用户名: 密码: 验证码:
基因活性真皮替代物的构建及其用于皮肤再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将基因治疗与组织工程支架相结合,构建了基因活性支架。首先,合成了阳离子基因载体N-三甲基壳聚糖(TMC),TMC可以通过静电作用压缩DNA形成纳米复合粒子。将TMC/DNA复合粒子通过物理吸附的方法负载到胶原-壳聚糖支架上,发现TMC/DNA微粒在支架中有一定的缓释能力。释放出来的TMC/DNA微粒中的DNA有超螺旋结构的存在,且具有较高的细胞转染能力。将TMC/pDNA-VEGF微粒负载到支架上制备了基因活性支架,体外实验表明:基因活性支架具有较高的细胞活性,HUVECs可以在支架上保持细胞的表型,支架上的TMC/pDNA-VEGF微粒具有较高的转染效率,可以转染细胞,分泌更多的VEGF。
     在本课题组前期的研究工作中,制备了胶原-壳聚糖/硅胶膜双层人工真皮替代物(BDEs)。为了增强人工真皮替代物的血管化能力,将TMC/pDNA-VEGF微粒负载到空白人工真皮替代物上,制备了基因活性人工真皮替代物(gene-activated BDEs)。猪创伤全层皮肤缺损的修复结果表明:术后7天、10天和14天,基因活性真皮替代物处理的创面具有最高的新生血管数和成熟血管数。PCR结果证实TMC/pDNA-VEGF微粒可以有效转染细胞,表达VEGF。基因活性真皮替代物处理10天的创面,即可进行二次移植。超薄皮片移植112天后,创面破裂强度可以达到正常皮肤的80%。愈合的全层皮肤表皮层和真皮层连接紧密,乳头层分化较好,胶原束和正常皮肤的结构相似。
     同时探讨了基因活性人工真皮替代物的使用在真皮修复过程中对相关因子的影响及其可能的修复机理。TMC/pDNA-VGF微粒在体内可以实现长达70天的细胞转染、表达。基因活性人工真皮替代物处理的创面具有最高的VEGF和TGF-β3 mRNA的表达水平,而TGF-β1 mRNA的表达水平较低,可以减少创面愈合后疤痕组织的产生。愈合后的创面真皮、表皮连接紧密,乳头层分化较好。空白真皮替代物处理的创面愈合结果优于凡士林纱布处理的创面。
     烧伤创面是个动态创面,会随着时间的增加而加深,其修复比创伤创面要困难很多。将基因活性人工真皮替代物用于烧伤全层皮肤缺损的修复,结果表明:术后7天、14天和21天,基因活性真皮替代物处理的创面具有最高的新生血管数和成熟血管数,说明真皮替代物的血管化明显增强。基因活性真皮替代物处理的烧伤创面,14天即可进行二次移植。超薄皮片移植105天后,创面的破裂强度可以达到正常皮肤的70%。愈合的全层皮肤表皮层和真皮层连接紧密,乳头层分化较好。
     将空白真皮替代物和基因活性真皮替代物与临床产品桀亚J-1 ADM用于创伤、烧伤修复的效果做了对比研究,结果表明:对于创伤全层皮肤缺损的修复,基因活性真皮替代物优于J-1 ADM和空白真皮替代物,空白真皮替代物和J-1ADM具有相近的修复效果。对于烧伤全层皮肤缺损的修复,基因活性真皮替代物优于J-1 ADM和空白真皮替代物,J-1 ADM的修复效果略好于空白真皮替代物。
Gene therapy and tissue-engineered scaffolds were combined to fabricate bioactive scaffolds. A cationic gene delivery vector, N,N,N-trimethyl chitosan chloride (TMC), was synthesized and used to condense DNA. Then, the TMC/DNA complexes were incorporated into collagen-chitosan scaffold. The in vitro releasing test showed that TMC/DNA complexes had a faster releasing rate in the initial stage, and then slowly release until 28 days. The released plasmid DNA with supercoiled structure was detected; the released TMC/DNA complexes were still capable of transfecting a high percentage of cells. TMC/pDNA-VEGF complexes were incorporated into the collagen-chitosan scaffold to build a gene-activated scaffold. The in vitro results demonstrated that cells kept their phenotype and had a higher viability on the scaffold. The loaded TMC/pDNA-VEGF complexes possessed higher transfection efficiency too.
     In the previous studies, collage-chitosan/silicone membrane bilayer dermal equivalents (BDEs) were prepared. To develop the next generation BDE with higher performance, a faster rate of angiogenesis is highly demanded. Therefore, the TMC/pDNA-VEGF complexes were incorporated into BDEs to obtain the gene-activated BDEs. To evaluate the angiogenesis property in vivo, the gene-activated BDEs were transplanted into the full thickness incisional wounds. At day 7,10 and 14 after surgery, immunohistochemistry and immunofluorescence results showed that the gene-activated BDE group had the highest number of newly-formed and mature blood vessels. RT-qPCR results showed that the TMC/pDNA-VEGF complexes could effectively transfect cells in vivo and express VEGF. The ultra-thin skin graft was further transplanted onto the dermis regenerated by the gene-activated BDEs at day 10 and well survived. At 112 days after grafting, the healing skin had a similar structure and~80% tensile strength of the normal skin. The epidermis had formed papillary structure, conveying its well differentiation.
     Meanwhile, the effects and the possible dermal repair mechanism of the gene-activated BDEs were evulated in the full-thickness incisional wound repair process. The in vivo transfection of the TMC/pDNA-VEGF complexes was sustained as long as 70 days. The wound tissue treated by gene-activated BDEs had higher VEGF and TGF-β3 mRNA expression, but the TGF-β1 mRNA expression was lower. The healed skin had a tighter connection between epidermis and dermis, and the papillary structure was also observed. The use of the gene-activated BDE could reduce the formation of scar tissue. Moreover, the healing effects of the blank BDE were better than petrolatum gauze.
     Burn wounds are dynamic wounds, which can deepen with time, thereby the repair of burn wounds are more difficult than the incisional wounds. The gene-activated BDEs were also used to repair the full-thickness burn wounds. The in vivo results showed that, at day 7,14 and 21 after surgery, the gene-activated BDE group had the highest number of newly-formed and mature blood vessels, and the enhanced angiogenesis was realized. The ultra-thin skin graft was further transplanted onto the dermis regenerated by the gene-activated BDEs at day 14 and well survived. At 105 days after grafting, the healing skin had a similar structure and~70% tensile strength of the normal skin.
     Finally, the blank BDE and the gene-activated BDE were compared with a clinical dermal equivalent J-1 ADM in the treatment of incisional and burn wounds. The results showed that as for incisional wounds treatment, the gene-activated BDE was superior to blank BDE and J-1 ADM, and the blank BDE was nearly equal to J-1 ADM. As far as burn wounds treatment was concerned, the gene-activated BDE was superior to blank BDE and J-1 ADM, and J-1 ADM was slightly better than the blank BDE.
引文
[1]戴尅戎,李慧武.再生医学.国际骨科学杂志2006;27(2):66-69.
    [2]Gurtner GC, Callaghan MJ, Longaker MT. Progress and potential for regenerative medicine. Annu Rev Med 2007;58:299-312.
    [3]Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 1982;215(4529):174-6.
    [4]Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 1981;211(4486):1052-4.
    [5]Wolter JR, Meyer RF. Sessile macrophages forming clear endothelium-like membrane on inside of successful keratoprosthesis. Trans Am Ophthalmol Soc 1984;82:187-202.
    [6]Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991;113(2):143-51.
    [7]Jauregui HO, Gann KL. Mammalian hepatocytes as a foundation for treatment in human liver failure. J Cell Biochem 1991;45(4):359-65.
    [8]Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-6.
    [9]孙雪,奚廷斐.生物材料和再生医学的进展.中国修复重建外科杂志2006;20(2):189-93.
    [10]曹谊林.组织工程学.北京:科学出版社2008.
    [11]龚逸鸿.浙江大学2006博士学位论文.
    [12]Saltzman WM, Parkhurst MR, Parsons-Wingerter P, Zhu WH. Three-dimensional cell cultures mimic tissues. Ann N Y Acad Sci 1992;665:259-73.
    [13]Stice SL, Strelchenko NS, Keefer CL, Matthews L. Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol Reprod 1996;54(1):100-10.
    [14]Cho RH, Muller-Sieburg CE. High frequency of long-term culture-initiating cells retain in vivo repopulation and self-renewal capacity. Exp Hematol 2000;28(9):1080-6.
    [15]Heath CA. Cells for tissue engineering. Trends Biotechnol 2000;18(1):17-9.
    [16]Goodell MA. Stem cells:is there a future in plastics? Curr Opin Cell Biol 2001;13(6):662-5.
    [17]Vacanti JP, Langer R, Upton J, Marler JJ. Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 1998;33(1-2):165-82.
    [18]劳为德.修复医学与组织工程.北京化学工业出版社2003:35-37.
    [19]Watt FM, Hogan BL. Out of Eden:stem cells and their niches. Science 2000;287(5457):1427-30.
    [20]Gilbert JC, Takada T, Stein JE, Langer R, Vacanti JP. Cell transplantation of genetically altered cells on biodegradable polymer scaffolds in syngeneic rats. Transplantation 1993;56(2):423-7.
    [21]Alberts.B, Bray.D, Lewis.J. Molecular Biology of the Cell. Garland New York 1994:71-995.
    [22]Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998;16(5):224-30.
    [23]Hollinger J, Einhorn T, Doll B, Sfeir C. Bone Tissue Engineering. Materials Research Society Symposium Proceedings.2004:162-328.
    [24]Saltzman WM. Weaving cartilage at zero g:the reality of tissue engineering in space. Proc Natl Acad Sci U S A 1997;94(25):13380-2.
    [25]胡江,陶祖莱.组织工程研究进展.生物医学工程学杂志2000;17(1):75-79.
    [26]Hynes RO. Integrins:versatility, modulation, and signaling in cell adhesion. Cell 1992;69(1):11-25.
    [27]Bergsma JE, Rozema FR, Bos RRM, Rozendaa AWMv, Jong WHD, Teppema JS, et al. Biocompatibility and degradatin mechanism of predegraded and non-degraded poly (lactide) implants:an animal study.. Mater Med 1995;6.:715-24.
    [28]Cook AD, Hrkach JS, Gao NN, Johnson IM, Pajvani UB, Cannizzaro SM, et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 1997;35(4):513-23.
    [29]Deuel.TF. Growth factors. In Principles of Tissue Engineering.. RP Lanza, R Langer & WL Chick, Eds 1997:133-49.
    [30]杨志明.组织工程.北京化学工业出版社2001:250-52.
    [31]邹力,杨志明,黄富国,傅荣.同种异体成骨细胞与钙磷陶瓷复合体内植入的实验研究.中国修复重建外科杂志1997;11(5):300-03.
    [32]王正国.再生医学——机遇与挑战.中华创伤杂志2006;22(1-4).
    [33]Monafo WW. Initial management of burns. N Engl J Med 1996;335(21):1581-6.
    [34]Torpy JM, Lynm C, Glass RM. JAMA patient page. Burn injuries. Jama 2009;302(16):1828.
    [35]马列.浙江大学2004博士学位论文.
    [36]Metcalfe AD, Ferguson MW. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007;28(34):5100-13.
    [37]Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001;221(1-2):1-22.
    [38]Furthmayr H, Timpl R. Immunochemistry of collagens and procollagens. Int Rev Connect Tissue Res 1976;7:61-99.
    [39]Maeda M, Tani S, Sano A, Fujioka K. Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Control Release 1999;62(3):313-24.
    [40]Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K. Chemically modified collagen:a natural biomaterial for tissue replacement. J Biomed Mater Res 1987;21(6):741-71.
    [41]Friess W. Collagen--biomaterial for drug delivery. Eur J Pharm Biopharm 1998;45(2):113-36.
    [42]Shakespeare P. Burn wound healing and skin substitutes. Burns 2001;27(5):517-22.
    [43]Morimoto N, Suzuki S, Kim BM, Morota K, Takahashi Y, Nishimura Y. In vivo cultured skin composed of two-layer collagen sponges with preconfluent cells. Ann Plast Surg 2001;47(1):74-81; discussion 81-2.
    [44]Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 1980;14(1):65-81.
    [45]谈华平.浙江大学2007博士学位论文.
    [46]Hsieh WC, Chang CP, Lin SM. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B Biointerfaces 2007;57(2):250-5.
    [47]He J, Li D, Liu Y, Yao B, Lu B, Lian Q. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer 2007;48(15):4578-88.
    [48]Desai KG, Park HJ. Preparation of cross-linked chitosan microspheres by spray drying:effect of cross-linking agent on the properties of spray dried microspheres. J Microencapsul 2005;22(4):377-95.
    [49]Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004;57(l):19-34.
    [50]Mao JS, Zhao LG, Yin YJ, Yao KD. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials 2003;24(6):1067-74.
    [51]Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 2001;22(3):261-8.
    [52]Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001;22(4):331-6.
    [53]Mao J, Zhao L, De Yao K, Shang Q, Yang G, Cao Y Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 2003;64(2):301-8.
    [54]Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 1999;20(15):1407-14.
    [55]Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, et al. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 2007;28(24):3478-88.
    [56]Fraser JR, Laurent TC, Laurent UB. Hyaluronan:its nature, distribution, functions and turnover. J Intern Med 1997;242(1):27-33.
    [57]Dowthwaite GP, Edwards JC, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem 1998;46(5):641-51.
    [58]Cheung WF, Cruz TF, Turley EA. Receptor for hyaluronan-mediated motility (RHAMM), a hyaladherin that regulates cell responses to growth factors. Biochem Soc Trans 1999;27(2):135-42.
    [59]Entwistle J, Hall CL, Turley EA. Hyaluronan receptors:regulators of signalling to the cytoskeleton. J Cell Biochem 1996;61:569-77.
    [60]Lee KY, Kong HJ, Larson RG, Mooney DJ. Hydrogel formation via cell crosslinking. Adv Mater 2003;15(21):1828-32.
    [61]Murashita T, Nakayama Y, Hirano T, Ohashi S. Acceleration of granulation tissue ingrowth by hyaluronic acid in artificial skin. Br J Plast Surg 1996;49(1):58-63.
    [62]Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS. Studies on gelatin-containing artificial skin:Ⅱ. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res 1999;48(5):631-9.
    [63]Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999;20(1):45-53.
    [64]Hashimoto T, Suzuki Y, Tanihara M, Kakimaru Y, Suzuki K. Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin. Biomaterials 2004;25(7-8):1407-14.
    [65]Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 2000;70(11):1588-98.
    [66]Kopp J, Jeschke MG, Bach AD, Kneser U, Horch RE. Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix. Cell Tissue Bank 2004;5(2):89-96.
    [67]王身国.组织工程细胞支架及其相关技术研究.现代康复2001;5(8):16-18.
    [68]Lee JJ, Lee S-G, Park JC, Yang YI, Kim JK. Investigation on biodegradable PLGA scaffold with various pore size structure for skin tissue engineering. Curr Appl Phys 2007;7(Supplement 1):e37-e40.
    [69]Ng KW, Hutmacher DW. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials 2006;27(26):4591-8.
    [70]Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, et al. Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng 2001;7(4):441-55.
    [71]Dinner MI, Peters CR, Sherer J. Use of a semipermeable polyurethane membrane as a dressing for split-skin graft donor sites. Plast Reconstr Surg 1979;64(1):112-4.
    [72]Li B, Davidson JM, Guelcher SA. The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 2009;30(20):3486-94.
    [73]高长有,马列.医用高分子材料.北京化学工业出版社2006:227-28.
    [74]Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962;193:293-4.
    [75]Winter GD. Effect of Air Exposure and Occlusion on Experimental Human Skin Wounds. Nature 1963;200:378-9.
    [76]Hinman CD, Maibach H. Effect of Air Exposure and Occlusion on Experimental Human Skin Wounds. Nature 1963;200:377-8.
    [77]Schulz JT,3rd, Tompkins RG, Burke JF. Artificial skin. Annu Rev Med 2000;51:231-44.
    [78]Sheridan RL, Tompkins RG. Skin substitutes in burns. Burns 1999;25(2):97-103.
    [79]James JH, Watson AC. The use of Opsite, a vapour permeable dressing, on skin graft donor sites. Br J Plast Surg 1975;28(2):107-10.
    [80]Willi P, Chandra PS. Chitosan and alginate wound dressings:A short review. Trends Biomater Artif Organs 2004; 18(1):18-23.
    [81]Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes:the formation of keratinizing colonies from single cells. Cell 1975;6(3):331-43.
    [82]Kaiser HW, Stark GB, Kopp J, Balcerkiewicz A, Spilker G, Kreysel HW. Cultured autologous keratinocytes in fibrin glue suspension, exclusively and combined with STS-allograft (preliminary clinical and histological report of a new technique). Burns 1994;20(1):23-9.
    [83]Prenosil JE, Kino-oka M. Computer controlled bioreactor for large-scale production of cultured skin grafts. Ann N Y Acad Sci 1999;875:386-97.
    [84]Gallico GG,3rd. Biologic skin substitutes. Clin Plast Surg 1990; 17(3):519-26.
    [85]Wainwright D, Madden M, Luterman A, Hunt J, Monafo W, Heimbach D, et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J Burn Care Rehabil 1996; 17(2):124-36.
    [86]Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995;21(4):243-8.
    [87]Burke JF, Yannas IV, Quinby WC, Jr., Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981;194(4):413-28.
    [88]Chu CS, McManus AT, Matylevich NP, Goodwin CW, Pruitt BA, Jr. Integra as a dermal replacement in a meshed composite skin graft in a rat model:a one-step operative procedure. J Trauma 2002;52(1):122-9.
    [89]Haertsch P. Reconstructive surgery using an artificial dermis (Integra). Br J Plast Surg 2002;55(4):362-3.
    [90]Hansbrough JF, Morgan J, Greenleaf G, Underwood J. Development of a temporary living skin replacement composed of human neonatal fibroblasts cultured in Biobrane, a synthetic dressing material. Surgery 1994;115(5):633-44.
    [91]Hansbrough JF, Dore C, Hansbrough WB. Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds. J Burn Care Rehabil 1992; 13(5):519-29.
    [92]Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ, et al. Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 1996;19(4):350-4.
    [93]Balasubramani M, Kumar TR, Babu M. Skin substitutes:a review. Burns 2001;27(5):534-44.
    [94]Mitrani E, Nadel G, Hasson E, Harari E, Shimoni Y. Epithelial-mesenchymal interactions allow for epidermal cells to display an in vivo-like phenotype in vitro. Differentiation 2005;73(2-3):79-87.
    [95]Bell E, Rosenberg M, Kemp P, Gay R, Green GD, Muthukumaran N, et al. Recipes for reconstituting skin. J Biomech Eng 1991; 113(2):113-9.
    [96]Waymack P, Duff RG, Sabolinski M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. The Apligraf Burn Study Group. Burns 2000;26(7):609-19.
    [97]Hansbrough JF, Morgan JL, Greenleaf GE, Bartel R. Composite grafts of human keratinocytes grown on a polyglactin mesh-cultured fibroblast dermal substitute function as a bilayer skin replacement in full-thickness wounds on athymic mice. J Burn Care Rehabil 1993;14(5):485-94.
    [98]Eaglstein WH, Iriondo M, Laszlo K. A composite skin substitute (graftskin) for surgical wounds. A clinical experience. Dermatol Surg 1995;21(10):839-43.
    [99]Veves A, Falanga V, Armstrong DG, Sabolinski ML. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers:a prospective randomized multicenter clinical trial. Diabetes Care 2001;24(2):290-5.
    [100]朱堂友,伍津津,胡浪,李文维,贺萍,杨宏珍,et al.壳多糖-胶原-糖胺聚糖凝胶人工皮肤的制备.重庆医学2002;10:940-42.
    [101]刘晋宇,侯立中,颜炜群.组织工程华人工复合皮的构建.中国修复重建外科杂志2001;15:235-39.
    [102]Ma L, Shi Y, Chen Y, Zhao H, Gao C, Han C. In vitro and in vivo biological performance of collagen-chitosan/silicone membrane bilayer dermal equivalent. J Mater Sci Mater Med 2007; 18(11):2185-91.
    [103]杨光辉,崔磊,刘伟,曹谊林.利用聚羟基乙酸构建组织工程皮肤的实验研究.中华实验外科杂志2003;20(11):984-86.
    [104]Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999;341(10):738-46.
    [105]Eming SA, Krieg T, Davidson JM. Gene transfer in tissue repair:status, challenges and future directions. Expert Opin Biol Ther 2004;4(9):1373-86.
    [106]Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003;83(3):835-70.
    [107]Drake CJ, Hungerford JE, Little CD. Morphogenesis of the first blood vessels. Ann N Y Acad Sci 1998;857:155-79.
    [108]Risau W. Mechanisms of angiogenesis. Nature 1997;386(6626):671-4.
    [109]Colton CK. Implantable biohybrid artificial organs. Cell Transplant 1995;4(4):415-36.
    [110]Chaplin JM, Costantino PD, Wolpoe ME, Bederson JB, Griffey ES, Zhang WX. Use of an acellular dermal allograft for dural replacement:an experimental study. Neurosurgery 1999;45(2):320-7.
    [111]Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 2001;8(1):11-24.
    [112]Meinert M, Eriksen GV, Petersen AC, Helmig RB, Laurent C, Uldbjerg N, et al. Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol 2001;184(4):679-85.
    [113]Pieper JS, Hafmans T, van Wachem PB, van Luyn MJ, Brouwer LA, Veerkamp JH, et al. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J Biomed Mater Res 2002;62(2):185-94.
    [114]Anderson CR, Ponce AM, Price RJ. Immunohistochemical identification of an extracellular matrix scaffold that microguides capillary sprouting in vivo. J Histochem Cytochem 2004;52(8):1063-72.
    [115]Pinney E, Liu K, Sheeman B, Mansbridge J. Human three-dimensional fibroblast cultures express angiogenic activity. J Cell Physiol 2000;183(1):74-82.
    [116]O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005;26(4):433-41.
    [117]Pruitt BA, Jr., Levine NS. Characteristics and uses of biologic dressings and skin substitutes. Arch Surg 1984;119(3):312-22.
    [118]Boyce ST, Hansbrough JF. Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate. Surgery 1988;103(4):421-31.
    [119]Smiell JM. Clinical safety of becaplermin (rhPDGF-BB) gel. Becaplermin Studies Group. Am J Surg 1998;176(2A Suppl):68S-73S.
    [120]Unemori EN, Ferrara N, Bauer EA, Amento EP. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol 1992;153(3):557-62.
    [121]Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, et al. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 1995;91(11):2802-9.
    [122]Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, et al. Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg 1995;21 (2):314-24; discussion 24-5.
    [123]Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994;89(5):2183-9.
    [124]Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia:implications for coronary angiogenesis. Cardiovasc Res 1994;28(8):1176-9.
    [125]Kryger Z, Dogan T, Zhang F, Komorowska-Timek E, Shi DY, Cheng C, et al. Effects of VEGF administration following ischemia on survival of the gracilis muscle flap in the rat. Ann Plast Surg 1999;43(2):172-8.
    [126]Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery:results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999;100(18):1865-71.
    [127]Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors:first clinical results of a new treatment of coronary heart disease. Circulation 1998;97(7):645-50.
    [128]Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol 2001;19(11):1029-34.
    [129]Pike DB, Cai S, Pomraning KR, Firpo MA, Fisher RJ, Shu XZ, et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 2006;27(30):5242-51.
    [130]Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 2007;28(6):1123-31.
    [131]Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407(6801):242-8.
    [132]Pandit AS, Feldman DS, Caulfield J. In vivo wound healing response to a modified degradable fibrin scaffold. J Biomater Appl 1998;12(3):222-36.
    [133]Pandit AS, Feldman DS, Caulfield J, Thompson A. Stimulation of angiogenesis by FGF-1 delivered through a modified fibrin scaffold. Growth Factors 1998;15(2):113-23.
    [134]Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, van Aken WG, et al. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release 2000;64(1-3):103-14.
    [135]Rubin PA, Nicaeus TE, Warner MA, Remulla HD. Effect of sucralfate and basic fibroblast growth factor on fibrovascular ingrowth into hydroxyapatite and porous polyethylene alloplastic implants using a novel rabbit model. Ophthal Plast Reconstr Surg 1997;13(1):8-17.
    [136]Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 2003;65(4):489-97.
    [137]毛峥伟.浙江大学2007博士学位论文.
    [138]Mao Z, Ma L, Zhou J, Gao C, Shen J. Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjug Chem 2005;16(5):1316-22.
    [139]Valihe.B, Vittet.D, Beige.JJ. Lab Invest.2001;81(2):439-52.
    [140]Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro:role of extracellular matrix. J Cell Biol 1989;109(1):317-30.
    [141]Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J. Fibrin Ⅱ induces endothelial cell capillary tube formation. J Cell Biol 1995;130(1):207-15.
    [142]Deroanne CF, Colige AC, Nusgens BV, Lapiere CM. Modulation of expression and assembly of vinculin during in vitro fibrillar collagen-induced angiogenesis and its reversal. Exp Cell Res 1996;224(2):215-23.
    [143]Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci U S A 2000;97(16):9191-6.
    [144]Black AF, Berthod F, L'Heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. Faseb J 1998;12(13):1331-40.
    [145]Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol 2000;18(1):10-8.
    [146]肖仕初,夏照帆,杨珺,张素珍.成纤维细胞-无细胞真皮替代物的生物学活性及移植试验.中华烧伤杂志2001;17(4):231-33.
    [147]肖仕初,夏照帆,杨珺,王广庆,王勇胜,刘旺.成纤维细胞促进真皮替代物血管化的作用机制.中国修复重建杂志2003 17(2):100-03.
    [148]Burg KJ, Holder WD, Jr., Culberson CR, Beiler RJ, Greene KG, Loebsack AB, et al. Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res 2000;52(3):576.
    [149]Wendt D, Marsano A, Jakob M, Heberer M, Martin I. Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 2003;84(2):205-14.
    [150]Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001;7(9):1035-40.
    [151]Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ, et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 2005;241(3):506-15.
    [152]Hibino N, Shin'oka T, Matsumura G, Ikada Y, Kurosawa H. The tissue-engineered vascular graft using bone marrow without culture. J Thorac Cardiovasc Surg 2005;129(5):1064-70.
    [153]Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flkl-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000;408(6808):92-6.
    [154]Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 2004;287(3):C572-9.
    [155]Zwaginga JJ, Doevendans P. Stem cell-derived angiogenic/vasculogenic cells: possible therapies for tissue repair and tissue engineering. Clin Exp Pharmacol Physiol 2003;30(11):900-8.
    [156]李安永,田现书.谈谈人类疾病的基因治疗.生物学通报1998;33(6):24-26.
    [157]邢梦龙.基因治疗介绍.中国医药情报1995;1(2):107.
    [158]宋新强.基因治疗及其研究进展.信阳师范学院学报(自然科学版)2002;15(4):473-75.
    [159]Friedmann T. Progress toward human gene therapy. Science 1989;244(4910):1275-81.
    [160]刘湘军.基因治疗.科技术语研究2005;7(2):62-64.
    [161]Branski LK, Pereira CT, Herndon DN, Jeschke MG. Gene therapy in wound healing:present status and future directions. Gene Ther 2007;14(1):1-10.
    [162]Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2009;35(2):171-80.
    [163]Eming SA, Krieg T, Davidson JM. Gene therapy and wound healing. Clin Dermatol 2007;25(1):79-92.
    [164]Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit 2005;11(4):RA 110-21.
    [165]Kootstra NA, Verma IM. Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 2003;43:413-39.
    [166]Liechty KW, Crombleholme TM, Quinn TM, Cass DL, Flake AW, Adzick NS. Elevated platelet-derived growth factor-B in congenital cystic adenomatoid malformations requiring fetal resection. J Pediatr Surg 1999;34(5):805-9; discussion 09-10.
    [167]Deodato B, Arsic N, Zentilin L, Galeano M, Santoro D, Torre V, et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 2002;9(12):777-85.
    [168]Galeano M, Deodato B, Altavilla D, Squadrito G, Seminara P, Marini H, et al. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury. Crit Care Med 2003;31(4):1017-25.
    [169]任科峰.浙江大学2006博士学位论文.
    [170]Vogel JC. Nonviral skin gene therapy. Hum Gene Ther 2000;11(16):2253-9.
    [171]Hengge UR, Chan EF, Foster RA, Walker PS, Vogel JC. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Genet 1995;10(2):161-6.
    [172]Slama J, Davidson JM, Eriksson E. Gene therapy of wounds. In:Falanga V(ed) Taylor & Francis:London 2001:123-40.
    [173]Nanney LB, Paulsen S, Davidson MK, Cardwell NL, Whitsitt JS, Davidson JM. Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Repair Regen 2000;8(2):117-27.
    [174]Eriksson E, Yao F, Svensjo T, Winkler T, Slama J, Macklin MD, et al. In vivo gene transfer to skin and wound by microseeding. J Surg Res 1998;78(2):85-91.
    [175]Baker LL, Chambers R, DeMuth SK, Villar F. Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care 1997;20(3):405-12.
    [176]Gardner SE, Frantz RA, Schmidt FL. Effect of electrical stimulation on chronic wound healing:a meta-analysis. Wound Repair Regen 1999;7(6):495-503.
    [177]Rimann M, Hall H. Non-viral and local gene medicine for improvement of cutaneous wound healing. Gene Ther Mol Biol 2009;13(1):53-63.
    [178]Jeschke MG, Barrow RE, Hawkins HK, Chrysopoulo MT, Perez-Polo JR, Herndon DN. Effect of multiple gene transfers of insulinlike growth factor I complementary DNA gene constructs in rats after thermal injury. Arch Surg 1999;134(10):1137-41.
    [179]Sun L, Xu L, Chang H, Henry FA, Miller RM, Harmon JM, et al. Transfection with aFGF cDNA improves wound healing. J Invest Dermatol 1997; 108(3):313-8.
    [180]Jeschke MG, Barrow RE, Hawkins HK, Tao ZM, Perez-Polo JR, Herndon DN. Biodistribution and feasibility of non-viral IGF-I gene transfers in thermally injured skin. Lab Invest 2000;80(2):151-58.
    [181]Scheller EL, Krebsbach PH. Gene therapy:design and prospects for craniofacial regeneration. J Dent Res 2009;88(7):585-96.
    [182]Choi YH, Liu F, Kim JS, Choi YK, Park JS, Kim SW. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J Control Release 1998;54(1):39-48.
    [183]Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ, et al. Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem 2001;276(37):34379-87.
    [184]Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine. Proc Natl Acad Sci U S A 1995;92(16):7297-301.
    [185]Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004;83(3):97-111.
    [186]Quick DJ, Anseth KS. DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality. J Control Release 2004;96(2):341-51.
    [187]Kim WJ, Yockman JW, Lee M, Jeong JH, Kim YH, Kim SW. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release 2005; 106(1-2):224-34.
    [188]Nah JW, Yu L, Han SO, Ahn CH, Kim SW. Artery wall binding peptide-poly(ethylene glycol)-grafted-poly(L-lysine)-based gene delivery to artery wall cells. J Control Release 2002;78(1-3):273-84.
    [189]Mumper RJ, Wang JJ, Claspell JM, Rolland AP. Novel polymeric condensing carriers for gene delivery. Proc Int Sympo Control Release Bioact Mater 1995;22:178-79.
    [190]Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim Biophys Acta 2001;1514(1):51-64.
    [191]Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 2001;22(15):2075-80.
    [192]Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 2002;23(1):153-9.
    [193]Cohen-Sacks H, Elazar V, Gao J, Golomb A, Adwan H, Korchov N, et al. Delivery and expression of pDNA embedded in collagen matrices. J Control Release 2004;95(2):309-20.
    [194]Truong-Le VL, Walsh SM, Schweibert E, Mao HQ, Guggino WB, August JT, et al. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys 1999;361(1):47-56.
    [195]Hwang SJ, Bellocq NC, Davis ME. Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconjug Chem 2001;12(2):280-90.
    [196]Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 2006;58(4):487-99.
    [197]Bonadio J. Tissue engineering via local gene delivery:update and future prospects for enhancing the technology. Adv Drug Deliv Rev 2000;44(2-3):185-94.
    [198]姚康德,宋雪峰,刘文广,曹德勇,陈亦平,尹玉姬.组织工程研究与开发 进展.中国修复重建外科杂志2002;16:325-28.
    [199]Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 1999; 17(6):551-4.
    [200]Tyrone JW, Mogford JE, Chandler LA, Ma C, Xia Y, Pierce GF, et al. Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model. J Surg Res 2000;93(2):230-6.
    [201]Hijjawi J, Mogford JE, Chandler LA, Cross KJ, Said H, Sosnowski BA, et al. Platelet-derived growth factor B, but not fibroblast growth factor 2, plasmid DNA improves survival of ischemic myocutaneous flaps. Arch Surg 2004;139(2):142-7.
    [202]Chandler. LA, Sosnowski. BA. Gene Therapy for Cutaneous Wound Repair. Wounds 2004; 16(1):1-9.
    [203]Gu DL, Nguyen T, Gonzalez AM, Printz MA, Pierce GF, Sosnowski BA, et al. Adenovirus encoding human platelet-derived growth factor-B delivered in collagen exhibits safety, biodistribution, and immunogenicity profiles favorable for clinical use. Mol Ther 2004;9(5):699-711.
    [204]Mao Z, Shi H, Guo R, Ma L, Gao C, Han C, et al. Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor. Acta Biomater 2009;5(8):2983-94.
    [205]Endo M, Kuroda S, Kondo H, Maruoka Y, Ohya K, Kasugai S. Bone regeneration by modified gene-activated matrix:effectiveness in segmental tibial defects in rats. Tissue Eng 2006;12(3):489-97.
    [206]Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, et al. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-betal for chondrocytes proliferation. Biomaterials 2006;27(7):1095-103.
    [207]Labhasetwar V, Bonadio J, Goldstein S, Chen WL, Levy RJ. A DNA controlled-release coating for gene transfer:Transfection in skeletal and cardiac muscle. J Pharm Sci 1998;87(11):1347-50.
    [208]Berry M, Gonzalez AM, Clarke W, Greenlees L, Barrett L, Tsang W, et al. Sustained effects of gene-activated matrices after CNS injury. Mol Cell Neurosci 2001;17(4):706-16.
    [209]Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 2008;4(3):477-89.
    [210]Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 2004;286(2):H507-16.
    [211]Radisic M, Euloth M, Yang L, Langer R, Freed LE, Vunjak-Novakovic G. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol Bioeng 2003;82(4):403-14.
    [212]Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669-76.
    [213]Ahrendt G, Chickering DE, Ranieri JP. Angiogenic growth factors:A review for tissue engineering. Tissue Eng 1998;4(2):117-30.
    [214]Boontheekul T, Mooney DJ. Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol 2003;14(5):559-65.
    [215]Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor:implications for tissue engineering and wound healing.Artif Organs 2001;25(7):558-65.
    [216]Mao ZW, Ma L, Jiang Y, Yan M, Gao CY, Shen JC. N,N,N-Trimethylchitosan chloride as a gene vector:Synthesis and application. Macromol Biosci 2007;7(6):855-63.
    [217]Lee JH, Khang G, Lee JW, Lee HB. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J Colloid Interface Sci 1998;205(2):323-30.
    [218]Moon WC, Oh MR, Yim SB, Eum TH, Lee MA, Jeon BI, inventors; Goodgene Inc. (Seoul, KR), assignee. Method for Storing DNA by Using Chitosan, and Products Using the Methods. United States,2007.
    [219]Quinton PM, Philpott CW. A role for anionic sites in epithelial architecture. Effects of cationic polymers on cell membrane structure. J Cell Biol 1973;56(3):787-96.
    [220]王玮.浙江大学2010博士学位论文.
    [221]Matsuda K, Suzuki S, Isshiki N, Yoshioka K, Wada R, Hyon SH, et al. Evaluation of a bilayer artificial skin capable of sustained release of an antibiotic. Biomaterials 1992; 13(2):119-22.
    [222]Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen 2001; 9 (2):66-76.
    [223]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29(9):e45.
    [224]Valarmathi MT, Davis JM, Yost MJ, Goodwin RL, Potts JD. A three-dimensional model of vasculogenesis. Biomaterials 2009;30(6):1098-112.
    [225]Liu F, Shollenberger LM, Conwell CC, Yuan X, Huang L. Mechanism of naked DNA clearance after intravenous injection. J Gene Med 2007;9(7):613-9.
    [226]Doukas J, Chandler LA, Gonzalez AM, Gu D, Hoganson DK, Ma C, et al. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors. Hum Gene Ther 2001;12(7):783-98.
    [227]Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 2004;113(4):516-27.
    [228]Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors:induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci U S A 1997;94(16):8761-6.
    [229]Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 2002;21(8):1939-47.
    [230]Scardino MS, Swaim SF, Morse BS, Sartin EA, Wright JC, Hoffman CE. Evaluation of fibrin sealants in cutaneous wound closure. J Biomed Mater Res 1999;48(3):315-21.
    [231]Carney DH, Mann R, Redin WR, Pernia SD, Berry D, Heggers JP, et al. Enhancement of incisional wound healing and neovascularization in normal rats by thrombin and synthetic thrombin receptor-activating peptides. J Clin Invest 1992;89(5):1469-77.
    [232]Ziv-Polat 0, Topaz M, Brosh T, Margel S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 2010;31(4):741-7.
    [233]Clark RA. Cutaneous tissue repair:basic biologic considerations. I. J Am Acad Dermatol 1985;13(5 Pt 1):701-25.
    [234]Grazul-Bilska AT, Johnson ML, Bilski JJ, Redmer DA, Reynolds LP, Abdullah A, et al. Wound healing:the role of growth factors. Drugs Today (Barc) 2003;39(10):787-800.
    [235]Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg 2006; 117(7 Suppl):143S-49S; discussion 50S-51S.
    [236]Ferguson MW, O'Kane S. Scar-free healing:from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2004;359(1445):839-50.
    [237]Sullivan KM, Lorenz HP, Meuli M, Lin RY, Adzick NS. A model of scarless human fetal-wound repair is deficient in transforming growth factor beta. J Pediatr Surg 1995;30(2):198-202; discussion 02-3.
    [238]Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995;108 (Pt 3):985-1002.
    [239]Tredget EE, Nedelec B, Scott PG, Ghahary A. Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy. Surg Clin North Am 1997;77(3):701-30.
    [240]Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am 1997;77(3):509-28.
    [241]Gallant-Behm CL, Olson ME, Hart DA. Cytokine and growth factor mRNA expression patterns associated with the hypercontracted, hyperpigmented healing phenotype of red duroc pigs:a model of abnormal human scar development? J Cutan Med Surg 2005;9(4):165-77.
    [242]Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds:transgene expression and cellular transfection. Mol Ther 2005;12(3):475-83.
    [243]Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 2004; 164(6):1935-47.
    [244]Giunta RE, Holzbach T, Taskov C, Holm PS, Konerding MA, Schams D, et al. AdVEGF165 gene transfer increases survival in overdimensioned skin flaps. J Gene Med 2005;7(3):297-306.
    [245]Liu PY, Tong W, Liu K, Han SH, Wang XT, Badiavas E, et al. Liposome-mediated transfer of vascular endothelial growth factor cDNA augments survival of random-pattern skin flaps in the rat. Wound Repair Regen 2004;12(1):80-5.
    [246]Taub PJ, Marmur JD, Zhang WX, Senderoff D, Nhat PD, Phelps R, et al. Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps. Plast Reconstr Surg 1998;102(6):2033-9.
    [247]Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alphalbetal and alpha2betal integrins. FASEB J 2004;18(10):1111-3.
    [248]Jacobi J, Tam BY, Sundram U, von Degenfeld G, Blau HM, Kuo CJ, et al. Discordant effects of a soluble VEGF receptor on wound healing and angiogenesis. Gene Ther 2004;11(3):302-9.
    [249]Jang YC, Arumugam S, Gibran NS, Isik FF. Role of alpha(v) integrins and angiogenesis during wound repair. Wound Repair Regen 1999;7(5):375-80.
    [250]Lange-Asschenfeldt B, Velasco P, Streit M, Hawighorst T, Pike SE, Tosato G, et al. The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. J Invest Dermatol 2001; 117(5):1036-41.
    [251]Roman CD, Choy H, Nanney L, Riordan C, Parman K, Johnson D, et al. Vascular endothelial growth factor-mediated angiogenesis inhibition and postoperative wound healing in rats. J Surg Res 2002;105(1):43-7.
    [252]Vranckx JJ, Yao F, Petrie N, Augustinova H, Hoeller D, Visovatti S, et al. In vivo gene delivery of Ad-VEGF121 to full-thickness wounds in aged pigs results in high levels of VEGF expression but not in accelerated healing. Wound Repair Regen 2005;13(1):51-60.
    [253]Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, Dipietro LA. Regulation of scar formation by vascular endothelial growth factor. Lab Invest 2008;88(6):579-90.
    [254]Colwell AS, Beanes SR, Soo C, Dang C, Ting K, Longaker MT, et al. Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair. Plast Reconstr Surg 2005;115(1):204-12.
    [255]Shah M, Revis D, Herrick S, Baillie R, Thorgeirson S, Ferguson M, et al. Role of elevated plasma transforming growth factor-betal levels in wound healing. Am J Pathol 1999;154(4):1115-24.
    [256]Herndon DN, Parks DH. Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J Trauma 1986;26(2):149-52.
    [257]Adams DH, Ruzehaji N, Strudwick XL, Greenwood JE, Campbell HD, Arkell R, et al. Attenuation of Flightless I, an actin-remodelling protein, improves burn injury repair via modulation of transforming growth factor (TGF)-betal and TGF-beta3. Br J Dermatol 2009;161(2):326-36.
    [258]Middelkoop E, van den Bogaerdt AJ, Lamme EN, Hoekstra MJ, Brandsma K, Ulrich MM. Porcine wound models for skin substitution and burn treatment. Biomaterials 2004;25(9):1559-67.
    [259]Zawacki BE. Reversal of capillary stasis and prevention of necrosis in burns. Ann Surg 1974;180(1):98-102.
    [260]黄爱宾,郭瑞,徐少骏,马列,高长有.胶原-磺化羧甲基壳聚糖/硅橡胶皮 肤再生材料的制备及其对小型猪烫伤创面全层皮肤缺损的修复研究.高分子学报2009(2):111-17.
    [261]Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg 2002;55(3):185-93.
    [262]Atiyeh BS, Gunn SW, Hayek SN. State of the art in burn treatment. World J Surg 2005;29(2):131-48.
    [263]Braddock M, Campbell CJ, Zuder D. Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 1999;38(11):808-17.
    [264]Cribbs RK, Luquette MH, Besner GE. Acceleration of partial-thickness burn wound healing with topical application of heparin-binding EGF-like growth factor (HB-EGF). J Burn Care Rehabil 1998;19(2):95-101.
    [265]Puolakkainen PA, Twardzik DR, Ranchalis JE, Pankey SC, Reed MJ, Gombotz WR. The enhancement in wound healing by transforming growth factor-beta 1 (TGF-beta 1) depends on the topical delivery system. J Surg Res 1995;58(3):321-9.
    [266]Jeschke MG, Richter G, Hofstadter F, Herndon DN, Perez-Polo JR, Jauch KW. Non-viral liposomal keratinocyte growth factor (KGF) cDNA gene transfer improves dermal and epidermal regeneration through stimulation of epithelial and mesenchymal factors. Gene Ther 2002;9(16):1065-74.
    [267]Steinstraesser L, Fohn M, Klein RD, Aminlari A, Remick DG, Su GL, et al. Feasibility of biolistic gene therapy in burns. Shock 2001;15(4):272-7.
    [268]陶白江,曾丁,李桂水,胡小春,田孝臣,王磊.桀亚敷料皮在烧(创)伤创面的应用.解放军医学杂志2004;29(3):278-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700