用户名: 密码: 验证码:
地铁专用间接蒸发冷却器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地铁沿线通常是城市最繁华的地区,地铁站附近更是寸土寸金,在地铁站地面上设置冷却塔,不仅成本高昂,而且影响城市景观和环境,带来极大的噪声污染和卫生隐患,迫切需要一种高效换热器替代目前常用的冷却塔,将冷却塔移入地铁站排风通道内,解决地铁站等地下建筑设置冷却塔的问题,本文通过调研地铁站排风通道内空气参数、比较现有换热器的传热机理、优选冷却方式,开发了一种新型间接蒸发冷却器,对其传热传质机理和性能进行理论和实验研究。
     本文研究的换热器是地铁站内排风通道内运行,排风通道内空气温湿度直接决定其性能,通过对广州地铁几个曲型站台的排风通道空气参数实测分析,发现在全新风工况下,地铁站排风通道内空气温、湿度没有明显升高,个别站台排风通道内空气参数甚至朝有利于传热传质的方向发展,表明排风通道内热湿源对排风温湿度影响很小,将冷却塔移入站台内部可行。
     通过对现有间接蒸发冷却器传热机理的比选研究,研发了一种新型螺旋管换热器(专利申请号:200910300390.3),利用fluent软件模拟分析了换热器的强化传热机理,研究了螺旋管换热器和蛇形管换热器在不同R/r比值下的二次环流,确定了螺旋管换热器R/r临界值,研究发现:蛇形管换热器在半圆形折返管出口形成稳定的二次环流,进入直管段100~200mm时,二次环流消失;螺旋管换热器中始终存在稳定的二次环流,对管内流体边界层的扰动始终存在,实验研究发现,与蛇形管换热器相比,螺旋管换热器换热性能提高40%左右。
     通过对固定喷雾冷却、喷淋水冷却(光管)、旋转喷雾冷却、换热器表面包覆吸水材料时的喷淋水冷却四种冷却方式的比选研究,确立旋转喷雾冷却为最佳冷却方式,研究发现:旋转喷雾冷却比固定喷雾冷却提高32%;与喷淋水冷却相比,旋转喷雾冷却换热能力提高将近80%;换热器表面包覆吸水材料初期能提高换热器性能,长期运行后换热器表面结垢、起泡现象严重,热阻迅速增加,布水均匀性恶化,削弱换热器换热。
     由于换热器表面水膜的均匀性和完整性对换热器性能有重要影响,本文提出了在每个换热器两侧旋转布水,利用喷雾液滴高速冲击换热器表面,形成厚度极薄的完整、均匀的水膜强化传热的理念,开发出相应的旋转布水装置(专利申请号:200910300391.8,200910300388.6)和新型气水雾化喷嘴(专利申请号:200820303833.5),发明了一种适合于地铁等地下建筑使用的新型间接蒸发冷却器(专利申请号:200910300389.0),确定了任意喷嘴布局方式时旋转装置所需的喷嘴数量,布水速度(转速)与喷嘴喷射方向与换热器表面法向夹角α、喷雾介质流量、喷嘴出口孔径等因素的关系,液滴在空气中的运动状态,奠定换热器传热性能分析的基础,实验研究了喷雾系统流量、喷嘴出口孔径,喷嘴喷射方向与换热器表面法向夹角α等参数对布水速度和雾化角的影响,获得了旋转装置的阻力、喷嘴雾化角的拟合公式及泄漏系数,确定了换热器关键运行参数――喷雾系统参数,为深入研究换热器性能提供基础数据。
     旋转喷雾布水冷却时,液滴粒径的大小决定换热器表面水膜状态和飘逸损失量和换热器外侧空气温湿度,喷嘴雾化角及液滴分布决定喷嘴数量和压缩空气量,本文在理论计算基础上初步确定喷嘴结构尺寸,利用fluent软件详细分析了喷嘴出口孔径、气水比对喷嘴性能的影响,研究发现:喷嘴出口孔径为0.6mm,最佳气水比对应的压缩空气量为8m3/h,液滴粒径60μm,雾化角为100°。
     建立了地铁专用间接蒸发冷却器――旋转喷雾间接蒸发冷却器传热模型,研究了换热器的传热传质机理,着重分析了喷雾水液滴、换热器表面水膜与空气的传热传质过程,获得了预冷后的水膜温度和喷雾水飘逸损失量和换热器最佳管长,分析了喷雾水流量,冷却水流量,空气温、湿度和换热器螺旋间距对换热器性能的影响,利用Matlab软件编写求解程序,获得了换热器熵产变化,最佳管长、阻力性能,研究发现,换热器最佳管长仅与螺旋间距和换热器直径有关,空气速度和喷雾水量存在最佳值。
     采用正交实验验证了模型中各参数对换热器性能的影响,研究不同换热器管径,喷雾水流量,空气流速,空气温、湿度时换热器的性能,分析了两个换热器并联运行时的换热情况,研究发现:空气流速为3m/s,喷雾水量为20L/h、压缩空气量为8m3/h时,换热器换热量最大;两个换热器叉排、并联运行时,其中一个换热器的换热量与单个换热器独立运行时的换热量相差很小,运行费下降将近一半;换热器表面有油污时,换热器表面水膜状态恶化,换热能力降低20%。
     经济性分析发现:在不考虑地铁站台土地成本基础上,换热器管长满足最佳管长,两个换热器叉排、并联运行时,其成本和运行费与冷却塔基本持平,该换热器可安装于地铁等地下建筑的排风通道内,实现了将冷却塔移入地下的构想,具有重大的经济意义。
Along the MTR lines are the city’s most prosperous regions, the land prices nearby the subway station are more expensive. if the cooling tower is installed on the ground of the MTR station, not only the cost is very high, but also lead to the noise pollution, health problems, and impact the urban landscape. it is urgent need an efficient heat exchanger to alternative the currently used cooling tower, move the cooling tower into the MTR station and solve the problem that there is no place fo installing the cooling tower of the underground building, such as the subway station. This paper developed a new heat exchanger by researching the air parameters of the subway station’s exhaust channel, Comparing the heat and mass transfer mechanism of the existing heat exchangers, and optimizing the cooling methods, and making use of the computational fluid dynamics, Engineering Thermodynamics and the heat transfer theory to study heat and mass transfer mechanism and the performance of the heat exchanger.
     The air parameters of the exhaust channel where the new heat exchanger that we developed is installed in the station, directly determine whether the heat exchanger is high efficiency. Several significant station’s air parameter of the Guangzhou Metro has been measured, it is find that moving the cooling tower into the MTR station from the ground is theoretically possible, because the air temperature and the humidity are not significantly higher on new wind operating conditions, some one even develop to the direction that benefit heat exchange, the heat and wet sourse in the exhaust channel has little effect on the air temperature and humidity.
     A new type of spiral heat exchanger (patent application number: 200910300390.3) was put forward through comparison of the existing indirect evaporative cooler, the secondary flow phenomenon in the spiral heat exchanger and the coiled tube heat exchanger is simulated using CFD, and identified the R/r critical value by comparing the secondary flow at different R/r value and mass flow rate. And found that the secondary flow phenomenon only exists at the entrance of the semi-annulus reentry pipe of the coiled tube heat exchanger, and disappeared rapidly 100~200mm away from the exit of straight tube, but always exists in the spiral heat exchanger, thus leads to the disturbance of the boundary layer always exists, compared to the coiled heat exchanger, the performance of the spiral heat exchanger improved about 40% .
     Experimental studied the performance of the heat exchangers by fixed spray cooling, spray cooling (fluorescent tubes and coated water-absorbent material), rotary spray cooling, and established the rotary spray cooling is the best cooling method. Compared to the fixed spray cooling and the spray cooling, the rotary spray cooling has improved the heat flux, respectively, 32% and 80%。Initially, coated water-absorbent material on the surface of the heat exchanger can enhance the performance of the heat exchanger, after running a week, the water-absorbent material fouled foamed seriously which lead to the thermal resistance increased and deteriorated the uniformity of the water film,so,coated water-absorbent material weak the performance of the heat exchanger.
     Because of the uniformity and integrity of the water film has an important impact on the performance of the heat exchanger, in this paper, a novel conception is put forward that rotating spray cooling on both sides of the special heat exchanger to form uniform, complete water film, and developed a new rotating water distribution installation(patent application number: 200910300391.8,200910300388.6) and a new type gas-water atomization(patent application number:200820303833.5),thus constituted a new indirect evaporative cooler(patent application number: 200910300389.0) with the former installations, obtained the required quantity of the nozzle, identified fitting function of the rotate speed that influenced by the frictional resistance, the angle between the spray direction and the direction vertical to the heat exchanger surface, the mass flow rate of the water and the compressed air,analysised the droplets distribution in the air, experimental studied its frictional resistance and the spray angle that influenced by the parameters that the mass flow rate of the spray medium ,the angle between the spray direction and the direction vertical to the heat exchanger surface and the nozzle exit diameter, acquired fitting function of the rotate speed , the spray angle and the leakage coefficient, determined the key parameters of the spray system, to provide the basic data for the research of the heat exchanger.
     The droplet size has important impact on the air temperature, humidity and the state of the water film, the quantity of the nozzle and the compressed air are determined by the spray angle and the droplet distribution, acquired the initial structures parameters of the nozzle through theoretical calculation, and make use of the CFD to analysis the influence of the ratio between the mass flow rate of the compressed air and the spray water , the nozzle exit diameter on the performance of the nozzle, when the nozzle exit diameter d= 0.6mm, the compressed air mass flow rate of the optimum ratio is 8 m3/h,and its atomization is best, the spray angle is 100°.
     Set up the heat transfer model of the rotary spray indirect evaporative cooler for the MTR, studied the heat and mass transfer mechanism of the heat exchanger, analysised the heat and mass transfer process between the spray water and the droplet, and the process between the water film and air, obtained the cooled water film temperature by first cooling ,the float rate of the spray water and the best tube length of the Spiral heat exchangers,rasearched the performance with different parameters that the mass flow rate of the spray water and the cooling water, air temperature, humidity and the structural parameters of the heat exchanger. and solved it using Matlab software, acquired the temperature of the cooling water and the water film along the tube, and the air enthalpy, entropy, resistance and the optimum tube length of the heat exchanger which is short for Lopt, and found that the Lopt is only concerned with the spiral pitch and the diameter of the heat exchanger, the air speed and spray water exist the best values.
     The influence on the performance of the tube diameter, mass flow rate of the spray water, air velocity, air temperature and humidity is studied by orthogonal test. Experimentally researched the performance and found that the heat flux is maximum when the air velocity is 3m/s, the volume flow rate of the compressed air and the spray water are, respectively, 8 m3/h and 20L/h; when two heat exchangers operating in parallel, the difference between the heat flux of one exchanger and a single one running independent is very small, and the compressed air volume will be halved; if the surface has oil ,the heat flux will reduce by 20%.
     Through simple economic analysis of the rotary spray indirect evaporative cooler and the closed cooling tower that current commonly used, found that without considering the land costs of the cooling tower that installed on the ground of MTR station, the costs of the heat exchanger nearly the same when the tube length reach to the Lopt value, and operating in parallel, and come true the dream that moving the cooling tower into the station from the ground floor, and solved the problem that there is no place for installing the cooling tower in the MTR station, is of great economic significance.
引文
[1] APV.Heat transfer handbook[M].APV.1986.
    [2]周明霞.国内外换热器技术进展[J].CPVT.1995,12(1):2-6.
    [3]兰州石油机械研究所.板式换热器人字形波纹板片试验总结报告[M].1972.
    [4]杨崇麟.板式换热器国内外情况及对我国发展板式换热器的建议[M].全国石油设备技术发展专题报告.1985.
    [5]兰州石油机械研究所.换热器[M].北京:烃加工出版社,1987:382-421.
    [6]许为全.热质交换过程与设备[M].北京:清华大学出版社,1999,1-80.
    [7] Nottage H B.Merkel’s cooling diagram as a performance correlation for air-water evaporative cooling system [M]. ASHVE Transactions,1941,47:429-432.
    [8] Pescod D.A heat exchanger for energy saving in an air-conditioning plant [M].ASHRAE Transactions,1979,85(2):238-151.
    [9] Baker D R,Shryock H A.A comprehensive approach to the analysis of cooling tower performance [J].Journal of Heat Transfer,1961,83(3):339-350.
    [10] Machine cross I L,Banks P J.A general theory of wet surface heat exchangers and its application to regenerative evaporative cooling [J].Journal of Heat Transfer,1981,103(8):578-585.
    [11] Kettleborough O F, Hsieh C S.The thermal performance of the wet surface plastic plate heat exchanger used as an indirect evaporative cooler [J].Transactions ASME, Journal of Heat Transfer,1983,105(2):366-373.
    [12] Kettleborough C F.The thermal performance of the cross-flow indirect evaporative cooler [M].In: Proceedings of the ASME/JSME Thermal Engineering.
    [13] Kettleborough C F,Waugaman D G,Johnson M.The thermal performance of the cross-flow three-dimensional flat plate indirect evaporative cooler [J].ASME Journal of Energy Resources Technology,1992,114(3):181-186.
    [14] Wojciech zalewski.Mathematical model of heat and mass transfer processes in evaporative fluid coolers [J].Chemical Engineering and Processing,1997,36(4):271-280.
    [15] Boris Halasz.A general mathematical model of evaporative cooling devices [J]. Revue Generate de Thermique,1998,37 (4) :245-255.
    [16] J F San,Jose Alonso.Simulation model of an indirect evaporative cooler [J]. Energy and Buildings ,1998 (29) :23-27.
    [17] Wassel A T, Mills A F. pesign methodology for a counter-current failing film evaporative condenser [J].Journal of Heat Transfer,1987,109:784-787.
    [18] Hsu S T,Lavan Z.Optimization of wet-surface heat exchangers [J].Energy and Buildings,1989, (14) :757-770.
    [19] Chuklin S G,Yu Lar Yanovskiy.Heat transfer in a plate-type evaporative condenser [J].Heat Transfer Soviet-Research,1975, 7 (5) :79-84.
    [20] Chen P L,Qin H M,Huang Y J, et al. A heat and mass transfer model for thermal and hydraulic calculations of indirect evaporative cooler performance [J] . ASHRAE Transactions,1991,97(2) :852-865.
    [21] Erens P J,Dreyer A A.Modeling of indirect evaporative air coolers [J].International Journal of Heat Transfer,1993,36(1):17-26.
    [22] Stoichkov N J, Dimitrov G I. Effectiveness of cross-flow plate heat exchanger for indirect evaporative cooling [J]. International Journal of Refrigeration,1998,21(6):463-471.
    [23] Tsay Y L. Analysis of heat and mass transfer in a countercurrent-flow wet surface heat exchanger [J]. International Journal of Heat and Fluid flow,1994,15(2):149-156.
    [24]柴立和,彭晓峰,张志军等.薄液膜层稳定性分析[J].水动力学研究与进展(A辑),1999,14(1) :112-118.
    [25]王补宣,张金涛,彭晓峰.薄液膜表而蒸发对降液膜传热和传质的影响[J].中国科学(E辑),2000,30 (3):216-221.
    [26] R Armbruster,J Mitrovic.Evaporative cooling of a falling water film on horizontal tubes [J].Experimental Thermal and Fluid Science 1998 (18):183-194.
    [27]屈元,黄翔.间接蒸发冷却器热工计算数学模型及验证[J].流体机械,2004,32(11):50-53.
    [28] Watt J R . Indirect evaporative cooling . Evaporative air conditioning handbook[M].NewYork:The Industrial press,1963:204-224.
    [29] M Singh,K G Narankhedkar.Investigation and Development of Indirect Evaporative cooler using Plastic Heat Exchanger [J].Mech Engng Bull,1982(13):61-65.
    [30]鱼见琳,金立文,曹琦等.管式间接蒸发冷却器水平单管外对流传质的实验研究[J].西安交通大学学报,1999,33(3):68-71.
    [31] Mathur G D . Direct-indirect evaporative cooling with heat pipe heat exchangers [J].American Society of mechanical Engineers, 1991, 1-8.
    [32] Mathur G D. Indirect evaporative cooling. Heating [J].piping and air conditioning,1992,64(4):60-67.
    [33]王晓杰,黄翔,武俊梅.一种新型热管间接蒸发冷却器的分析[J].流体机械,2004,32(12):72-74.
    [34]杨建坤,张旭,刘乃玲.板式间接蒸发冷却器的优化设计[J].制冷空调,2004(5),43-46.
    [35]任承钦.蒸发冷却分析及板式换热器的设计与模拟研究[D].湖南:湖南大学机械与汽车工程学院,2001:1-46.
    [36]任承钦,汤广发,张国强等.一种新型板式换热器的设计及其传热特性的模拟研究[J].暖通空调,2003,33(5):106-118.
    [37]张旭,陈君红,陈沛霖.管式间接蒸发冷却器传递过程的解析解及验证[J].同济大学学报,1998, 26(4):461-465.
    [38]张旭,王正慧,周宗京等.TIEC中传递过程的理论模型及其解析解[J].西安建筑科技大学学报,1998,30(4) :332-336.
    [39]殷高勇,张小松等.叉流平板式间接蒸发冷却过程数值模拟[J].暖通空调,2007(1):29-32.
    [40] Desrayaud G,Lauriat G.Heat and mass transfer analogy for condensation of humid air in vertical channel [J].Heat Mass Transfer,2001,37:67-76.
    [41] Yan W M,Lin D.Natural convection heat and mass transfer in vertical annuli with film evaporation and condensation [J].International Journal of Heat and Mass Transfer,2001,44:1143-1151.
    [42] Yan W M, Lin T F,Chang C J.Combined heat and mass transfer in natural convection vertical parallel plates [J].Warme-and Stoffubertragung,1988,23:69-76.
    [43] Lin T F, Chang C J,Yan W M. Analysis of combined buoyancy effects of thermal and mass diffusion on laminar forced convection heat transfer in a vertical tube [J].Journal of Heat Transfer,1988,110:337-344.
    [44] Lin J N, Zeng P Y,Chow F C,et al.Connective instability of heat and mass transfer for laminar forced convection in the thermal entrance region of horizontal rectangular channels [J].International Journal of Heat and Fluid Flow,1992, 13:250-258.
    [45] Yan W M, Soong C Y. Numerical study of liquid film cooling along an inclined plate [J]. Warm and Stoffiibertragung,1993,28:233-241.
    [46] Yan W M.Transport phenomena of developing laminar mixed convection heat and mass transfer in inclined rectangular ducts [J].International Journal of Heat and Mass Transfer,1995,38:2905-2914.
    [47] Yan W M, Soong C Y. Connective heat and mass transfer along an inclined heated plate with film evaporation [J].International Journal of Heat and Mass Transfer,1995,38(7):1261-1269.
    [48] Yan W M. Binary diffusion and heat transfer in mixed convection pipe flows with film evaporation [J]. International Journal of Heat and Mass Transfer,1993,36:2115-2123.
    [49] Yan W M,Soong C Y.Numerical study of liquid film cooling in a turbulent gas stream[J].International Journal of Heat and Mass Transfer,1993,36:3877-3885.
    [50] Yan W M. Effect of film vaporization on turbulent mixed convection heat and mass transfer in a vertical channel [J].International Journal Heat and Mass Transfer,1995,38(4):713-722.
    [51] Yan W M.Turbulent mixed convection heat and mass transfer in wetted channel [J].Journal of Heat Transfer,1995,117:229-233.
    [52] Yan W M.Evaporative cooling of liquid film in turbulent mixed convection channel flows [J].International Journal of Heat and Mass Transfer,1998,41:3719-3729.
    [53] Fedorov A G,Viskanta R,Mohamad A A.Turbulent heat and mass transfer in asymmetrically heated vertical parallel-plate channel [J].International Journal of Heat and Fluid Flow,1997,18:307-315.
    [54]张龙爱.板式间接蒸发冷却换热器机理研究及数值模拟[D].湖南:湖南大学机械与汽车工程学院,2005:1-60.
    [55] Zhao T S. Coupled heat and mass transfer of a stagnation point flow in a heated porous bed with liquid film evaporation [J].International Journal of Heat and Mass Transfer,1999,42:861-872.
    [56] Lin Y T,Hwang Y M,Wang C C.Performance of the herringbone wavy fin under dehumidifying conditions [J].International Journal of Heat and Mass transfer,2002,45:5035-5044.
    [57] Vollebregt H J M,de Jong T.Indirect evaporative cooler with condensation of primary air flow [J].ASHRAE Transactions Research,1993:354-359.
    [58] Pescod D.Effects of turbulence promoters on the performance of plate heat exchangers [J].Heat Exchangers:Design and theory Sourcebook,Washington,McGraw-Hill,1974:601-615.
    [59]王玉刚,黄翔,武俊梅等.包覆在椭圆管式间接蒸发冷却器上功能性吸湿材料的理论与试验研究[J].流体机械,2005,33(3):46-49.
    [60] ZHENG G S,WOREK W M.Method of heat and mass transfer enhancement in film evaporation [J].International Journal of Heat Mass Transfer,1996,39(1):97-108.
    [61]丁良士,王建军,姜明健.间接蒸发冷却式板式换热器热工特性实验研究[J].工程热物理学报,1997,18(1):85-89.
    [62]王中铮,郭新川,姜正中等.非直接蒸发冷却系统[J].天津大学学报,1994,27(3):305-309.
    [63]郭新川,赵旭贵,王中铮.液膜蒸发强化传热表面的传热与流动特性分析[J].太阳能学报,1997,18(2):79-82.
    [64]陈伟琳,王冬丽,陈伟坷.间接蒸发冷却的传热强化研究[J].天津理工学院学报,1997,13(2):10-14.
    [65]黄秀琴,陈亚平.强化凝结与液膜传热过程的板壳式换热器波纹方案[J].能源研究与利用,2002, 1:18-20.
    [66] Song C H,Lee D Y,Ro S T.Cooling enhancement in an air-cooled finned heat exchanger by thin water evaporation [J].International Journal of Heat and Mass Transfer,2003,46:1241-1249.
    [67]黄翔,周斌等.管式间接蒸发冷却器均匀布水的实验研究[J].暖通空调,2006,12:48-52
    [68] Ala Hasan,Kai Siren.Performance investigation of plain and finned tube evaporatively cooled heat exchangers [J].Applied Thermal Engineering,2003,23 (3):325-340.
    [69]杨宁生,陶宏平,孙相玉等.喷雾强化空冷器的散热研究[J].高等化学工程学报,1990,4(3):232-239.
    [70] Parker R O,Treybal R E.The heat mass transfer characteristics of evaporative coolers [J]. Chemical Engineering and Processing Symposium Series,1962,57 (32):138-147.
    [71]尾花英郎.热交换器设计手册[M].北京:石油工业出版利,1982:415-455.
    [72] Wittek U,Meiswinkel R.Non-linear behavior of RC cooling towers and its effects on the structural design [J].Engineering Structure,1998,20 (10):890-898.
    [73] Yunho Hwang,Reinhard Radermacher,William Kopko.An experimental evaluation of a residential-sized evaporatively cooled condenser [J].International Journal of Refrigeration,2001, 24(3):238-249.
    [74] Manske K A,Reidl D T,Klein S A.Evaporative condenser control in industrial refrigeration systems [J].International Journal of Refrigeration,2001,24(7):676-691.
    [75]郝亮,阚杰,袁秀玲.蒸发式冷凝器稳态模型数值模拟[J].制冷与空调,2005,5(4):31-34.
    [76]蒋翔,朱冬生,唐广栋.蒸发式冷凝器管外水膜与空气传热性能及机理的研究[J].流体机械.2006,36(8):59-61.
    [77]唐伟杰,张旭.蒸发式冷凝器的换热模型与解析解[J].同济大学学报(自然科学版),2005(7):942-946.
    [78]唐广栋,蒋翔,朱冬生等.蒸发式冷凝器管外水膜分布[J].石油化工设备,2006,35(2):29-31.
    [79]姚悦.高粘度流体气力雾化机理及实验研究[D].浙江大学硕士论文,2006
    [80]解茂昭.燃油喷雾场结构与雾化机理[J].力学与实践,1990,12(4):9-15.
    [81] PILCH, M. & ERDMAN, C.A. Use of break-up time data and velocity history data to predict the maximum size of stable fragments for acceleration一induced break-up of a liquid drop[J]. Intl J. Multiphase Flow.13, 741-757.
    [82] JOSEPH, D.D, Break of a liquid drop suddenly exposed to a high-speed airstream [J]. Intl J.Multiphase Flow.25, 1263-1303.
    [83] Crapper, G, D, Dombrowski, N., A note on the growth of Kelvin-Helmholtz waves on thin liquid sheets [J], J.Fluid Mech, and vo1. 197357(4):671-672.
    [84] Rizk, N. K. and Lefebvre, A. H., Influence of liquid film thickness on airblast atomization[J],J. Eng.Power, 1980,10( 2):70 6-710.
    [85]甘晓华,赵其寿.空气雾化的模型及其计算[J].航空动力学报,1990,5(2):123-128.
    [86]徐行,郭志辉.新型气动雾化喷嘴喷雾特性的实验研究[J].航空动力学报,1990,12(3):295-298.
    [87] Yeung, Woon, Shing.Dynamics of gas-liquid spray system [J]. Encyclopaedia of fluid mechanics, 1986, 281(3).
    [88] O Rourke,P .J,Bracco,F,H. Modeling of drop interactions in thich sprays and comparision with experiments[J].Proceeding of the stratified change wutomative engine conference,the institute of Mechanical engineers,London,England,publication,1980,0859298-469.
    [89] Lefebrvre, A, H.Atomization and sprays [J].Hemishphere, New York, 1989, 5.
    [90]傅维标.离心喷嘴流量系数计算方法[J].工程热物理学报,1981,2.
    [91] Hirt, C, W, Nichols, B, D.Volume of fluid (VOF) method for the dynamics of free boundary [J]. Journal computational physics, 1981, 39(2), 201.
    [92] Jeng, S, M, Jog, M, A.Hydrogynarinic mixing of dispersed and atomized study of liquid sheet emanating from simplex fuel nozzle [J].ALAA Journal,1998,36(2).
    [93]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.
    [94]朱冬生.换热器技术及进展[M].北京:中国石化出版社,2008.
    [95]王子云.长江水源热泵换热器研究[D].重庆:重庆大学,2008.
    [96]周力行.湍流气粒两相流动和燃烧的理论和数值模拟[M].北京:科学出版社,1994.
    [97]刘政崇.风洞结构设计[M].北京:中国宇航出版社,2005.
    [98]刘政崇.高低速风洞气动与结构设计[M].北京:国防工业出版社,2003.
    [99]刘广文.喷雾干燥实用技术大全[M].北京:轻工业出版社,2001,10.
    [100]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [101] Reitz R.D.Mechanisms of atomization processes in high pressure vaporizing sprays [J].Atomization and spray technology, 1987, 3:309-337.
    [102] Hwang S S, Lin Z, Reitiz R D. Breakup mechanisms and drag coefficients of high spread vaporizing liquid drops [J].Atomization and sprays, 1996, 6:353-376.
    [103] A B Liu, D Mather, R D Reitz.Modeling the effects of drop drag and breakup on fluid sprays [J].SAE thchnical paper, 1993, (53)930072.
    [104] S.A. Morsi, A.J.Alexander.an investigation of particle trajectories in two phase flow system [J].Journal of fluid mechnanics, 1972, 55(2):193-208.
    [105]赵玉新.Fluent中文全教程[M].长沙:国防科学技术大学航天学院,2003.
    [106]刘正白.燃烧学[M].大连:大连理工大学出版社,1992.
    [107]李欣.Y型喷嘴的雾化特性研究及其在增湿活化反应器内的应用[D].上海:上海交通大学,2001.
    [108]王乃玲.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社,2000.
    [109]田胜元,萧日嵘.实验设计与数据处理[M].北京:中国建筑工业出版社,1988..
    [110]连之伟.热质交换原理与设备[M].北京:中国建筑工业出版社,2001.
    [111]尾花英朗.热交换器设计手册[M].徐中权(译)北京:烃加工出版社,1987.
    [112]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700