用户名: 密码: 验证码:
筒型基础负压沉贯渗流分析模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筒型基础类似于具有裙板的重力式基础。其工作机理和结构特点与吸力桩相同。它是一种新型的海上结构设施,与传统的桩结构相比,具有承载能力大、安装简便、应用范围广等特点,因而越来越受到海洋工程界的广泛重视。筒型基础施工时依靠抽水泵的吸力在筒内形成负压,因而在筒基周围及其内部的土体中形成渗流场,对渗流场进行研究是研究筒型基础一切问题的基础。本文主要目的是建立适合筒型基础沉贯应用的渗流场求解方法。
     根据近年来的研究资料和研究成果,通过分析海底软土的成分及微观结构、土颗粒的变形特性以及海底土的孔隙特征,对土颗粒的种类和海底土的孔隙进行了分类,在分析海底土受渗流力作用时,对孔隙的变化特征和孔隙大小的改变情况进行了剖析。
     将渗流力作用下的土体应变分为两部分:一部分为土颗粒自身变形而引起的土体体积拟应变,另一部分为土体骨架几何变形而引起的土体体积应变。本文以一种全新的方式将J_2流动理论以及离散元思想应用到土体本构关系模型中:利用J_2流动理论各向同性硬化原理,建立土颗粒变形的本构关系模型;利用离散元思想建立土骨架变形的本构关系模型。并将这两种模型结合,得到土体的本构关系模型。
     将土体物性参数动态模型引入筒型基础沉贯过程中,改变了传统计算中沉贯过程不考虑物性参数变化的缺陷。从物性参数的基本定义出发,将以离散元理论计算土体骨架产生的体积应变、J_2流动理论计算土颗粒体积拟应变,以及这两个体积应变之和作为土体瞬时应变量,构建土体物性参数动态变化模型。
     针对筒型基础特殊的结构形式以及筒内土体的应力变化情况,建立适合筒型基础应用的有效应力原理。由于沉贯阻力公式是应力方程的主要参数,本文重新研究了筒型基础的沉贯阻力公式,在考虑了渗流软化对阻力的影响的基础上,对沉贯阻力公式进行了修正。
     根据质量守恒定律和渗流运动方程,建立适合筒基沉贯应用的渗流方程,与应力方程一起组成了流固耦合渗流数学模型,并给出上述模型的定解条件,并利用模型进行了实例计算,检验了模型的可用性和有效性。
The bucket foundation seems a gravity foundation with skirts, whose working mechanics and structure characters are similar to suction pile. Bucket foundations are a relatively new type of foundation used to support offshore structures. Comparing with traditional pile structure, bucket foundation has some special advantages such as bearing capacity, construction convenience and wide usage, so more attention is paid to bucket foundation in ocean engineering. The foundation can penetrate into sea bottom when pumping water out of the foundation chamber while the formation of seepage flow field inside soils around buckets. Therefore, the study on seepage flow is the basic problem for bucket foundation. This paper is concerned with the setup of calculation model of seepage flow field.
     According to research materials and results, the components of sub-sea soft soil, micro-structure of soil particle, the characteristic of soil deformation and porosity property are analyzed to study the porosity property, category the porosity of sub-sea soil, and to acquire the changes of porosity property during the action of seepage forces.
     The strain of soil acted by seepage forces is divided into the volumetric strain of soil particle caused by self-deformation and soil volumetric strain caused by geometric deformation of soil skeleton. In this dissertation, J_2 flow theory and discrete element method are put into setup of soil constitutive relationship model. Firstly, the isotropic hardening principle in J_2 flow theory is used into the constitutive relationship model of soil particle deformation. Secondly, discrete element method principle is used into the constitutive relationship model of soil skeleton deformation. Lastly, the two constitutive models are put together into constitutive relationship of total deformation.
     The physical parameter of soil dynamic model put into the description of bucket foundation during suction penetration improves the traditional calculation method. According to the definition of physical parameter, the volumetric strain of soil skeleton calculated by discrete element method, volumetric strain of soil particle calculated by J_2 flow theory, and the sum of two volumetric strains are set as the soil instant strain for setting up the dynamic variables of soil physical parameter.
     According to the structure style of bucket foundation and soil stress change around the buckets, effective stress principle is modified for usage of bucket foundation. The penetration resistance formula of bucket foundation is studied again in the paper and influence on resistance caused by soil seepage softening is analyzed, for the formula is the main part of stress equations. So the penetration resistance formula is modified by considering the influence of soil soften caused by seepage to resistance.
     At last, solid-fluid coupling seepage mathematical model for suction penetration of bucket foundation is formed with stress equation and seepage equation formulated by conservation of mass and seepage motion equation and the solution conditions are given for the seepage model. At last, effectiveness and utilization of the given models are tested by some calculating examples.
引文
[1]J. E. Smith. Investigation of Embedment Anchors for Deep Ocean Use[J]. Naval Civil Engineering Laboratory, Technical Note N-834.
    [2]L. J. Goodman, C. N. Lee, F. J. Walker. The Feasibility of Vacuum Anchorage in Soil[J]. Geotechnique,1961,1:356.
    [3]R. J. Etter, F. J. Turpin. The Feasibility of Under water Suction Anchors[J], Under water Technology Division-Petroleum Division Conf. , American Society of Mechanical Engineers,1967.
    [4]M. C. Wang, V. A. Nacci, K. R. Demars. Behavior of Under water Suction Anchor in Soil[J]. Ocean Engineering; 1975,3:47-62.
    [5]M. C. Wang, K. R. Demars, V. A Nacci. Applications of Suction Anchors in Offore Technology[J].OTC3203,OTC'10, 1978;1311-1320.
    [6]M. Baerheim, L. Hoberg, T. I. Tjelta, Development and Structural Design of the Vucket Foundations for the Europipe Jacker[J], OTC7792, 1995:859~868.
    [7]A. Bye, Noteby, C. Erbrich, Kvaemer Earl & Weight, B. Rognlien, Geothcnical Design of Bucker Foudations[J], OTC7793, 1995,869~883.
    [8]P. Rusaas, D. R. Giske, G.Berrett, P. E. Chiristiansen, Design, Operations planning and Experience From the Marine Operations for the Europipe Jacket With Bucket Foundations[J], OTC7794, 1995,885~895.
    [9]T. I. Tjelta, Geotechnical Experience from the Installation of the Europipe Jacket With Bucket Foundations[J], OTC7795, 1995,897~906.
    [10]何炎平, 谭家华. 筒型基础的发展历史和典型用途[J], 中国海洋平台, 2002, 12: 10~14.
    [11]徐继祖, 王翎羽, 陈星, 边启光. 从吸力锚到筒型基础平台——关于近海吸力式基础的工程经验和技术思考[J], 中国海上油气(工程), 2002, 14(1): 1~7.
    [12]施晓春, 刘日庆, 龚晓南, 筒形基础发展概况[J], 土木工程学报, 2000, 33(4): 68~73.
    [13]徐继组, 史庆增, 宋安, 丁红岩, 吸力锚在国内近海工程中的首次应用与设计[J], 中国海上油气(工程), 1995, 7(1): 31~36.
    [14]施晓春, 徐日庆, 俞建霖, 龚晓南. 筒形基础简介及试验研究[J], 浙江工程技术学院学报, 2002, 10: 39-42.
    [15]矫滨田, 鲁晓兵, 赵京, 时忠民. 吸力式筒形基础抗拔承载力特性试验研究[J], 中国海洋平台,2002, 21(3): 27~30.
    [16]李锡夔, 朴光虎, 邓子辰. 考虑固结效应的结构--土壤相互作用分析及其有限元解[J]. 计算结构力学及其应用, 1990,7(3):1~11.
    [17]张洪武, 钟万勰, 钱令希. 饱和土壤固结分析的算法研究[J]. 力学与实践, 1993,15(1):20~22.
    [18]张洪武, 钟万勰, 钱令希. 土体固结分析的一种有效算法[J]. 计算结构力学及其应用, 1991,8(4):389.
    [19]杜杰, 丁红岩, 刘建辉, 张超. 筒型基础有限元分析的土体边界选取研究[J]. 海洋技术, 2005,24(2):109~112.
    [20]严驰, 魏世好, 杨树耕, 徐松森等. 海上筒基平台筒形基础渗流场的模型试验研究[J], 海岸工程, 2003,22(3):32~37.
    [21]严驰, 李亚坡, 袁中立. 筒形基础竖向承载力理论计算方法及土性参数的敏感性分析[J], 中国海洋平台, 2004,19(1):31~36.
    [22]K. Van, Terzaghi, Erdbaurnechnick aif bodenphysikalischer grundlage[J], 1925. Leipzig-wicn: Franz Deuticks; p.339.
    [23]K. Van. Terzaghi, Thorelical soil mecanics[M], New York, 1943.
    [24]J. McNamee and R .E .Gibson, Displacement functions and linear tronsforms applied to Diffusion Through Porous Elastic Media[J], Q. J .App1. Math, 1960, 13; 98~111
    [25]M. A. Biot. The theory of easticity and consolidation for a Porous anisnlropic solid[J]. Appl. Phys, 1955; 182~185.
    [26]M. A. Biot, Theory of deformation of a porous viscoelastic anisotropie solid[J], J.Appl.Phys, 1956, 27,5, 459 一 467
    [27]张士华, 杨树耕. 海上筒形基础平台负压沉贯渗流场有限元分析[J], 黄渤海海洋, 2000, 4: 18~23.
    [28]张士华, 初新杰. 筒形基础负压沉贯海上试验研究与应用[J], 黄渤海海洋, 2000,4:51~55.
    [29]劳作优. 海域岩土工程勘察施工工艺[J], 地球与环境, 2005,33:573~576.
    [30]王清, 王凤艳, 肖树芳. 土微观结构特征的定量研究及其在工程中的应用[J], 成都理工学院学报, 2001,28(2):148~153.
    [31]蒋希雁, 张志红, 屈建平. 从粘性土微观结构的角度论述含水量变化对土的工程特性的影响[J], 河北建筑工程学院学报, 2002,20(3):14~21.
    [32]刘熙媛. 基坑开挖过程的试验与数值模拟及土的微观结构研究, 博士学位论文, 天津大学, 2002,20(3):14~21.
    [33]王宝军, 施斌, 刘志彬, 蔡奕. 基于 GIS 的黏性土微观结构的分形研究[J]. 岩土工程学报, 2004,26(2):244~247.
    [34]Terzaghi, 蒋彭年译, 工程实用土力学[M], 北京: 水利电力出版社, 1960.
    [35]K. Collins, A. Mcgown, The Form and Function of Microfabric Features in a Variety of Natural Soils[J], Geotechnique, 1974,24(2):223~254.
    [36]T. W. Lambe. Soil mechanics[M]. New York: John Wiley and Sons, Ins. 1969.
    [37]N. K. Tovey, A Digital Computer Technique for Orientation Analysis of Micrographs of Soil Fabric,J of Microscopy, 1990, 120:303~315.
    [38]N. K. Tovey, D. H. Krinsley, Mapping of the Orientation of Fine-grained Mineral in Soil and Sediments, Bulletin of IAEG, 1992,46:93~101.
    [39]Pyek, D. H. Krinsley. Petrographic Examination of Sedimentary Rocks in the SEM Using Back-scattered Electron Detectors[J], J of Sed Petr, 1984,54:877~888.
    [40]X. Bix, P. Smart, Change in Microstructure of Kailin in Consolidation and Undrained Shear[J], Geotechnique, 1997,47(5):1009~1017.
    [41]房后国, 刘娉慧, 肖树芳, 林德全. 海底土排水固结机理分析[J]. 吉林大学学报(地球科学版), 2005.3; 207~217.
    [42]张学言. 岩土塑性力学[M], 北京, 人民交通出版社, 1993.
    [43]章根德. 土的本构模型及其工程应用[M], 北京, 科学出版社, 1995.
    [44]屈智炯. 土的塑性力学[M], 成都, 成都科技大学出版社, 1987.
    [45]龚晓南. 土塑性力学[M], 杭州, 浙江大学出版社, 1999.
    [46]郑颖人, 龚晓南. 岩土塑性力学基础[M], 北京, 中国建筑工业出版社, 1989.
    [47]钱家欢, 殷宗泽. 土工原理与计算[M], 北京, 中国水利水电出版社, 1996.
    [48]杨桂通, 树学锋. 塑性力学[M], 北京, 中国建材工业出版社, 2000.
    [49]郑颖人. 岩土塑性力学的新进展——广义塑性力学[J], 岩土工程学报, 2003.25(1); 1~10.
    [50]尹蓉蓉, 朱合华. 岩土介质非线性弹性本构关系位移反分析[J], 华东船舶工业学院学报(自然科学版), 2003.17(4); 72~74.
    [51]李广信. 关于 Duncan 双曲线模型参数确定的若干错误做法[J], 岩土工程学报, 1998,5:116
    [52]杨雪强, 朱志政, 何世秀. 对 Lade-Duncan,Matsuoka-Nakai 和 Ottosen 等破坏准则的认识[J], 岩土工程学报, 2006,28(3):337~342.
    [53]王志亮, 殷宗泽, 李永池. 邓肯-张模型有限元分析路堤沉降实用方法[J], 岩土力学, 2005,26(7):1085~1089.
    [54]李书岐. 含参屈服准则统一形式及三种常用屈服准则的关系[J], 力学与实践, 1998,20:66
    [55]洪振舜, 刘松玉, 于小军. 关于结构土屈服破坏的探讨[J]. 岩土力学, 1998,25(5):684~687.
    [56]K. C. Valanis, Theory of Viscoplasticity without a yield surface[J], Archives of Mechnics, Warszaw, 1971, Vol.23(4);517~551.
    [57]K. C. Valanis, Fundamental consequences of a new intrinsic time measure plasticity as limie of the endochronic theory[J], Archives of Mechnics, Warszaw,1980,Vol.32:249~261.
    [58]伊颖锋, 施建勇. 小应变范围内土体力学特性的试验研究[J], 西部探矿工程, 2005,8;14~16.
    [59]李传亮, 孔祥言, 徐献芝, 李培超. 多孔介质的双重有效应力[J], 自然杂志, 1999,21(5);288~292.
    [60]杨树华, 杨积东, 郑铁生, 张文. 基于 Hertz 接触理论的转子碰摩模型[J], 应用力学学报, 2003,20(4):61~65.
    [61]张浦阳. 吸力锚负压沉贯下沉过程中土塞生成的数值分析, 硕士论文, 天津大学, 2004.
    [62]许建聪, 尚岳全, 陈侃福, 杨建锋. 顺层滑坡弹塑性接触有限元稳定性分析[J], 岩石力学与工程学报, 2005,24(13):2231~2236.
    [63]肖熙, 谭开忍, 王秀勇. 海上筒型基础平台负压下沉渗流场的数值分析[J], 上海交通大学学报, 2002,36(11):1644~1648.
    [64]刘建军, 熊俊, 何翔, 降雨条件下岩土饱和-非饱和渗流分析[J], 岩土力学, 2004,25(S2):559~563.
    [65]Hong-Yan Ding, Yu-Feng Li, Xing Chen. Model tests on soil plug formation for suction anchor in sand[J]. Seventh International Symposium on Structural Engineering for Young Export, 2002, 538-544.
    [66]O. O. Owolabi, 朱平, 李绍良. 东尼日尔未固结砂体渗透率的经验表达式, 天然气勘探与开发, 1995,18(1):55~59.
    [67]叶为民, 钱丽鑫, 白云, 陈宝. 由土–水特征曲线预测上海非饱和软土渗透系数, 岩土工程学报, 2005,27(11):1262~1265.
    [68]于海莲, 于绍奉. 深井井点降水技术在低渗透系数岩土中的应用, 水利水电技术, 1997,28(10):67~70.
    [69]周代兵, 陈云鹤, 王春辉. 基于未确知有理数的土的渗透系数计算方法, 解放军理工大学学报(自然科学版), 2004,5(3):86~88.
    [70]H. Horri, S. Nemat-Nasser. Overall moduli of solids with microcracks, load-induced anisotropy[J]. Journal of the Mechanics and Physics of Solids, 1983,31:155~171.
    [71]Roy E. Olson. Settlement of embankment on soft clays. Journal of geotechnical and a Enigineering, August 1998: 659~669.
    [72]Duncan J M. Limitations of conventional analysis of consolidation settlement. J Goethch engrg, ASCE, 1993, 119(9): 1333~1359.
    [73]Terzaghi K T. Principle of soil mechanics. Engr News Record, 1925, 95: 832~836.
    [74]Skempton A W. A history of soil properties, 1717~1927.Golden Jubilee Volume, Proc, Elenventh Int Conf on soil mech and Found Engrg, A A Balkema, Rotterdam, The Netherlands,1985, 95~122.
    [75]Barron R A. Consolidation of fine-grained soils by drain wells, Trans, ASCE, 1948, 113: 718~754.
    [76]Lade P V, De Boer R. Concept of effective stress for soil, concrete and rock, Geothchnique, 1997, 47(1):61~78.
    [77]Zimmermam R W, Somerton W H, King M S, Compressibility of porous rocks. J of Geophysical Reserch, 1986, 91(B12): 765~777.
    [78]李传亮, 孔祥言, 杜志敏,徐献芝, 李培超. 多孔介质的流变模型研究. 力学学报. 2003,35(2):230~234.
    [79]徐献芝, 蔡健, 李传亮, 李培超. 考虑孔隙比变化的黏弹性土体本构模型. 土木工程学报, 2000, 3:14~19.
    [80]J. C 耶格, N. G. W 库克, 中国科学院工程力学研究所译, 岩石力学基础, 北京, 科学出版社, 1981:271~272.
    [81]M. A. Biot, D. G. Willis. The elastic coefficients of the theory of consolidation. ASME Appl Mech (1957)24; 594~601.
    [82]J. Geertsma. The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks, Trans.AIME(1957)210;331~340.
    [83]R. L. Schiffman, The stress components of a porous medium. J. Geophys. Res, 1970,75;4035~4038.
    [84]N. R. Warpinski, L. W. Teufel. Detemination of the effective stress law for permecability and determination in low-permeability rock. SPEFE, 1992,7(2);123~131.
    [85]P. V. Lade, R. De Boer. Concept of Effective Strees for Soil, Concrete and Rock Geotechnique, Vol.47, No.1,Mar.1997;61~78.
    [86]R. W. Zimmerman, W.H. Somerton, M. S. King. Compressibility of porous Rocks. J. of Geophysical Research, 1986,91;765~777.
    [87]Tjelta T L, Aas P M, Hermetad J and Adenas E. The skirt pile gullfaks C Platform Installation[A]. Proceedings of Offshore Technology Conference[C].Otc6473. 1990:453~462.
    [88]黄新生. 滩海油田建设中筒形基础的开发和应用[J]. 中国海洋平台, 1995,11(5):195~201.
    [89]Bey A, Erbrich C, Tjelta T L. Geotechnical Design of Bucket Foundations[A]. Proceedings of offshore technology conference[C]. OTC7793. 1995. 869~883.
    [90]曹耀峰. 粉土地基下筒型基础负压沉贯实验研究及工程应用[J]. 黄渤海海洋, 2000,12:6~11.
    [91] 何 炎 平 , 谭 家 华 . 筒 型 基 础 沉 贯 阻 力 估 算 方 法 [J], 海 洋 工 程 , 2002,23(8):23~28.
    [92]O.J. Stove, H. P. Christophersen. New foundation systems for the snorre development[J]. OTC6882, OTC. 24,1992,75~82.
    [93]Aberg B., Void ratio of noncohesive soils and similar materials [J], Journal of Geotechnical Engineering, ASCE, 1992,118(9):1315-1334.
    [94]李兴文, 堤防管涌渗透破坏机理及低水位综合示踪探测方法研究[J], 硕士学位论文, 南京:河海大学, 2000.
    [95]吴持恭主编,水力学下册(第二版)[M],北京:高等教育出版社,1983,318-324.
    [96]丁红岩, 张超. 筒型基础负压沉贯流固耦合渗流分析模型[J],岩土力学, 2006.27(9):1495~1450.
    [97]赵将勇,渗流引起的筒形基础土体软化及其对沉贯阻力的影响分析,硕士学位论文,天津:天津大学, 2004.
    [98]J. R. Hogervorst, Fields Trails with Large Diameter Suction Piles[R], OTC38|7,1980,217-220.
    [99]杨树耕, 孟昭瑛, 许涛, 任永贵. 海上筒基平台负压沉贯阻力的数值计算研究[J]. 海洋学报, 1999,11:94~100.
    [100]孙东昌, 张士华, 杨松林, 杨树耕. 海上筒基平台负压沉贯阻力与土体稳定数值计算研究[J]. 中国海洋平台, 2000.4:20~23
    [101]M. Baerheirn, L. Hoberg, T. L. Tjelta, Development and structural design of the bucket foundations for the Europipe jacket[J]. OTC 7792, 1995
    [102]近海结构物的设计、制造和检验规范, 挪威船级社(DNV), 1977
    [103]张士华, 海上筒形基础平台负压沉贯渗流场有限元分析, 博士学位论文,青岛: 青岛海洋大学, 2001.
    [104]丁红岩, 刘振勇, 陈星, 吸力锚土塞在粉质粘土中形成的模型试验研究, 岩土工程学报, 2001, 23(6): 54-57
    [105]冉启全, 李士伦, 杜志敏, 孙雷. 流固耦合多项多组分渗流数学模型的建立, 中国海上油气, 1996,10(3):172~177.
    [106]J. Noorishad, C. F. Tsang, P. A. Witherspoon. Coupled thermal hydraulic mechanical phenomena in saturated fractured porous rocks: numerical approach. [J].Geophy Res.1984,89(B12)10365~10373.
    [107]A. Settari, P. R. Key, C. T. Yee. Coupling of fluid flow and soil behaviour to model injection into uncemented oil sands[J]. JCPT,1989,28(1):81~92.
    [108]冉启全, 李士伦. 流固耦合油藏数值模拟中物性参数动态模型研究, 石油勘探与开发[J], 1997,6:61~64.
    [109]J. Geertsma, The effect of fluid pressure decline on volumetric changes of porous rocks[J]; Pet. Trans, RIME, 1957:210~ 331.
    [110]S. P. Neuman, T. N. Narasimhan, P. A. Witherspoon. Application of mixed explicit implicit finite element method to nonlinear diffusion-type problems[A].finite elements in water resources[C]. Pentech Press, London, Plymouth, 1977:1153~1186.
    [111]P. J. Roache, Computational Fluid Dypamics[M]. Hermasa Publishers, 1976.
    [112]M. Manzan, G. Comini. Inflow and Outflow Boundary Conditions in the Finite Element Solution of the Streamfunction-vorticity Equations. Communications in Numerical Methods in Eng, 1995,11.
    [113]G. Comini, M. Manzan, C. Nonino. Finite Element Solutions of the Ftreamfunction-vorticity Equations for In compressible Two-dimensional Flows. Int. J. for Num. Meth. In Fluids. 1994,19.
    [114]A. J. Baker. Finite Element Solutions Algorithm for Viscous Incompressible luid Dynamics. Int.J.for Num. Meth. In Eng. 1973,6.
    [115]M. A. Biot. Consolidation settlement under a rectangular load distribution, J. Appl. Phys,1941,12:459~467.
    [116]M. A. Biot, F. M. Clingan. Consolidation settlement under a solid with a impervious top surface, J. Appl. Phys, 1941,12:578~581.
    [117]M. A. Biot, F. M. Clingan. Bending settlement of a slab resting on a consolidation foundation, J. Appl. Phys, 1942,13:35~40.
    [118]McNamee, R. E. Gibson, Plane and axitly sumctyic poroblems of the consolidation of a simi-infinite clay straturn, Q. J. Appl. Math, 1960,13:210~227.
    [119]J. McNamee, R. E. Gibson. Displacement functions and linear tronsforms applied to Diffusion Through Porous Elastic Media, Q. J. Appl. Math, 1960,13:98~111.
    [120]J. R. Rice, M. P. Cleary. Some basic Stress diffusion solution for fluid-saturated elastic solid porous media with compressible contituents, Rev. Geophys. Space. Physics, 1976,14(2):227~241.
    [121]苏恺之, 地应力测量方法[M], 北京, 地震出版社, 1985.
    [122]顾小芸, 海底边坡稳定性分析方法综述[M], 力学与进展,1989.
    [123]章孟涛, 变形与渗流相互作用的岩石力学问题[J], 岩石力学与工程学报, 1989,8(2):180~190.
    [124]钱寿易, 顾小芸, 上海地面沉降研究[J], 岩土工程学报, 1981,3(3):1~9.
    [125]韦昌富, 江礼茂, 章根德. 饱和砂土的非稳定性[J], 岩土工程学报, 1994,16(6):39~46.
    [126]R. M. Bowen, Theory of Mixtures, in Continuum Physucs, A. C. Eringenm, ed. 1976, Acadimic Press.
    [127]C. Trussdell, Sulle Basi Della Thermomeceanica, Rend, lincei, 1957,2(8):33~38,158~166.
    [128]A. E. Green T. R. Steel, Constitutive equation for interacting contina, Int. J. Engng.Sci, 1966,4:482~500.
    [129]C. Trussbell, R. Toupin. The classical field theories, in Handbuch der Phsik,(S.Flugge,ed), 1960, 111(1). Splinger-verlag, Bertin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700