声化学反应器中声场及空化场研究[D]. 硕士研究生学位论文,陕西师范大学,2004,4-10
    [81] A.Tiehm, K.Nickel, M.Zellhorn and U.Neis, Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8):2003-2009
    [82] Ying-Chih Chiu, Cheng-Nan Chang, Jih-Gaw Lin and Shwu-Jiuan Huang, Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology, 1997, 36(11):155-162
    [83] E.Gonze, S.Pillot, E.Valette, Y.Gonthier and A.Bernis, Ultrasonic treatment of an aerobic activated sludge in a batch reactor[J]. Chemical Engineering and Processing, 2003, 42: 965-975
    [85] M. Romdhane, A. Gadri, F. Contamine, C. Gourdon and G.. Casamatta, Experimental study of the ultrasound attenuation in chemical reactors[J]. Ultrasonics Sonochenistry, 1997, 4(3):135-343
    [86] A. Keck, E. Gilbert, R. Koster, Influence of particles on sonochemical reactions in aqueous solutions[J]. Ultrasonics, 2002, 40:661-665
    [87] Hua I. and Hoffmann M.R. Optimization of ultrasonic irradiation as an advanced oxidation technology[J]. Environment Science Technology, 1997, 31:2237-2243
    [88] C. P. Chu, Bea-ven Chang, G.. S. Liao, D. S. Jean and D. J. Lee. Observations on change in ultrasonically treated waste activated sludge[J]. Water Research, 2001, 35(4): 1038-1046
    [89] 曹秀芹,陈珺,欧阳利,唐臣,剩余污泥的超声处理试验研究[J]. 中国给水排水, 2003, 19(2): 58-60
    [90] 韩萍芳,殷绚,吕效平,超声波处理石化厂剩余活性污泥[J]. 化工环保, 2003, 23(3):133-137
    [91] Fen Wang, Yong Wang and Min Ji, Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration[J]. Journal of Hazardous Materials, 2005, B123:145-150
    [92] Parag R. Gogate, Sukti Mujumdar, Aniruddha B. Pandit. Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction[J]. Advances in Environmental Research, 2003, 7:283-299
    [93] Amoyh V. Prabhu, Parag R. Gogate, Aniruddha B.Pandit, Optimization of multiple frequency sonochemical reactors[J]. Chemical Engineering Science, 2004, 59:4991~4998
    [94] C.Bougrier, H.Carrere, J.P.Delgenes, Solubilisation of waste-activated sludge by ultrasonic treatment[J]. Chemical Engineering Journal, 2005, 106:163-169
    [95] Antti Gronroos, Hanna Kyllonen, Kirsi Korpijarvi, Pentti Pirkonen, Teija Paavola, Jari Jokela, Jukka Rintala, Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion[J]. Ultrasonic Sonochemistry, 2005, 12(1-2):15-120
    [96] E.Gonze, S.Pillot, E.Valette, Y.Gonthier and A.Bernis, Ultrasonic treatment of an aerobic activated sludge in a batch reactor[J]. Chemical Engineering and Processing, 2003, 42: 965-975
    [97] 王芬,剩余污泥超声破解的性能与机理研究,硕士学位论文[D]. 天津大学,2004, 35-37
    [98] 贾相如,金保升,肖睿,陈曼,污水污泥热解和燃烧特性的试验研究[J]. 锅炉技术, 2005, 36(6):39-42
    [99] Bridle T, Skrypski-Mantele S. Assessment of sludge reuse options: a life cycle approach[J]. Water Science and Technology, 2000,41(8):131-135
    [100] Hwang Y, Hanaki K. The generation of CO2 in sewage sludge treatment systems: life cycle assessment[J]. Water Science and Technology, 2000, 41(8):107-113
    [101] G. Houillon, O.Jolliet, Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis[J]. Journal of Cleaner Production, 2005, 113:287-299
    [102] Stuart A. Scott, John S. Dennis, John F. Dacidson, Allan N. Hayhurst, Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge[J]. Fuel, 2006, 85:1248-1253
    [103] G. Annadurai, R. S. Juang, P. S. Yen, D. J. Lee, Use of thermally treated waste biological sludge as dye absorbent[J]. Advances in Environmental Research, 2003, 7: 739-744
    [104] Krzysztof J. Ptasinski, Mark J. Prins, Anke Pierik, Exergetic evaluation of biomass gasificatioin[J]. Energy, 2006,78: 1-7
    [105] P. Sosnowski, A. Wieczorek, S. Ledakowicz, Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes[J]. Adcances in Environmental Research, 2003, 7: 609-616
    [106] 范丽华,雷雪飞,李亚焕,张洪林,蒋林时,剩余污泥中温厌氧消化处理试验研究[J]. 能源环境保护, 2006, 20(3):33-35
    [107] Sebastian Borowski, Jozef Stanislaw Szopa, Experiences with the dual digestion of municipal sewage sludge[J]. Bioresource Technology, 2006, 98: 1199-1207
    [108] 同济大学,锅炉与锅炉房设备[M],北京:中国建筑工业出版社,1994, 11-12
    [109] Klaus Nickel, Ultrasonic disintegration of biosolids-benefits, consequences and new strategies,Ultrasound in Encironmental EngineeringⅡ[C]. TUHH Reports on Sanitary Engineering, 2002, 35: 189-199
    [110] 杨洁,剩余污泥超声破解对厌氧消化反应的促进作用研究,硕士学位论文[D]. 天津大学,2005, 45-50
    [111] 建筑工程常用数据系列手册编写组,暖通空调常用数据手册[M]. 北京:中国建筑工业出版社,2002, 13-15
    [112] 张辰,张善发,王国华,污泥处理处置技术研究进展[M]. 北京:化学工业出版社,2005,28-39
    [113] 李新国,赵军, 周倩,U 型垂直埋管换热器群周围土壤温度数值模拟[J].太阳能学报, 2004, 25(5):703-707
    [114] 陆嘉竑,朱广汉,城市污水处理厂污泥厌氧消化的净能产量和运行效益[M].污泥处理处置技术研究进展, 北京:化学工业出版社,2005,28-39
    [115] 赵荣义,范存养,薛殿华,钱以明,空气调节[M]. 北京: 中国建筑工业出版社, 1994, 33-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700