用户名: 密码: 验证码:
爆炸激波对水泥试样损伤规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油工业的发展,低渗透油田在石油开发中的地位越来越重要,但目前利用爆炸技术改善低渗透油藏的效果还不够理想。分析认为主要原因是该技术的理论研究还不够完善,目前还存在不少问题急需深入研究,其中爆炸载荷作用下储层岩石的破坏规律就是一个较为重要的理论问题。为此,本文开展了爆炸激波对水泥试样损伤规律研究。本研究成果对于促进爆炸增产技术的发展具有重要理论意义和实用价值。
     本文首先提出了炸药距小水泥试样一定距离损伤的实验方案和炸药紧贴大水泥试样表面损伤的实验方案(图2-1和2-2),并设计了操作流程。测得水中激波波速为1500 ~1550m/s,并得到了激波在水中的衰减规律(式3-16),为小水泥试样的损伤实验奠定了基础。观测到了激波掠过后水泥试样中裂纹形貌的分布规律;分析了激波在水泥试样中的传播过程及裂纹的起裂扩展机理;推导了激波在水泥试样中的衰减规律(式3-21和3-33)。推导了激波压力与波速的关系,实现了激波压力的间接测量。研究发现损伤区的尺度与装药当量半径有较好的线性关系(式3-59和63)。
     在实验研究的基础上,用数值模拟的方法分析了激波在水和水泥试样中的传播过程及激波在界面上的反射和透射现象。计算了激波在水中的传播速度,且与实验结果一致。对比数值模拟分析结果和实验分析结果,发现二者吻合较好。
     最后对爆炸激波作用后水泥试样的损伤程度做了定量评价研究。建立了基于相对损伤度、裂缝孔隙度和裂缝渗透率等指标来定量评价水泥试样损伤程度的方法,并确定拉伸损伤区为主要评价区。测量了损伤评价所需要的参数,发现水泥试样的均匀性较好。研究发现激波峰值压力与动态抗拉强度之比是影响爆炸后水泥试样弹性波速的主要因素(式5-50);推导了环向拉伸应力与激波压力之间的规律(式5-68);研究了无量纲弹性波速、相对损伤度随无量纲环向拉伸应力之间的变化规律(式5-69和77);讨论了相对损伤度、裂缝渗透率和裂缝孔隙度之间的定量关系(式5-82和90)。推导了裂缝渗透率随无量纲环向拉伸应力的变化规律(式5-96),探索了使试样产生大量微裂纹并最大幅度提高渗透率的动载荷条件。
Low permeability reservoir plays an increasing important role in petroleum exploitation with the development of petroleum industry, but the stimulation technology for low permeability reservoir by explosion method can not meet the demand for the development of petroleum industry. The main reason is that the theoretic research for the stimulation technology by explosion method is imperfect, and many theoretic problems should be deeply studied, and the rule of rock damage by exploding load is one of which should be essential studied. So the rule of cement sample damage by blast wave is studied in this thesis, and the rule acquired from which has theory sense and utility value to accelerate the development of the stimulation technology by explosion method.
     The cement damage experimental programs of explosive away from small cement sample and explosive hugging closely on big cement sample are proposed, and the operational scheme is also designed. The blast wave velocity in water is within 1500~1550 m/s, and the attenuation rule in water is also gained, which settle the bases for the experiment study of cement sample damage. The fracture distribution rule in the cement sample abaft blast wave by-passing is observed, and blast wave spreading process and the fracture initiation & propagation mechanism are analyzed. The attenuation rule of the blast wave in cement sample is deduced. The relationship between blast wave pressure and blast wave velocity is deduced, which can calculate the blast wave pressure indirectly. It is found that the damage zone dimension has a linear relationship with the explosive load equivalent radius.
     On the bases of experiment study, the blast wave spreading process and reflection & transmission effect on boundary between water and cement sample are analyzed by numerical simulation method. Blast wave velocity gained in water by numerical simulation is coincided with which gained in experiment. Comparing the result gained from the numerical simulation with which gained from experiment, it is found that they coincide with each other well.
     Quantitative evaluation for the cement sample damage after exploding is studied. Based on relative damage, fracture porosity and fracture permeability, the quantitative evaluation method for the cement sample after exploding is established, and the tensile damage zone is confirmed as the chief evaluation zone. The parameters need in the evaluation study is gained by experiment research, and it is found that the cement samples are high homogeneous. It is found that the ratio of maximum blast wave pressure and dynamic tensile strength is the main factor influence on elastic wave velocity of cement sample after exploding, and the relationship between the tensile stress in annular direction and blast wave pressure is also deduced. The rules between dimensionless elastic wave velocity, relative damage and dimensionless tensile pressure are obtained. The rules between relative damage, fracture permeability and fracture porosity are also gained. Using the result above-mentioned, the rule between fracture permeability and dimensionless tensile pressure is obtained, and the optimum dynamic load creating enough micro-fracture and enhancing the permeability greatly is studied.
引文
[1]李道品.低渗透油田概念及其在我国的分布[M].北京:石油工业出版社,1998:1-10
    [2]刘雨芬.低渗透油田储层沉积何分布特征[M].北京:石油工业出版社,1997:78-85
    [3]李道品,罗迪强.对低渗透油田的特殊规律和改善开发效果的初步认识[R].全国低渗透油田开发技术座谈会报告.北京:石油工业出版社,1994:5-24
    [4]杨俊杰.低渗透油气藏勘探开发技术[M].北京:石油工业出版社,1993:23-45
    [5]丁雁生,陈力.低渗透油气田“层内爆炸”增产技术研究[J].石油勘探与开发,2001,28(2):90-96,106
    [6]丁雁生,陈力.关于低渗透油田“层内爆燃”增产技术的构想[R].中国科学院力学研究所科技报告,1996
    [7]李传乐,王安仕,李文魁.国外油气井“层内爆炸”增产技术概述及分析[J].石油钻采工艺,2001,23(5):77-78
    [8] David. Experimental study on fracture initiation by pressure pulses.SPE63035
    [9]戴俊.岩石动力学特征与爆破理论[M].北京:冶金工业出版社,2002:38-104,147-180
    [10] Atkinson.岩石断裂力学[M].北京:地震出版社,1992:455-500
    [11]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992:318-349
    [12]高明.低渗透油藏提高采收率技术研究[D].黑龙江省大庆市:大庆石油学院,2006
    [13] Watson S. C and Benson G .R. Liquid propellant stimulation of shallow appalachian basin wells. SPE 13376
    [14] Richard A Schmidt, Rodney R Boade and Robert C Bass. A new perspective on well shooting-behavior of deeply buried explosions and deflagrations. JPT, July 1981.
    [15] Richard A Schmidt, Rodney R Boade and Robert C Bass. A new perspective on well shooting–the behavior of contained explosions and deflagrations,SPE8346
    [16]蒋金宝,林英松,阮新芳,等.低渗透油藏改造技术的研究及发展[J].钻采工艺,2005, 28(5):50-53
    [17] Terman,Environment at U.S. and U.S.S.R nuclear explosion sites: petroleum stimulation projects: U.S. Geol. Survey Interagency Rept.,Uilitary-2, 62,1970,
    [18] Atkinson.C H., and R.T. Johansen, A study of the feasibility of using nuclear explosions to increase petroleum recovery: U.S. Bur. Mines Rept.Inv.6494, 18, 1964
    [19] Rodean, H.C., Explosion-produced ground motion: technical summary with respect toseismic hazards, in Symposium on engineering with nuclear explosives, Proc., v.2:Am. Nuclear Soc. And U.S. Atomic Energy Comm., CONF 700101, 1024~1050,
    [20]付英军.岩石在动载情况下开裂机理实验研究[D].山东东营:中国石油大学(华东),2004
    [21] W.C.Hunt, W.R.Shu. Controlled Pulse Fracturing for Well Stimulation. SPE18972
    [22] J.F.Cuderman. Tailored-pluse Fracturing in Cased and Perforated Boreholes. SPE15253
    [23] S.C.Watson, G.R.Benson. Liquid Propellant Stimulation. Two Cas Studies in Shallow Oil and Gas Fields. SPE14546
    [24] J.M.Hanson,R.A Schmidt, C.H.Cooley. Multiple Fracture Stimulation Using Controlled Pulse Pressurization. SPE12839
    [25] P.M.Snider, F.R.Hall, R.J.Wjhisonant. Experiences with High Energy Stimulations for Enchancing Near-Wellbore Conductivity. SPE35321
    [26] Dang Li. High erengy gas fracturing:mechanism and practice. SPE29992
    [27]石崇兵,李传乐.高能气体压裂的发展趋势[J].西安石油学院学报,2000,15(1): 17-20
    [28]秦发动,吴晋军.院高能气体压裂技术十年发展综述[J].西安石油学院学报, 1997,12(3): 14-17
    [29]王艳萍.合射孔技术的现状与趋势[J].爆破器材,2002,31(3):30-33
    [30]王安仕,吴晋军.射孔-高能气体压裂复合技术研究[J].西安石油学院学报,1997, 20(6): 61-64
    [31]马新仿.复合压裂技术研究[J].河南石油,2001,15(3):39-41
    [32]王明洋.炸载荷作用下岩石的变形和破坏研究[J].防灾减灾工程学报,2003,23(3): 9-20
    [33]张晓春,杨挺青.岩石裂纹演化及其力学特性的研究进展[J].力学进展.1999,29(1): 97-104
    [34]黄明利.岩石多裂纹相互作用破坏机制的研究[D].辽宁沈阳:东北大学,1999
    [35]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997:15-28
    [36]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002:61-63,93-114
    [37]刘文轩.断裂控制爆破开采石材机理的研究[J].爆炸与冲击,1993,13(21):118-124
    [38]谢和平,陈忠辉.岩石力学[M].北京:科学出版社.2004:187-190,208-209
    [39]钟冬望.岩体爆破破碎损伤机理探讨[J].武汉冶金科技大学学报,1998, 21(4): 387-390
    [40] Thome,B.J. A Damage Model for Rock Fragmentation and Comparision of Calculations with Blasting Experiments in Granite[M], London. Cambridge university press, 1990: 90-1389
    [41]高文学.岩石动态响应特性及损伤模型研究[D].北京:北京理工大学,1999
    [42]朱浮生.岩石强度理论与本构关系[J].力学与实践,1997,19(5): 8-16
    [43]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002, 21(4):787-791
    [44]高文学,杨运通,杨军.脆性岩石冲击损伤模型研究[J].岩石力学与工程学报,2000, 19(2):153-156
    [45]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报,1999,18(1): 23-27
    [46]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6): 628-63 3
    [47]易顺民,朱珍德.裂隙岩土损伤力学导论[M].北京:科学出版社,2005:1-7
    [48] Wang E Z and Shrive N G. Brittle fracture in compression: mechanics, models and criteria[J]. Engineering Fracture Mechanics, 1995, 52(6): 17-19
    [49] R Sheorey. Empirical rock failure criteria. Netherlands: A.A. Balkema. 1997:15-43
    [50]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002:231-301
    [51]杨更社,孙均,谢定义.岩石损伤检测技术及进展[J].煤炭学报.1998,23(4): 401-405
    [52]李玉彬,李向良.微焦点X射线CT描述特殊岩性油藏岩心[J].特种油气藏,2000, 7(4): 53-54, 61
    [53]刘向君,罗平亚.岩石力学与石油工程[M].北京:石油工业出版社,2004:96-103
    [54]陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001: 41-68,74-80
    [55]邵鹏,贺永年.脆性岩石细观损伤分析与临界破坏行为[J].煤炭科学技术,2001, 29(7):31-34
    [56]李德同,文世鹏.储层构造裂缝的定量描述何预测方法[J].石油大学学报(自然科学版),1996, 20(4):6-10
    [57]黄辅琼,欧阳健,肖承文.储层岩心裂缝与试件裂缝定量描述方法研究[J].测井技术,1997,21(5):356-360
    [58]周永胜,张流.裂缝性储集层岩芯裂缝分析[J].世界地质,2000,19(2):117-124
    [59] J.H. Schon. Physical properties of rock [M]. Austria: Pergamon: 1996: 23-35
    [60]刘兆年.层内爆炸后岩层裂缝分析方法研究[D].山东东营:中国石油大学(华东),2005
    [61]李德同,文世鹏.储层构造裂缝的定量描述何预测方法[J].石油大学学报(自然科学版),1996,20(4):6-10
    [62]黄辅琼,欧阳健,肖承文.储层岩心裂缝与试件裂缝定量描述方法研究[J].测井技术,1997,21(5):356-360
    [63]黄立新.岩石裂缝参数及裂缝容积和渗流性质的关系[J].钻采工艺,1998,21(4): 35-36,45
    [64]葛家理.油气层渗流力学[M].北京:石油工业出版社,1982
    [65] Huyakorn, P. S., Lester, B. H., Faust, C. R.. Finite element techniques for modeling groundwate flow in fractured aquifers[J].Water Resources Research, 1983, 19(4): 1019-1035.
    [66] Barenblatt, G. I.. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Math2ematical Mechanics, 1960, 24 (5):1286-1303.
    [67] Warren, J . E. , Root , P. J . . The behavior of naturally fractured reservoirs[J]. J. Soc. Petrol. Eng, 1963, 12(3): 245-255.
    [68]Streltsova, T. D.. Hydrodynamics of groundwater flow in a fractured formation[J]. Water Resources Research, 1976, 12 (3): 405-414.
    [69] Bibby, R.. Mass transport of solutes in dual porosity media[J].Water Resources Research, 1981, 17 (4): 1075-1081.
    [70] Neretinieks, Rasmuson, A.. Diffusion in the rock Matrix: an important factor in redounded retardation[J]. Journal of Geo-physical Research , 1988, 85 (B5): 4379-4397.
    [71] Zimmerman, R. W., Chen, G., Hadgeu Teklu, et al.. Numerical dual-porosity model with a semi-analytical treatment of fracture/ matrix flow[J]. Water Resources Research, 1993, 29 (7): 2127-2137.
    [72] Snow, D. T.. Anisotropic permeability of fractured media[J].Water Resources Research, 1969, 5 (6): 1273 -1289.
    [73] Long, J.C.S.. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18 (3):645-658.
    [74]王挥云,李忠华,李成金.基于岩石细观损伤机制的岩爆机理研究[J].辽宁工程技术大学学报,2004,23(2):188-190
    [75]钟冬望.岩体爆破破碎损伤机理探讨[J].武汉冶金科技大学学报,1998,21(4): 387-390
    [76]杨小林,王树仁.岩石爆破损伤模型及评价[J].工程爆破,1999,5(3):71-75
    [77]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆炸与冲击,2000,20(3): 247-252
    [78]孙丰成.爆生气体作用下岩石开裂机理数值模拟研究[D].山东东营:中国石油大学(华东),2007
    [79]林英松,孙丰成.损伤对爆生气体作用下孔壁岩石开裂规律的影响[J].石油钻探技术,2007,35(4): 25-27
    [80]谢燮.低渗油田“层内爆炸”增产技术的小尺度模拟实验研究[D].北京:中国科学院力学研究所,2000
    [81]张飞猛.火炮对空射击声靶的信号检测特性和传感器性能分析[J].传感技术学报, 2004, 23(3):501-504
    [82] Ehrgott J.Q. Development of a dynamic high pressure triaxial test device[M]. Port: Port city press, 1970: 195-220
    [83] Hauser F.E. Techniques for measuring stress-strain relation at high strain rates[J]. Experimental Mechanics, 1966, 6(8): 395-402
    [84] Nicholas T. Tensile testing of materials at high rate of strains[J]. Experimental Mechanics, 1981, 21(5): 177-185
    [85]李宗贤,于雪媛.一种利用测量弹丸激波的传感器[J].传感器技术,2003,22(7): 30-32
    [86]施红辉,王天军,MORGAN Richard.高焓膨胀波管的启动实验研究[J].空气动力学学报,2002,20(4):483-485
    [87]黄正平.爆炸与冲击过程测试技术[M].北京:北京理工大学出版社,1994: 25-41
    [88]曾辉,余尚江,杨吉祥,等. PVDF压力传感器的动态灵敏度校准[J].传感器技术, 2003,22(10):39-41
    [89]冯明德,彭艳菊,刘永强,等.SHPB实验技术研究[J].地球物理学报进展,2006,21(1): 273-278
    [90]张大有.侧面安装使用的压力传感器永激波管进行动态特性校准的方法研究[J].宇航计测技术,2004,24(6):10-13
    [91]张大有.激波管在压力传感器动态性能校准和实验上的应用[J].宇航计测技术. 2004,24(46):24-27
    [92]范秉诚,崔季平,何宇中,等.测定电离附和速率常数的激波管法[J].流体力学实验与测量,1999,13(4):36-39
    [93]洪国祥,孟晓风.液压爆膜式压力传感器校准方法研究[J].仪器仪表学报,2000,21(5): 511-514
    [94]李焰,张向荣,谭红梅,等.国产PVDF压电膜的冲击加载及卸载响应研究[J].高压物理学报,2004,18(3):261-266
    [95]林英松,朱天玉,蒋金宝,等.水中爆炸激波对水泥试样作用的数值模拟分析[J].爆炸与冲击,2006,26(5):462-467
    [96]肖作智,田清政.B炸药底隙的水实验研究[J].爆炸与冲击,1995,15(2):141-146
    [97]阮新芳.激波对水泥试样损伤分析及实验研究[D].山东东营:中国石油大学(华东),2006
    [98]王莉.激波对饱和水泥试样损伤破碎尺度的实验研究[D].山东东营:中国石油大学(华东),2007
    [99]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005:100-110
    [100] Bridgman P W. Dimensional analysis[M]. New Haven: Yale University press,1992: 35-48
    [101]李秀地,郑颖人,徐干成.爆炸载荷作用下地下结构局部层裂分析[J].地下空间与工程学报,2005, 1(6):853-856
    [102]陈士海,王明洋,钱七虎.岩体中爆破破坏分区研究[J].爆破器材,2004,33(3): 33-36
    [103]钮强.岩石爆破机理[M].沈阳:东北工学院出版社,1990:8-59
    [104]蒋金宝,林英松,阮新芳,等.爆炸波对水泥试样损伤破坏的实验研究[J].岩土工程学报,2007,29(6):917-921
    [105]林英松,蒋金宝,朱天玉,等.爆炸载荷对水泥试样损伤破坏规律研究[J].中国石油大学学报,2006,30(3):55-58
    [106]朱天玉.水中爆炸激波对水泥试样作用的数值模拟研究[D].山东东营:中国石油大学(华东),2006
    [107]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1993:160-177
    [108]宋守志.固体介质中的应力波[M].北京:煤炭工业出版社,1989:167-190
    [109]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003: 369-411
    [110]王伟力,曾亮,朱建方.水下爆炸的数值模拟研究现状[J].海军航空工程学院学报,2006,21(2):209-216
    [111]罗松林,叶序双,顾文彬,等.水下爆炸研究现状[J].工程爆破,1999,5(1):84-87
    [112]梁龙河,曹菊珍,王元书.水下爆炸特性的一维球对称数值研究[J].高压物理学报, 2002,16(3):199-203
    [113]张振华,朱锡,白雪飞.水下爆炸爆炸激波的数值模拟研究[J].爆炸与冲击,2004, 24(2):182-188
    [114]崔桂香,潘岩,张兆顺,等.深水强爆炸的数值模拟[J].空气动力学学报, 1995, 13(2): 117-124
    [115] Ramajeyathilagam K. Non-Linear transient dynamic response of rectangular plates under shock loading[J]. International Journal of Impact Engineering, 2000, 24(10): 999-1015
    [116] Chan S K. An Improvement in the Modified Finite Element Procedure for Underwater Shock Analysis[A].Proceeding of 62nd Shock and Vibration Symposium, Oct, 1992
    [117]杨小林,员小有,吴忠,等.爆破损伤岩石力学特性实验研究[J].岩石力学与工程学报,2001,20(4):436-439
    [118]卢海湘.爆炸爆炸激波作用下岩体破碎机理的研究[J].湖南有色金属,2002,18(6): 1-3
    [119]刘运通,高文学.爆炸载荷作用下岩石损伤的数值模拟研究[J].岩石力学与工程学报,2001,20(6):789-792
    [120] Garg S K. Wave propagation effect s in a fluid saturated porous solid[J] . Journal of Geophysical Research, 1971, 76(32): 7947-7962.
    [121] Drumheller D S. A theory for dynamic compaction of wet porous solids[J]. International Journal of Solids Structures, 1987, 23 (2): 211-237.
    [122]高文学,刘运通.岩石动态损伤的数值模拟[J].北京工业大学学报,2000,26(2): 5-10
    [123]周钟,王肖军,赵凯,等.水饱和岩石中爆炸应力波传播的数值模拟[J].爆炸与冲击,2005,25(4):296-302
    [124] Garg S K, Nur A. Effective stress laws for fluid saturated porous rocks [J]. Journal of Geophysical Research, 1973, 78 (26): 5911-5921.
    [125] Morland L W. A simple constitutive theory for a fluid saturated porous solid[J]. Journal of Geophysical Research, 1972, 77 (5): 890-900.
    [126] LIU Wen-tao, WANG Xiao-jun, ZHOU Zhong, et al. Continuously damaged constitutive model of rock and it s application to numerical simulation for underground strong explosion[J]. International Journal of Rock Mechanics and Engineering, 2004, 23 (13): 2149 - 2156.
    [127]张开洪,陈一健.高温高压岩石气体孔隙度自动测试系统[J].石油仪器,1995,9(2): 79– 85
    [128]王洪艳,陈一键,游利军,等.高温高压岩心多参数测量仪器的研制[J].西南石油大学学报,2007,29(4):138-141
    [129]丁次乾.矿场地球物理[M].山东东营:中国石油大学出版社.2003:136-144
    [130]秦积瞬,李爱芬.油层物理学[M].山东东营:中国石油大学出版社.2001:101-115
    [131]林英松.爆生气体作用下孔壁岩石开裂规律研究[D].北京:中国科学院力学研究所,2007
    [132]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003, 22(1):30-34
    [133] Lemaitre J. how to use damage mechanics[J]. Nuclear Engeering&Design, 1984, 80(1): 233-245
    [134] HAN D. Effects of porosity and clay content on acoustic properties of sandstone and unconsolidated sediments[D] .California: Stanford University , 1986.
    [135] Wyllie M R J ,Gregory A R ,Gardner L W. Elastic Wave Velocities in Heterogeneous and Porous Media[J]. Geophysics,1956, 21(2): 41-70
    [136] Han Dehua ,Nur A ,Morgan Dale. Effects of Porosity and Clay Content on Wave Velocities in Sandstones[J]. Geophysics,1986, 51(11): 2093-2107
    [137] Klimentos T. The Effects of Porosity2Permeability2Clay Content on the Velocity of Compressional Waves[J]. Geophysics,1991, 56(12): 1930-1939
    [138]史謌,黄联捷,沈联蒂.声波时差与岩石岩性参数关系的统计分析研究[J].北京大学学报,1990,26(4):506-511
    [139]刘祝萍,吴小薇,楚泽涵.岩石声学的测量及研究[J].地球物理学报,1994, 37(5): 659-666
    [140]史謌,杨东全,杨慧珠.岩石的孔隙特性研究[J].北京大学学报,2000,36(2): 214-220
    [141]陈祖安,伍向阳.砂岩孔隙度和泥质含量与波速关系的模型[J].地球物理学进展,2000,15(1):78-82
    [142]史謌,杨东全.岩石波速和孔隙度、泥质含量之间的关系研究[J].北京大学学报,2001,37(3):379-384
    [143]孔祥言.高等渗流力学[M].合肥:中国科学技术出版社.1999:351-371
    [144] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-252.
    [145]张吉昌,刘月田,丁雁非,等.裂缝各向异性油藏孔隙度和渗透率计算方法[J].中国石油大学学报,2006,30(5):62-66
    [146]林英松,刘兆年,秦涛.层内爆炸后储层裂缝分析方法研究[J].断块油气田,2006,13(1):44-47
    [147]曾联波.低渗透砂岩油气储层裂缝及其渗流特征[J].地质科学,2004, 39(1):11-17
    [148]黎洪,彭苏萍,张德志.裂缝性油藏主渗透率及主裂缝方向识别方法[J].中国石油大学学报,2002, 26(2):44-47
    [149]陈钟祥,姜礼尚.双重孔隙介质渗流方程组的精确解[J].中国科学,1980,10(2): 152-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700