用户名: 密码: 验证码:
椭圆双极线型聚能药柱爆炸理论及预裂爆破技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:常规预裂爆破技术采用的是圆柱形不耦合装药结构,其爆炸能量沿炮孔径向均匀分配,缺点明显。本文引入线型聚能爆破技术,设计出了椭圆双极线型聚能药柱(简称:EBLSC药柱),该药柱能够合理分配爆炸能量,增大预裂面作用力而减少对炮孔壁的损伤,达到增大孔距、减少孔数和药量,从而实现经济、快速、安全和环保的目的。本文主要在以下方面开展了研究。
     (1)论述了预裂爆破和定向线型聚能爆破技术的发展与现状、聚能装药基本理论、聚能射流形成及侵砌过程。
     (2)建立了基于瞬时爆轰的EBLSC药柱爆炸力学模型,对装药有效部分及药柱结构参数开展了研究并编制了分析软件,完成了装药结构参数的优化设计。
     (3)建立了EBLSC药柱孔壁岩石应力计算模型,得出了聚能方向孔壁岩石应力是短轴方向231倍、常规圆柱形药柱14.4倍的结论;对外壳作用开展了研究,得出了外壳在缓冲峰压保护孔壁和增大气刃延长裂隙方面有着显著的效果;对孔距进行了计算,得出了EBLSC预裂爆破孔距是炮孔直径24.3倍、常规预裂爆破孔距3.29倍的结论。
     (3)开展了EBLSC药柱1/3缩比侵砌实验研究、不耦合系数测定实验研究以及岩石爆炸应力测试试验研究。试验得出了EBLSC药柱具有明显的定向断裂特性、最佳不耦合系数为3.63、岩石中相同距离处聚能方向爆炸应力是短轴方向的20.7倍的结论。
     (4)开展了EBLSC药柱爆炸、侵砌及结构参数数值模拟研究。系统的得到了射流的形成、运动和毁伤破坏现象及规律,得到了结构参数中各因素的影响程度,并与理论分析和实验研究相比较,有力地支持了相关研究。
     (5)详细给出了EBLSC预裂爆破技术在江苏溧阳抽水蓄能电站岩石开挖中的应用案例。对EBLSC药柱的组装结构、技术要点、爆破试验、爆破参数及爆效果等进行了分析探讨,并开展了EBLSC预裂爆破与常规圆柱形预裂爆破的对比试验,均取得了很好的效果。
     本文为EBLSC预裂爆破技术的理论分析、数值模拟、实验研究和实地应用等提供了重要的参考,有利于该技术的全面推广应用。
Abstract:The Pre-splitting blasting technology relating to the cylindrical non-coupling charging is often used in slope excavation engineering in open-pit mining and geotechnical engineering, whose explosive energy is distributed evenly around the hole and which defect is obvious.
     Based on the linear shaped charge blasting technique, the Elliptic Bipolar Linear Shaped Charge (referred to as "EBLSC") has been designed. By which, the explosion energy can be assigned reasonably, the presplit face force can be increased, the damage on the slope can be reduced, the pitch can be increased, and the number of holes and explosives can be reduced. Therefore, the purpose of economic, fast, safety and environmental protection can be reached.
     The following research has been carried out in this paper.
     (1) The development and present situation of the technology of Pre-splitting blasting and Linear shaped charge blasting, the basic theory of shaped charge, the formation and penetration process of shaped jet were discussed.
     (2) Based on the instantaneous detonation, the EBLSC explosion model was established. The effective part of the charge and the grain structure parameters were studied. Analysis software was compiled. The charge structure parameter design was optimized.
     (3) The EBLSC hole rock stress calculation model was established, which concludes that the rock stress of the long axis direction of the hole's surface is231times the short axis and14.4times the cylindrical explosive. The role of the shell was studied, which can significantly buffer peak voltage, protect the hole, augment the edge, and extend the crack. The pitch of EBLSC presplit blasting is calculated, which equals to24.3times the hole diameter and3.29times that of the conventional pre-splitting blasting.
     (4) The experimental study on the explosion effect of1/3EBLSC, the number of non-coupling measurement and the rock blasting stress test were carried out. Through the experiments, we obtained that the EBLSC technology has obvious directional fracture characteristics, and that the best non-coupling coefficient is3.63, and on the same distance, long axis direction of explosion stress is20.7times of short axis direction.
     (5) The research on the EBLSC explosive and action, and the numerical simulation or structural parameters has been carried out. It have been concluded systematically that the jet formation, movement, and mutilate damage phenomenon and law, and the influence of various factors among structure parameters, which was compared with the theoretical analysis and experimental research.
     (6) The application case on Jiangsu Liyang pumped storage power station rock excavation engineering adopted EBLSC pre-splitting blasting technology was expounded in detail. The assembly structure, main technical points, blasting test, blasting parameters, blasting effect and so on, about EBLSC technology, had been analyzed. Contrast test between EBLSC pre-splitting blasting and conventional cylindrical pre-splitting blasting was carried out, and good results were achieved.
     In this paper, the important reference of the theoretical analysis and numerical simulation, experimental research and field application, etc, about EBLSC pre-splitting blasting technology is provided, which is conducive to the comprehensive popularization and application of this technology.
引文
[1]J.亨利奇著,熊建国等译.爆炸动力学及其应用[M].科学出版社,1987.
    [2]张守中.爆炸冲击动力学[M].北京:兵器工业出版社,1993.
    [3]李必红.特种爆破[M].长沙:国防科大出版社,2007.
    [4]廖祖伟.低密度低爆速小直径炸药及其应用于石材开采的研究[D].昆明工业大学,1996.3
    [5]LiS, Scherer RC, Wan MX, Wang SP, Wu HH. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions[J]. J Acoust Soc Am,2006,119:3003-3010. Duncan C, Zhai G, Scherer RC. Modeling coupled aerodynamics and vocal
    [6]fold dynamics using immersed boundary methods[J]. J Acoust Soc Am, 2006,120:2859-2871.
    Mohseni K, Ran H, Colonius T. Numerical experiments on vortex ring formation[J]. J Fluid Mech,2001,430:267-82.
    [8]蔡福广.光面爆破新技术[M].北京:中国铁道出版社,1994.
    [9]张志呈.爆破基础理论与设计施工技术[M].重庆:重庆大学出版社,1994.
    [10]王幸荣.预裂缝减振效果研究[D],武汉理工大学,2006
    [11]于淑宝.预裂爆破参数研究与工程实践[D],河北理工大学,2007
    [12]齐金铎.预裂爆破的评估方法[J],爆破,1995(4):30-34
    [13]戴俊.岩石动力学特性与爆破理论[M],北京:冶金工业出版社,2002
    [14]赵泉.小湾水电站开挖过程中预裂爆破参数优化研究[D],武汉理工大学2006
    [15]唐海.岩石预裂爆破成缝分析及爆破参数确定的智能研究[D],武汉理工大学,2004
    卢文波,赖世骧,董振华.岩石钻爆开挖中预裂缝的隔震效果分析[J],爆炸与冲击,1997,17 (3):193-198
    [17]宗琦.炮孔不同装药结构对爆破能量影响的理论探讨[J],煤炭学报,2003,22(4):641-645
    [18]秦健飞.聚能预裂爆破技术[J].工程爆破,2007,13:19-24.
    [19]秦健飞,秦如霞.椭圆双极线型聚能槽药柱的研究及其应用[M].中国爆破新技术Ⅱ,北京:冶金工业出版社,2008
    [20]王道荣,孙宇新,郭场.混凝土靶高速侵彻的模型律.弹道学报,2001, 113(1):7-11
    [21]Javier L Malvat,John E Crawford.Dynamic increase factors for concete.In: Proceedings of the 28th DDESB Seminar,Orlando,FL,Aug 1998
    [22]Kaplan M F.Crack propagation and the fracture of concrete:I.ACI J,1961, 58(5):575-59U
    [23]夏蒙芬,韩闻生.统计细观损伤力学和损伤演化诱致突变[J].力学进展,1995,25(1):1-40
    [24]齐振伟.反机场跑道串联随进弹终点效应的实验研究与数值模拟[D].国防科技大学,2007.
    [25]D Krajcinovic,J Lemaitre.Continuum Damage Mechanics-theory and application.In:Proceedings of CISM,Springer Verlag,1987
    [26]谈庆明.高速冲击模型律[M].见:王礼立,余同希,李永池编.冲击动力学进展[M].合肥:中国科技大学出版社,1992:88-116
    [27]Forrestal M J,Tzou D Y.A spherical cavity-expansion penetration model for concrete targets[J].Int J Solids Structures,1997,34(31-32):4127-4146
    [28]徐海清.刻槽控制爆破有限元数值模拟[D].武汉理工大学,2004,05
    [29]Molinari J F.Finite element simulation of shaped charges[J].Finite Elements in Analysis and Design,2002,38:921-936
    [30]高文远.兰尖铁矿露天边坡破碎带控制爆破技术研究[D].昆明理工大学,2001.
    [31]林苗苗,余德运.高速公路路堑边坡预裂爆破参数选择[J].爆破,2008,25(1):32-33.
    [32]闫军龙,陈先锋.复杂水文地蜃条件下预裂缝减震效果监测与分析[J].爆破,2008,25(3):100-102.
    [33]祝树枝,吴森康,杨昌森,等·近代爆破理论与实践[M]·武汉:中国地质大学出版社。1993.
    [34]彭庆明·自锻破片战斗部设计方法的讨论[A].第四届侵彻会议文集[C].陕西:国兵工学会弹药分会,1984:41-50.
    [35]熊伟,等.线型聚能切割器中子照相检测技术研究[J].原子能材料,2013,47(6):1079-1084.
    [36]刘第海,文德钧,佟锦裂.聚能预裂爆破技术[J].爆破,2000,17:92-96.
    [37]苟扬,晏麓晖,曾首义.聚能装药技术研究进展综述[J].科学技术与工程,2008,8(15):4251-4257.
    [38]杜学良,等.线型聚能切割器切割靶板过程相似率的数值模拟[J].工程 爆破,2012,18(2):18-21.
    [39]Henry Mohaupt. Shaped Charge sand warheads [M]. New Jersey, Inc., Englewood Cliffs,1966.
    [40]Schardin H. Development of the shaped Charge[M]. Wehrtechnische Hefie, 1954.
    [41]蒋耀港,沈兆武,等.柔性线型聚能切割器的应用研究[J].含能材料,2011,19(4):454-458.
    [42]Watrous J J, Frese M H. A dynamic explosive model for MACH2:with applications to magnetic flux compression generators [R]. Los Alamos National Laboratory. LA-SUB-95-106.1993.
    [43]Kennedy D R. History of the shaped charge effect (the first 100 years) [R].AD-A220095,1990
    [44]Allison R E and Vitali R. An application of the jet formation theory to a 105mm shaped chargeLRJ. BRL Report No.1165,1962.
    [45]Mruphy M J, Kuklo R M. Fundamental of shaped charge penetration in concrete [A].18th International Symposium on Ballistics [C]. San Antonio, 1999,12:1057-1064.
    [46]Eichelberger R J. Re-examination of the nonsteady theory of formation by lined cavity charges[J]. J. Appl. Phys.,26 (4),1955.
    [47]Weikert C, Pewell KM, Winter P. Interaction of large diameter explosively formed projectiles with concrete targets [A].18th International Symposium on Ballistic [C]. San Antonio,1999,1:15-19.
    [48]爆炸物理基础[M].内部资料.北京工业学院一系编,1974.8:204-152.
    [49]王辉.聚能装药侵彻混凝土介质效应研究[D].北京:北京理工大学机电工程学院,1996
    [50]熊代余,顾毅成.岩石爆破理论与技术新进展[M].北京:冶金工业出版社,2002
    [51]冯叔瑜,马乃耀.爆破工程[M].北京:中国铁道出版社,1980
    [52]高磊主编.矿山岩体力学[M].北京:机械工业出版社,1987,107-108
    [53]罗文.利用深孔切槽爆破技术[J].贵州水力发电,2003,17(2):73-75.
    [54]谢圣权.浅析聚能装药在预裂爆破中的应用[J].铀矿冶,2002,19(4):217-221
    [55]Birkhoff G, MacDougall D, Pugh E. Explosives with lined cavities[J]. J. Appl. Phys.,19 (6),1948.
    [56]黄明权.聚能爆破切割大理石试验研究[J].爆破,1990,3:60-63.
    [57]Wang Cheng, Yun Shourong, Huang Fenglei, Zhang Hanping. Investigatinig jet appearance in different background lights with high speed frame photography [J]. Journal of Beijing Institute of Technology,2002,11 (2): 113-116.
    [58]Randers-Pehrson G. An improved equation for calculating fragment projection angle[J]. Proc.2nd International Symposium on Ballistics, Daytona Beach,1976.
    [59]Gazonas G A, Segletes S B. Hydrocode simulation of the formation and penetration of a linear shaped demolition charge into an RHA plate [R]. AD-A299777,1995.
    [60]凌伟明.光面爆破和预裂爆破破裂发展过程的研究[D].北京:中国矿业大字,1988.
    [61]Murphy M J, Kuklo R M. Fundamentals of shaped charge penetration in concrete[C]. Lawrence Livermore National Laboratory, UCRL-JC-133126, 1999.
    [62]赵福兴.控制爆破工程学[M].西安:西安交通大学出版社,1988.
    [63]Carleone J, Chou P C, User's manual for DESC-1, a one-dimensional computer code to model shaped charge liner collapse, jet formation, and jet properties, Dyna East Corporation, Technical Report No. DE-TR-75-4, 1975
    [64]张志呈.定向断裂控制爆破[M].重庆:重庆大学出版社,2000:126-168.
    [65]张守中.爆炸基本原理[M].北京:国防工业出版社,1988.
    [66]王树魁,贝静芬等译.成型装约原理及其应用[M].兵器工业出版社,1992.
    [67]于亚伦主编.工程爆破理论与技术[M].冶金工业出版社,2004.
    [68]祝树枝等.近代爆破理论与实践[M].武汉:中国地质大学出版社,1993.
    [69]叶序双.爆炸作用理论基础[M].南京:解放军理工大学工程兵工程学院,2001.
    [70]秦健飞,秦如霞,李必红.椭圆双极线型聚能槽药柱的研究与应用[J].工程爆破,2009,3:74-78,87
    [71]刘国强,周早生,杨秀敏.爆炸冲击效应数值仿真中的几项关键技术[J],系统仿真学报,2005,17(5):1059-1967
    [72]钟冬望,李寿贵.预裂爆破数值模拟及其应用研究[J],爆破,2001,18(3):8-11
    [73]张志呈,肖正学,何绍田等.定向断裂控制爆破技术降低围岩操作的作用[A],中国岩石力学与工程学会第七次学术大会[C],2002,869-871
    [74]李夕兵,古德生.岩石冲击动力学[M]-长沙:中南工业大学出版社,1994
    [75]李守巨.孔壁上爆炸冲击波初始参数的计算研究[C].本溪:辽宁省力学会年会,1989
    [76]吴晓峰,宋照尚,李廷春.预裂爆破中爆生裂缝扩展的机理探讨及预裂爆破炮孔间距的设计方法[J].中国港湾建设,2007(1):49-51
    [77]AVDyskin, ANGalybin. Fracture mechanism of pre-splitblasting [A],7th International Symposium on Structural Failure and Plasticity [C]. Melbourne, Australia,2000
    [78]戴兵,赵国彦.基于预裂成缝对爆破参数拟合的数值模拟分析[J].爆破,2012(1):10-14
    [79]戴俊,杨永琦.光面爆破相邻炮孔存在起爆时差的炮孔间距计算[J].爆炸与冲击,2003(3):253-258
    [80]陈超.含水边坡预裂爆破应用研究[D],河北理工学院,2001
    [81]林大能,陈寿如,刘优平.岩石循环冲击损伤深化效应的实验研究[J],矿冶工程,2005,25(4):12-15
    [82]李彬峰,潘国斌.光面爆破和预裂爆破参数研究[J].爆破,1998,2:14-18.
    [83]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆破与冲击,2000,20(3):247-252.
    [84]罗勇,沈兆武.聚能药包在岩石定向断裂爆破中的应用研究[J].爆炸与冲击,2006,26(3):250-255.
    [85]何满潮,曹伍富,单仁亮,王树理.双向聚能拉伸爆破新技术[J].岩石力学与工程学报,2003,22(12):2047-2051.
    [86]周瑶,李孝林,佟彦军,王泽山.双向聚能预裂爆破切割器的研制与应用[J].火炸药学报,2006,29(3):70-72.
    [87]Luo Yong, Shen Zhao-wu. Study on orientation fracture blasting with shaped charge in rock[J]. Journal of University of Science and Technology Beijing. 2006,13 (3):1-6.
    [88]Huertaa M, Vigil M G. Design, analyses, and field test of a 0.7m conical shaped charge[J]. Int J of Impact Engrg,2006,32:1201-1213.
    [89]冯正亚.聚能效应在预裂爆破中的初步应用[R].全国第三届水利水电爆破工程会议交流资料,1991年9月.
    [90]李夕兵.论岩体软弱结构面对应力波传播的影响[J].爆炸与冲击, 1993.10:334-342
    [91][173]中华人民共和国国家质量监督检验检疫总局.爆破安全规程(GB6722-2003)[S].北京:中国标准出版社,2004
    [92]卢文波,Hustrulid W.临近岩石边坡开挖轮廓面的爆破设计方法[J].岩石力学与工程学报,2003,22(2):2052-2056
    [93]朱瑞赓,李廷芥.岩体中爆炸应力波参数的现场试验研究.爆炸与冲击,1981(1): 58-65
    [94]刘文革,题正义,黄文尧.轴对称聚能药管及聚能效应[J].辽宁工程技术大学学报,2006,第15卷:126-128.
    [95]铜山口铜矿露采爆破参数优化及爆破减振的试验研究[D],长沙:中南大学,2001
    [96]史秀志.微节理裂隙对露天矿预裂爆破的影响[J],河北煤炭,1997(1)
    [97]杨军.岩石爆破理论数值计算[M],北京:科学出版社,2002:66-80
    [98]李彬峰,祁晨冰.预裂爆破成缝机理与参数设计[J],西部探矿工程,2000,12(3): 78-79
    [99]张志呈,唐中华,李世禄.光面爆破成缝机理与巷道工作面炮孔数的计算[J],四川冶金,2001,23(4):4-7
    [100]徐颖,孟益平,程玉生.装药不耦合系数对爆破裂纹控制的试验研究[J].岩石力学与工程学报,2002,21(12):1843-1847
    [101]Bihong Li, Zhiyang Chen, Jianfei Qin, Kai Ding. Numerical simulation and stress testing research on elliptical bipolar linear shaped charge[J], Journal of information & compulational science,1(2013):3437-3444
    [102]李必红,秦健飞,崔伟峰.椭圆双极线型聚能药柱结构的优化分析[J],采矿技术,2009(5):51-53
    [103]崔伟峰,李必红,秦健飞.双极聚能射流数值模拟研究[J],采矿技术,2009(5):54-56
    [104]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京:清华大学出版社,2005:1-24.
    [105]Walters W P, Zukas J A. Fundamentals of shaped charges. Wiley-Interscience,1989.
    [106]安二峰,杨军,陈鹏万.一种新型聚能战斗部[J].爆炸与冲击,2004,24(6): 546-552.
    [107]Dachanov M. A microcrack model of rock inelasticity[J]. Mech Mat,1982, (1):3-28
    [108]周维垣,炎区公瑞.岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,13(1):115-117.
    [109]Chuan Yu, Yanli Tong, Chenli Yan, et al. Applied research of shaped charge technology [J]. International Journal of Impact Engineering,1999,23 (1): 981-988.
    [110]Bartholomew C, Rynecki A, Saveker D. Underwater explosive cutting in ship salvage[J]. Oceans,1975,7 (9):592-596
    [111]白金则.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005:1-58.
    [112]Livermore Software Technology Cooperation. LS-DYNA Keywords User's Manual.1999.
    [113]John O Hallquiust. Ls-Dyna Theoretical Manual. Livermore Software Technology Corporation,1998.
    [114]Lee EL, et al. Adiabatic expansion of high explosive detonation products. UCRL-50422,1968.
    [115]Johnson G R, W H Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. In:Proceedings of the 7th Inter Symp on Ballistics, The Hague, The Netherlands, Apr,1983.
    [116]Gebbeken, Ruppert M. On the concrete material response to explosive loading-numerical sumulations[J]. In:Proceedings of the 5th Inter Confer On structure under shock and impact,1998:773-782
    [117]王礼立,李大红,施绍裘等.关于卸载波和材料动态卸载响应的研究[J].爆
    炸与冲击,1999,19 (supp):153-156.
    [118]Forrestal M J. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. Int J Impact Engrg,1996,18 (5):465-476
    [119]Grote D L, Parkl S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. experimental characterization[J]. Int J of Impact Engrg,2001,25:869-886.
    [120]Suaris W, Surendra P Shah. Mechanical properties of materials subjected to impact in concrete structure under impact and impulsive loading [J]. Rilem CEB, IAAB se I AS S Interassociation symposium, Berlin (west), June, 1982:33-62
    [121]王瑞臣.弹丸对混凝土介质斜侵彻效应研究[D].北京:北京理工大学,1998.
    [122]Javier L Malvar, John E Crawford. Dynamic increase factors for concete[D]. In:Proceedings of the 28th DDESB Seminar, Orlando, FL, Aug1998.
    [123]Grote D L, Parkl S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. experimental characterization[J]. Int J of Impact Engrg,2001,25:869-886
    [124]Meyer L W. Dynamic material behavior under biaxial loading. In: Staudhammer K P, et al. Fundamental Issues and applications of shock-wave and high-strain-rate phenomena. Amsterdam:Elsevier Science Ltd,2001:11-24.
    [125]Holmquist T J. A computational constitutive model for concrete subjected to large strains,high strain rates, and high pressures. In:Proceedings of the 14th International Symposium on Ballistics.1993:591-600
    [126]Taylor L M, Chen E P, Kuszmaul J S. Micro-crack induced damage accumulation in brittle rock under dynamic loading[J]. Comp Meth in Appl Mech and Engrg,1986,55 (3):301-320
    [127]Meyer L W. Dynamic material behavior under biaxial loading[J]. In: Staudhammer K P, et al. eds. Fundamental Issues and applications of shock-wave and high-strain-rate phenomena, Amsterdam:Elsevier Science Ltd,2001:11-24.
    [128]Gebbeken N, Ruppet M. A new material model for concrete in high-dynamic hydrocode simulations[J]. Archive of Appl Mech,2000,70:463-478.
    [129]Pijaudier-Cabot G. These 3eme Cycle, L. M. T., Univ. Paris,1979.
    [130]Johnson GR, Holmquist TJ. Computed radial stresses in a concrete target penetrated by a steel projectile [J]. In:Proceedings of the 5th Inter Confer On structure under shock and impact,1998:793-806.
    [131]张若棋等.射弹弹形侵深系数的实验研究[J].船舶力学增刊,2002,pp:268-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700