用户名: 密码: 验证码:
直通式旋流细水雾喷嘴雾化理论分析及灭火实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着哈龙灭火剂的限用和面临的淘汰,细水雾灭火技术以其无环境污染、灭火迅速、耗水量低、对防护对象破坏性小等特点展示出广阔的应用前景,目前已成为火灾科学前沿研究热点之一。国内现已使用的细水雾灭火系统,其系统压力多属高压范畴,因高压系统结构复杂、工程造价高,已严重影响了细水雾灭火技术的推广应用。在各种细水雾灭火系统中,雾化喷嘴是系统的核心部件之一,喷嘴雾化性能的优劣直接影响着所设计的灭火系统能否满足不同灭火场合的使用要求。目前国内开发的高压雾化喷嘴大都结构复杂,运行参数多且难以控制。因此,研制出一种体积小、重量轻、结构简单,加工、安装方便,在中、低压范围内雾化效果较好的单相细水雾喷嘴,对细水雾灭火技术在我国的推广应用意义重大。
     在国内火灾科学研究领域,目前尚没有人将喷嘴结构-雾化机理-雾场参数-灭火效果作为一个系统工程开展研究,本研究通过大量的实验获得第一手资料,进而对喷嘴结构、雾化机理、雾场参数、灭火效果之间的关系进行深入探讨,完成的研究工作及取得的主要进展如下:
     1.本课题在研究过程中,首先设计出了一种结构新颖的中、低压旋流雾化喷嘴,然后采用理论研究、数值模拟、试验验证的方法,对其结构参数进行优化。通过对喷嘴结构和雾化特性参数之间关系的探讨,建立了相应的理论模型,借助于FLUENT软件对喷嘴内外部流场进行数值模拟,研究喷嘴结构参数对雾化性能的影响,为参数优化提供理论依据。
     2.从雾滴在空气中的受力运动分析入手,建立了雾滴运动方程。针对典型滴径及不同出口初速度的雾滴运动状况进行了数值计算,得出了细水雾雾滴的基本运动规律,确定了终端速度与滴径呈平方关系和线性关系的分界直径为80μm。
     3.在数值模拟的基础上,进行喷嘴的冷态雾化试验,对模拟结果进行了验证。研究结果表明,经优化设计的中低压单流体直通旋流雾化喷嘴雾化效果良好,在众多的消防灭火场合完全可以替代现有的高压雾化喷嘴和两相流雾化喷嘴,可大幅降低细水雾灭火系统初期投入,同时也使系统的运行安全性得以提高。
     4.开展了细水雾在外部风流扰动下灭火效果的模拟实验研究和数值模拟。建立了外界风流作用下细水雾的灭火模型,并且进行了验证,结果表明细水雾在无风和扰动风速下均能将火扑灭,在临界风速下不能将火扑灭。
     5.建立了试验平台,开展了细水雾熄灭受限空间煤油池火试验研究,考察了通风状况、预燃时间及工作压力等因素对灭火时间的影响,得出受限空间燃烧的池火火焰存在核心反应区、通风控制区和燃料控制区。通过试验和定性分析,提出细水雾熄灭受限空间油池火的主导机理为气相冷却和火焰冷却,通过试验验证了室内火灾熄灭分析模型、火灾熄灭理论、临界水流量计算模型等基础假设的正确性。
With the limited use and faced elimination of halone fire extinguishing chemical,fire suppression technology employing water mist demonstrates its wide promising potential due to its environmental benign,high efficiency,lower water consumption,less bveakage to the shielded objects and so on.It has become one of the hot topics in fire safety community.In domestic,the currently-used water mist fire suppression systems are featured with complicated design structure and high installation and operation costs mostly due to the high operating pressure.These are significantly detrimental to the generalization of the water mist fire suppression technology.The water mist nozzle is the core part of various water mist fire suppression systems.The performance of the water mist nozzle directly determines whether or not the designed water mist fire suppression system can be effectively applied to various fire scenarios.In China,the most developed high pressure water mist nozzles have not only complex design structure but also too many hard-controlled operating parameters.Therefore,it is significantly important to develop a kind of single-phase water mist nozzle with small size,light weight,simple deign structure, ease-to-manufacture-and-install,and good atomization performance within low-to-medium operating pressure.
     In domestic fire safety community,there are no literatures combining the nozzle structure,atomization mechanism,spray characteristics and fire suppression effectiveness with the whole systematical engineering for studies.The present work experimentally studied the relationship among the nozzle structure,atomization mechanism,spray characteristics and fire suppression effectiveness. The main works and progresses done in the current study are as follows.
     1.The present work developed a novel low-to-medium swirl water mist nozzle.The structure parameters of nozzle were optimized through theoretical analysis,numerical simulation and experimental verification.Following the discussion on the relationship between the nozzle structure and spray characteristics,the corresponding theoretical model was developed.The effects of the nozzle's structure parameters on the spray characteristics had been investigated using the FLUENT code,through which the internal and the external flow fields' of the nozzle were calculated.The numerical results provided theoretical foundation to parameters optimization of the subsequent design of the water mist nozzle.
     2.The movement equations of water droplet were established by balancing various forces imposed on the droplet appeared in air.The numerical calculation was performed on the droplets with typical diameter and various exit velocities of the droplet.The basic movement law of the water droplet was then obtained.Dependences of the droplet's terminal velocity on the droplet diameter between spuared-low and lineear-low was determined,the corresponding critical droplet diameter equal to 80μm.
     3.On the basis of numericai simulation,the cold field tests on the spray performance of the water mist nozzle were carried out.The experimental results were compared with the numerical calculations.The results showed that the optimized single-fluid and low-to-medium swirl nozzle presented excellent spray characteristics.For most fire scenarios,the current nozzle can replace the high pressure nozzles or two-phase flow nozzles.It not only decreases dramatically the initial investment of water mist fire suppression system but also enhances the safety and reliability of operating the system.
     4.The fire suppression effectiveness of water mist subjected to external wind disturbance was both experimentally and numerically numerically investigated.The fire suppression model of water mist subjected to external wind flow was established and without wind or with validated.The results showed that water mist can extinguish the pool fire the external disturbed wind flow.However,the fire can not be extinguished at a critical wind velocity.
     5.The experimental setup was established.The kerosene pool fire suppression tests using water mist in a confined space were performed. The effects of ventilation condition,the preignition time and the operating pressure on fire-extinguishing time were examined.It was concluded that pool fire in confined space showed a core reaction region, a ventilation-controlled region and a fuel-controlled region.Following the experimental results and qualitative analysis,it was found that the principal mechanisms of the pool fire suppression by water mist in confined space were gas phase cooling and flame cooling.Moreover,the basic assumptions of extinguishment model of the chamber fire,the fire extinguishment theory and the model of calculating the critical water flow rate for fire suppression were experimentally verified.
引文
[1]中国消防协会.我国当前火灾形势及防治对策[J].消防科学与技术.2000,2:86.
    [2]吴强,董宪伟.我国公共场所火灾现状及防治措施.安全与健康,2006,9:44-45
    [3]NFPA 750.Standard for the installation of water mist fire protection systems.2000 Edition.National Fire Protection Association,Quincy,2000
    [4]姚斌,范维澄,廖光煊.细水雾灭火技术的研究,中国安全科学学报,1998,(8):21-25
    [5]范维澄,廖光煊,钟茂华等.中国火灾科学的今天与明天.中国安全科学学报,2000.5(1):11-16
    [6]Ronald L.A.Incentive for use of misting sprays as a fire suppression flooding agent.First international conference on fire suppression research.Gaithersburg,MD,October 1992
    [7]Prasad.K.,Patnaik.G.,Kailasannth K.A numerical study of water mist suppression of large scale compartment fires.Fire safety journal,2002,37:569-589
    [8]Grosshandler,Lowe K.Protection of data processing equipment with fine water sprays.NIST IR 5514,National Institute of Standards and Technology,Gaithersburg,MD.,1994
    [9]Mawhinney J.R.Findings of experiments using water mist for fire suppression in an electronic equipment room.Proceedings of Halon options technical working conference,Albuquerque,NM.,1996
    [10]Verlo T.The use of water as an extinguishant in live electrical installations.Norwegian electric power research institute,Norway,1991
    [11]Mawhinney J.R.,Dinenno P.J.Using water mist for flashover suppression on navy ships.Proceedings of Halon options technical working conference,Albuquerque,NM.,1999
    [12]Gerard G.back Ⅲ,Craig L.B,Rich H,A quasi-steady-state model for predicting fire suppression in spaces protected by water mist systems. Fire safety journal , 2000,35:327-362
    [13] Gerard G. back III, Craig L. B. Rich H., The capabilities and limitations of total flooding, water mist fire suppression system in machinery space applications. Fire technology. 2000,36(1):8-23
    [14] Rich Hansen, Gerard G. back. Water spray protection of machinery spaces. Fire technology, 2001,37:317-326
    [15] Bill R. G., Jr, Hansen R. L., Richards .K. Fine-spray (water mist) protection of shipboard engine rooms. Fire safety journal,1997,29:317-336
    [16] Angel A.M., Sonny J. L. J. D. Watson, etal. Study of water mist suppression of electrical fires for spacecraft applications:normal-gravity result. Proceedins of the Halon options technical working conference, Albuquerque NM., May 2005.
    [17] Jones A., Nolan P. F. Discussion on the use of fine water spray or mist for fire suppression. J. Loss Prev. Process Ind. 1995,8(1)17-22
    
    [18] Atreya A. T. C., Suh J. A study of the chemical and physical mechanisms of fire suppression by water. Fire safety science-Proceedings of the 6th International Symposium, 1999, 493-504
    [19] Mawhinney J.R., Richardon J. K. A review of water mist fire suppression research and development, 1996. Fire technology, 1997, 33(1):54-90
    [20] Kellie A. B. Status report on water mist fire suppression system-1996. 13th meeting of the UJNR panel on fire research and safety, Gaithersburg. MD. 1996
    [21]Christopher A., James S., Hilbing H. and Heister S. D. Nonlinear Modeling of Jet Atomization in the Wind-Induced Region. Phys. Fluids,7(5), (1995)
    
    [22] 解茂昭.燃油喷雾场结构和雾化机理力学与实践,1990, 12 (4)
    
    [23] Chaudhary K. C. and Rededopp L. G. The Nonlinear Capillary Instability of Liquid Jet, Part. 2, Experiments on the Jet Behaviors Before Droplet Formation. J. Fluid Mech., 96, 275(1980)
    
    [24] Chaudhary K. C. and Maxworthy T. The Nonlinear Capillary Instabilityy of a Jet, Part. 1, Theory. 96, 257(1980)
    [25] Shokoohi, F. and Elrod, H. G. Numerical Investigation of the Disintegration of Liquid Jets. J. Computational. Physics, 71,324(1987)
    [26] Kang, D. J. and Lin, S. P. Break of a Swirl Liquid Jet. Intern.J. Eng. Fluid Mech., 22(1), (1989)
    [27] Mansour N. N. and Lundgren, T. S. Satellite Formation in Capillary Jet Breakup. Phys. Fluids, A(2), 1141(1990)
    [28] Lee H. C. IBM J. Res. Develop, 18(64), (1974)
    [29] Green, A. E. On the Ono-linear Behaviour of Liquid Jets. Intern.J. Eng. Sci., 14, (1976)
    [30] Bogy D. Use of One-dimensional Cosserat Theory to Study Instability in a Viscous Liquid Jet. Phys. Fluids, 21(2), (1978)
    [31] Bogy D. Breakup of a Liquid Jet: Second Perturbation Cosserat Solution. IBM J. Res. Develop, 23, (1979)
    [32] Bogy D. Breakup of a Liquid Jet: Third Perturbation Cosserat Solution. Phys. Fluids, 22(2), 224(1979)
    [33] Garcia F. J. and Castellanos A. One-dimensional Models for Slender Axisymmetric Viscous Liquid Jets. Phys. Fluids, 6(8), (1994)
    [34] Lin S. P. and Kang, D. J. Atomization of a Liquid Jet. Phys. Fluids,30(7), 2006(1982).
    [35] Lin S. P. and Lian. Z. W. Mechanism of the Breakup of Liquid Jets.AIAA Journal, 28(1), 120(1990)
    [36] Bracco F. V. and Reitz R. D. Mechanism of Atomization of a Liquid Jet. Phys. Fluids (A), 25(10), (1982)
    [37] 三木英雄等.内燃机关.22 (280), 10 (1983)
    [38] Hoyt J.W. and Taylor J. J. Waves on Water Jets. J. Fluid Mech. 83,(1977)
    [39] Stockman M. G. and Bejan A. The Nonaxisynunetric(Buckling) Flow Region of Fast Capillary Jets. Phys. Fluids(A) 25, 1506(1982)
    [40] Yang H. Q. Asymmetric Instability of a Liquid Jet. Phys. Fluids(A) 4(4),(1992).
    [41] Yeung W.S. Dynamics of Gas-Liquid Spray System. Encyclopaediaof Fluid Mechanics. 3, 281(1986)
    [42]Rothe P.H.and Block J.A.Aerodynamic Behavior of Liquid Sprays.Inter.J.Multiphase Flow 3,263(1977)
    [43]Boysan F.,and Binark H.Predictions of Induced Air Flows in Hollow Core Sparays.ASME J.Fluids eng.101,312(1979)
    [44]Alpert R.L.,and Mathews M.K.Calculation of Large-Scale Flow Fields Induced by Droplet Sprays.Polyphase Flow and Transport Technology,ASME,115(1980)
    [45]O'Rourke P.J.,and Bracco F.H.Modeling of Drop Interactions in Thick Sprays and Comparison with Experiments.Proceeding of the Stratified Change Automative Engine Conference,The Institute of Mechanical Engineers,London,England,Publication 085298-469(1980)
    [46]张编荣等.涡旋喷射阀与喷雾的构造.日本机械学会论文集B编,vol.60,No.570,1994.(Japanese)
    [47]Lefebvre,A.B.Atomization and Sprays,Hemisphere,New York,Chap 5(1989)
    [48]Liao Y.,Sakman A.T.,Jeng etal.A Comprehensive Model to Predict Simplex Atomizer Performance.ASME/IGTI Conference,Stockholm,Sweden,June 2-5,1998,98-GT-441.
    [49]Jeng S.M.,Jog M.A.and Benjamin M.A.Computational and Experimental Study of Liquid Sheet Emanating from Simplex Fuel Nozzle.AIAA Journal.36(2),1998
    [50]Sakman S.T.,Jha S.,Jog M.A.,etal.,A Numerical Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance.34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,July 13-15,1998
    [51]Benjamin M.A.,Mansour A.,Samant,U.G.,etal.,Film Thickness,Droplet size Measurements and Correlations for Large Pressure-Swirl Atomizers.ASME/IGTI Conference,Stockholm,Sweden,June 2-5,1998
    [52]Schmidt D.P.,Nouar I.,Senecal P.K.,etal.,Pressure-Swirl Atomization in the Near Field
    [53]Hasan M.Z.,Mitsutake Y and Monde,M.Shape of an Annular Liquid Jet.J.Fluids Eng.119,591(1997)
    [54]傅维标.离心喷嘴流量系数计算方法.工程热物理学报.1981,2
    [55]Hint C.W.and Nichols B.D.Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries.J.Computational Physics.39(2),201(1981)
    [56]Deng Z.T.Numerical Investigation of Non-Spherical Droplet Dynamics in Viscous Convective Flows.Ph.D.Thesis,Dept.Aerospace Engineering and Mechanical Engineering,Univ.Tennessee,Knoxville,TN,Dec,1991
    [57]Jeng S.M.,Jog M.A.,Hydrogynarnic Mixing of Dispersed and Atomized Study of liquid Sheet Emanating from Simplex Fuel Nozzle.ALAA Journal 36(2),1998
    [58]Cheremisinof N.P.Hydrodynamic Mixing of Dispersed and Atomized Flows.Encyclopaedia of Fluid Mechanics 3,Gas-Liquid Flows,Gulf Publishing Company.1986
    [59]姚斌,廖光煊,范维澄等.细水雾抑制扩散火焰的研究.中国科学技术大学学报,1998.12(5):610-617
    [60]秦俊,廖光煊,王喜世等.激光多普勒细水雾雾场特性实验研究.激光技术,2001.25(4):297-301
    [61]Jacobsen S.E.Approval of water mist systems on ships.consideration of equivalency to sprinkler and water spray systems.International Conference on Water Mist Fire Suppression Systems,Sweden,1993
    [62]Underwriters' Laboratories of Canada.Report on 9L Water Spray Fire Extinguisher(Stored Pressure Type),Scarborough,1998
    [63]Liu Z.,Carpenter D.,Kim A.K.Characteristics of large cooking oil pool fires and their extinguishment by water mist.Journal of Loss Prevention in the Process Industries.2006.(19):516-526
    [64]杨立军.细水雾灭火系统研究思想和方法探讨.消防科学与技术,2006.25(1):57-60
    [65]高志石编译.最新水消防技术——中压单流体水雾系统介绍.消防技术与信息,2002
    [66]刘江虹,廖光煊,范维澄等.细水雾灭火技术及其应用.火灾科学,2001.(1):34-38
    [67]刘江虹,廖光煊,厉培德等.细水雾灭火技术研究与进展.科学通报, 2003.48(8):761-767
    [68]陆强,廖光煊,黄鑫等.舰船细水雾灭火系统研究回顾.中国工程科学,2004.6(9):88-93
    [69]Granta G.,Brenton J.,Drysdale D.Fire suppression by water sprays,Progress in Energy and Combustion Science,2000(26):79-130
    [70]杨立军.水喷雾灭火最佳雾滴直径的研究.消防科学与技术,1999.1
    [71]李莹.工业低压细水雾灭火系统灭火机理与性能研究.消防技术与产品信息,2003.2
    [72]李莹等.中压单流体细水雾灭火系统在液压站及润滑油库中的应用研究.消防技术与产品信息,2003.4
    [73]胡传平等.低压细水雾在船舶A类机械处所中的应用研究.消防科学与技术,2005.5
    [74]周华,范明豪,杨华勇.移动式高压直接雾化细水雾灭火系统.消防科学与技术,2003.22(6):488-491
    [75]范明豪,周华,杨华勇.高压细水雾灭火喷嘴的雾化特性研究.机械工程学报,2002.38(9):17-21
    [76]范明豪,周华,杨华勇.纯水液压传动及高压高效细水雾灭火系统研究.液压与气动,2001.39(5):14-16
    [77]http://www.shjd.com.细水雾自动灭火系统产品介绍.上海金盾消防安全设备有限公司
    [78]房玉东,朱小勇,刘江虹等.细水雾灭火技术在电气环境的研究与开发.中国工程科学,2006.8(7):89-94
    [79]干达文,孙荣权.高雾化质量喷嘴的设计研究.沈阳大学学报,2001.13(4):55-57
    [80]冉景煌,张力,辛明道等.渐扩切向槽式低压旋流喷嘴流场数值模拟.工程热物理学报,2002.23(5):586-588
    [81]帕坦卡SV著,张政译.传热与流体流动的数值计算.科学出版社出版,1989
    [82]苏铭德.计算流体力学基础.北京:清华大学出版社,1989
    [83]高学平.高等流体力学.天津:天津大学出版社,2005
    [84]Yakhot V.,Orzag S.A.Renormalization group analysis of turbulence:basic theory.Scient Compute,1986
    [85]周立新,张会强,雷凡培等.离心式喷嘴内流场特性的数值模拟.推进 技术,2002.23(6):480-484
    [86]Patankar S.V.Numerical heat transfer and fluid flow.New York:Mc-Graw-Hill,1980
    [87]史绍熙,林玉清,杨延相等.空心旋转液体射流初始阶段运动规律的研究.工程热物理学报,2000.24(2):242-246
    [88]Thomas G.O.The quenching of laminar methane-air flames by water mists.Combustion and flames,2002,130:147-160
    [89]David T.S.Spray Characteristics of Fire Sprinklers.PHD.,Evanston:Northwestern University,2002
    [90]Yang J.C.,Boyer C.I.,Grosshandler W.L.Minimum mass flux requirements to suppress burning surface with water sprays.NISTIR 5795,National Institute of Standards and Technology,Gaithersburg,MD.April 1996.
    [91]刘江虹.细水雾抑制熄灭固体火焰的模拟实验研究.[博士学位论文].合肥:中国科学技术大学,2001
    [92]Yao S.C.,HungL.S..Investigation of droplet penetration through complex opening of compartments.NIST-GCR-98-759,Pittsburgh,PA,November1998
    [93]卢平,水煤膏输送特性和喷雾特性及其直接数值模拟的研究[D].东南大学硕士学位论文,2002
    [94]刘联胜.气泡雾化喷嘴的雾化特性及其喷雾两相流场的试验与理论研究[D].天津大学博士学位论文,200l
    [95]Yoon S.S.,Hewson J.C.,DesJardin P.E.Numerical modeling and experimental measurements of a high speed solid-cone water spray for use in fire suppression applications.International Journal of Multiphase Flow,2004.(30):1369-1388
    [96]Zeoli N.,Gu S.Numerical modeling of droplet break-up for gas atomization.Computational Materials Science,2006.(38):282-292
    [97]Datta A.,Som S.K.Numerical prediction of air core diameter.Coincident of discharge and spray cone angle of a swirl spray pressure nozzle.International Journal of Heat and Fluid Flow,2000.(21):412 -419
    [98]Apte S.V.,Gorokhovski M.,Moin P.LES of atomizing spray with stochastic modeling of secondary breakup.International Journal of Multiphase Flow,2003.16(29):1503-1522
    [99]Li X.H.,Kurichi K.A.S,Mujumdar.A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations.Chemical Engineering and Processing,2006.8(45):461-470
    [100]Smith D.B.,Bode L.E.,Gerard P.D.Predicting ground boom spray drift[J].Transactions of the ASAE,2000,43(3):547-553.
    [101]Robert E.Wolf.Strategies to reduce spray drift[EB/OL].http://www.oznet.ksu.edu/library/ageng2/mf2444.pdf,2004-05-21
    [102]Ross,Merrill A.,Carole A.L.Applied Weed Science[M].Burgess Publishing Company,Minneapolis,MN.1985.
    [103]David R.M.,Masoud S.,April B.H.Remote measurement of spray drift from orchardsprayers Using LIDAR[C].MI:ASAE,2OO3,Paper No.031093.
    [104]祁力钧,傅泽田.不同喷嘴飘移性能的实验室测定方法[J].中国农业大学学报,1997,2(6):49-52.
    [105]吴罗罗,李秉礼,何雄奎.雾滴飘移试验与几种喷头抗飘失能力的比较[J].农业机械学报,1996,27:120-124(增刊).
    [106]Hamins A.,Kashiwagi T.,Buch R.Characteristics of pool fire burning.Fire resistance of industrial fluids.American society for testing and materials.Philadelphia,1995
    [107]Babrauskas V.Estimating large pool fire burning rates.Fire Technology,1983,34(5):251-261
    [108]冯瑞,霍然,于海春.受限空间油池火燃烧特性的实验研究.消防科学与技术,2005,24(3):288-291
    [109]Quintiere J.G.Fire growth:an overview.Fire technology,1997,33(1):7-29
    [110]Nichard J.,Garo J.P.,Souil J.M.,et al.On the flame structure at the base of pool fire interacting with a water mist.Experimental thermal and fluid science,2003,27:439-448
    [111]Qian C.,Saito K.Measurements of pool-fire temperature using IR technique.Proceedings combustion fundamentals and application. Mexican,1994
    [112]Qian C.,Tashtoush G.,Ito A.Structure of large pool fires.Proceedings of international conference on fire research and engineering,Orlando FL.September 1995
    [113]Schwille J.A.,Lueptow R.M.The reaction of fire plume to a droplet spray.Fire safety journal,2006,41:390-398
    [114]Soonil N.Development of a computational model simulating the interaction between a fire plume and a sprinkler spray.Fire safety journal,1996,26:1-33
    [115]Liu Z.G.Andrew K.,Don C.,et al.Extinguishments of cooking oil fires by water mist fire suppression systems.Fire technology,2004,40:309-333
    [116]陆强,李钙,廖光煊,等.油池火中细水雾强化火焰现象的研究.中国工程科学,2006,8(7):78-82
    [117]陆强.细水雾与油火相互作用的研究:[博士学位论文].合肥:中国科学技术大学,2005
    [118]林玉静.旋流喷嘴射流及其破碎机理的研究:[博士学位论文].天津:天津大学,1999
    [119]Han Y.,hoi B.C.,Kim M.Application of a fixed water mist system in a powerTransformer room[C],8th International Symposium on Fire Safety Science,Beijing,China,2005.Sep 18-23
    [120]Qin J.,Weng W.G.Preliminary study of water mist suppressing ghee flame in historical building in the northwest China.Journal of Cultural Heritage.2006.(7):329-333
    [121]Liao G.X.,Huang X.,Cong B.H.,etal.,Progress in water mist fire suppression technology.Journal of university of science and technology of China,2006.(36):9-19
    [122]Liu Z.,Carpenter D.,KimA.K.Characteristics of large cooking oil pool fires andtheir extinguishment by water mist.Journal of Loss Prevention in the Process Industries,2006.(19):516-526
    [123]Liu Z.G.,Andrew K.K.,Don C.A study of portable water mist fire extinguishers used for extinguishment of multiple fire types.Fire Safety Journal 2007.(42):25-42
    [124] Santangelo P. J., Sojka P. E. A holographic investigation of the near nozzle structure of an effervescent atomizer produced spray.Atomization Sprays, 2006(5):137-155
    [125] Barrow H., Pope C. W. Droplet evaporation with reference to the effectiveness of water-mist cooling. Applied Energy,2007. (84):404-412
    [126] Chelliah H. K. Flame inhibition/suppression by water mist:Droplet size/surface area, flame structure, and flow residence time effects.Proceedings of the Combustion Institute, 2007.(31):2711-2719
    [127] Marc L., Florian S., Dieter M. Efervescent atomization of liquids.Atomization and Sprays, 2005. (15):145-168
    [128] Wen Y. L., Liao H.L., Douchy G. Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316L stainless steel powder. Materials and Design,2006. (15):1-9
    [129] Yao B., Chow W. K. Numerical modeling for compartment fire environmentunder a solid-cone water spray. Applied Mathematical Modeling, 2006.(30):1571 - 1586
    [130] Liu J. H., Qin J., Huang X., etal., Experimental study on suppressing PVC fire with water mist in a confined space. Polymer Degradation and Stability, 2007. (92):747-751

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700