用户名: 密码: 验证码:
城市多层立交结构基于性能抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结国内外抗震研究成果及相关规范的基础上,结合我国多层立交结构建设实践,采用多级设防思想和弹塑性纤维模型分析法,通过理论公式推导和有限元数值分析,对城市多层立交结构的抗震设防水准、抗震性能水平和目标、塑性铰、延性能力及抗震设计计算方法进行研究,主要完成以下工作:
     以国内外抗震研究成果及相关规范为基础,考虑我国目前的经济状况及与现行规范的衔接,通过分析归纳等方法,对城市多层立交结构提出5级抗震设防水准,并给出每一等级下构件灾害状态;将城市多层立交桥梁按照重要性分类,提出不同类型结构的性能目标矩阵及抗震设防水准所对应的性能目标图,方便在实际工程中参考应用。
     采用有限元非线性时程分析方法,研究多层立交桥梁上下部结构14种连接形式、竖向4种地震波荷载分量及4种阻尼比大小等因素对结构自振特性、顺桥向及横桥向地震响应的影响,得出其地震力响应特征规律;结合实际工程经验公式及规范要求,从结构振型取用、支座形式设置、伸缩量确定、墩柱弹性阶段“双控目标”的确定、阻尼比及竖向分量选取等6个方面对多层立交结构动力响应进行分析,并给出抗震设计建议。
     采用弹塑性纤维模型分析法,考虑动轴压、主梁刚度及高阶振型耦合效应的影响,研究多层立交桥梁主要构件的塑性铰出铰顺序、随时间的发展变化、结构耗能能力、塑性铰转角大小及时程变化、墩顶位移、截面实际破损状态及破损状态与其余指标的对应关系等。在此基础上,通过理论分析,提出利用截面曲率作为多层立交结构墩柱延性性能指标来定量描述截面破损状态的方法。
     基于常见的截面破损模型,结合多层立交结构延性性能特征,根据平截面假定及力的平衡原理,推导了材料应变与曲率系数的关系公式;通过建立结构抗震性能水准与曲率系数的联系,推导了曲率系数与性能水准的定量关系公式;并提出利用曲率系数定量表示截面破损指标的方法;在此基础上,进一步建立基于曲率延性系数的截面破损指标与性能水准关系公式。
     采用前文推导公式以及几何加权分配思想,将构件截面破损指标进行权重分配,建立基于曲率延性系数的单个构件及整体结构损伤程度的模型,并利用此模型分析了多层立交结构单个构件及整体结构延性性能。
     在建立结构整体破损指标的基础上,提出基于曲率延性系数的结构弹塑性阶段设计方法及详细流程;结合现行城市桥梁抗震规范,系统地提出一套基于性能的多层立交结构抗震性能设计方法。
Based on the summary of seismic research at home and abroad, multi-level fortificationwas adopted to discuss the seismic performance level and performance goals, as welll asmultilayer seismic fortification level city overpass structure. Then, the finite element methodand fiber model analysis method was adopted to conduct the research to the typical multilayeroverpass structure of plastic hinge and ductility capacity and other realtive designationproblems. a set of suitable forcity multi-level interchange structure seismic design based onperformance evaluation methods about the sectional curvature ductility coefficient as designparameters was systematically established. main studied results are listed as follows:
     Based on standard and the research results at home and abroad, the current economicsituation of our country and the existing norms of especially "cohesion" code for seismicdesign of Bridge City was considered, the city multi-level interchange structure seismicfortification levels5and seismic performance levels was proposed, the component disasterstatus of each level was gaved; the city of multilayer interchange bridge in order ofimportance are divided into4categories, the performance goal graph corresponding todifferent types of structural performance objective matrix and seismic fortification level wasalso proposed, it is sensible to easy reference in practical application.
     The time-dependent analysis method of the finite element software ANSYS was adoptedto study the multilayer overpass structure form of support and vertical seismic wavecomponent values and the values of damping ratio and other factors on the structure vibrationcharacteristics and the longitudinal and transverse direction of the bridge seismic response,the conclusion was drawed. The experience formula and specification requirements wascombined to give a ideal designation suggestion for selection of the multi-level interchangestructure dynamic response analysis in the vibration modes of the structure, and bearing typesetting, and expansion amount determination, and pier column elastic stage "double control",and damping ratio, and vertical component selection are given in6structural seismic.
     The fiber model of elastoplastic time history analysis method was adopted, and theinfluence of axial pressure and the girder stiffness and high order mode coupling effect of thebridge pier was considered, the plastic hinge position and range of variation with time wasstudied, the plastic hinge mechanism and development of the distribution diagram waspresented. On the basis of the research for the multi-level interchange energy dissipation ability and plastic hinge rotation and displacement and the section actual damage state and thecorresponding relations, the sectional curvature ductility index was presented to describe thestate of the damaged section method.
     Based on summary of the common damage model, relationship with multi-levelinterchange structure characteristics of stress and strain and curvature coefficient wascombined, according to the section force equilibrium principle and relation formulas, themulti-level interchange structure using curvature coefficient quantitative performancestandard formula was deduced, and section curvature ductility coefficient based on the saiddamage index and performance levels was further established.
     The damage index of the geometric average weighted distribution idea was adoted to putforward the curvature ductility factor for the individual components and the overall structureof the degree of damage model.
     Based on the whole damage index, the stage design method of elastic plastic structurescurvature ductility coefficient and detailed process was presented; the current standard wascombined to put forward a set of seismic-resistant design method for the seismic performanceof multilayer overpass structure performance, the basic principles including the content anddetailed procedures was expounded, it is for later use reference seismic multi-levelinterchange structure designation.
引文
[1] GJJ166-2011,城市桥梁抗震设计规范[S].北京:中国建筑工业出版社,2011
    [2] GB50111-2006,铁路工程抗震设计规范[S].北京:中国铁道出版社,2006
    [3] JTG/T BO2-01-2008,公路桥梁抗震设计细则[S].北京:人民交通出版社,2008
    [4]李爱群,高振世.工程结构抗震与防灾[M].南京:东南大学出版社,2003
    [5]范立础,李建中,胡世德.双层高架桥梁抗震设计指南[M].上海:同济大学土木工程防灾国家重点实验室,2000
    [6]孙建渊,陈阶亮.城市桥梁双层交通的概念设计[J].桥梁建设,2006,02:39-42
    [7]刘艳辉,强士中等.城市高架桥抗震性能水准的量化[J].西南交通大学学报,2010,45(1):54-59
    [8]刘艳辉.基于性能抗震设计理论的城市高架桥抗震性能研究[D].西南交通大学,2008
    [9] Seismic Design Criteria, Version1.2[S], California, California Department of Transportation(CALTRANS), Division of Structures,2001
    [10] American Association of State Highway and Transportation Officials.Standard Specifications forHighway Bridges[S], Division I-A Seismic Design, Sixteenth Edition,1996
    [11]范立础.现代化城市桥梁抗震设计若干问题[J].同济大学学报(自然科学版),1997,02:147-154
    [12]王丽.大跨度立交桥抗震设计理论与方法[D].北京工业大学,2005
    [13]徐强,张茜茜.文昌立交桥抗震概念设计[J].森林工程,2008,03:66-68
    [14]黄雅捷.钢筋混凝土异形柱框架结构抗震性能及性能设计方法研究[D].西安建筑科技大学,2003
    [15]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].重庆大学,2004
    [16]辛立民.钢筋混凝土异形柱结构抗震性能试验研究与弹塑性时程分析[D].天津大学,2007
    [17]龚胡广.基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用[D].湖南大学,2006
    [18]李琪.基于位移模式结构抗震设计方法研究[D].河海大学,2005
    [19]肖明葵,王肖巍,边江.抗震框架结构位移和滞回耗能响应随结构损伤的变化分析[A].中国力学学会结构工程专业委员会、广州大学土木工程学院、中国力学学会《工程力学》编委会、清华大学土木工程系、清华大学结构工程与振动重点实验室.第18届全国结构工程学术会议论文集第Ⅲ册[C].中国力学学会结构工程专业委员会、广州大学土木工程学院、中国力学学会《工程力学》编委会、清华大学土木工程系、清华大学结构工程与振动重点实验室,2009:5
    [20] Park. R, H.E. Chapman. New Zealand Contributions to the International Workshop on the SeismicDesign and Retrofitting of Reinforced Concrete Bridges [J]. Bulletin of the New Zealand NationalSociety for Earthquake Engineering,1991, Vol.24(2):139-201
    [21] Saatcioglu, M., Ozcebe, G. Response of Reinforced Concrete Columns to Simulated SeismicLoading[J]. ACI Structural J.,1989, Vol.86(1):3-12
    [22]刘庆华.钢筋混凝土桥墩抗震设计中滞回模型与损伤模型的试验与理论研究[D].北京:北方交通大学土木系,1994
    [23] Park, Y. J., Ang, A. H. S. Mechanistic Seismic Damage Model for Reinforced Concrete[J]. J.Structural Eng., ASCE,1985, Vol.111(4):722-739
    [24] Watson, S., Zahn, S. A. and Park, R. Confining Reinforcement for Concrete Columns[J].. J. StructuralEng., ASCE,1994, Vol.120(6):1798-1824
    [25] Mander, J. B., Priestley, M. J. N. and Park, R. Theoretical Stress-Strain Model for ConfinedConcrete[J].. J. Structural Eng., ASCE,1988, Vol.114(8):1804-1826
    [26] Hoshikuma, J., Kawashima, K. and Nagaya, K. et al. Stress-Strain Model for Confined Concrete inBridge Piers[J].. J. Structural Eng., ASCE,1997, Vol.123(5):624-633
    [27] Y. L. Mo., S. J. Wang. Seismic Behavior of RC Columns with Various Tie Configuration.[J]. J.Structural Eng., ASCE,1999, Vol.126(2):1122-1130
    [28] Nadim I. Wehbe, M. Saiid Saiidi. Seismic Performance of Rectangular Bridge Columns WithModerate Confinement[J]. ACI Structural J. Vol.96(2):246-258
    [29]卓卫东.桥梁延性抗震设计研究.[D].上海:同济大学桥梁工程系,2000
    [30] Priestley, M. J. N., Park, R. Strength and Ductility of Concrete Bridge Columns under SeismicLoading[J].. ACI Structural J.,1987, Vol.84(1):61-76
    [31] Saatcioglu, M., Razvi, S. Strength and Ductility of Confined Concrete[J].. J. Structural Eng., ASCE,1992, Vol.118(6):1590-1607
    [32] M. J. Kowalsky. Deformation Limit States for Circular Reinforced Concrete Bridge Columns[J]. J.Structural Eng., ASCE,2000, Vol.126(8):869-878
    [33] JTJ004-89,中华人民共和国交通部标准:公路工程抗震设计规范[S].北京:人民交通出版社,1989
    [34] Mervyn, J Kowalsky. Deformation Limit States for Circular Reinforced Concrete Bridge Columns[J].Journal of Structural Engineering, ASCE,2000,126(8):869-878
    [35] T. Paulay, M. J. N. Prestley著,戴瑞同等译,钢筋混凝土和砌体结构的抗震设计[M].中国建筑建筑工业出版社,1998:16-17,24-28
    [36] Miranda, E., Barter, V. V. Evaluation of Strength Reduction Factors for Earthquake-ResistantDesign[J].. Earthquake Spectra,1994, Vol.10(2):357-379
    [37]李伟鹏,石明强,杜思远.桥梁抗震设计中地震波的合理选取[J].交通科技,2011,04:5-7
    [38] Priestley M. J. N., Seibel F., Calve G. M.. Seismic Design and Retrofit Of Bridges[M], John Wiley&Sons,Inc.,19,1996
    [39]单德山,李乔.铁路曲线梁桥抗震设计分析[J].重庆交通学院学报,2005,24(1):1-4
    [40]黄庆伟.高墩大跨曲线连续刚构桥非线性地震反应分析[D].成都:西南交通大学,2004
    [41] Sunjing Bae and Oguzhan Bayrak. Lateral Deformation Capacity of Concrete Bridge Piers[C]. FifthNational Seismie Conferenee on Bridges&Highways,SanFraneiseo, USA, September2006:18-20
    [42] Cornell A C, Jalayer F and Hamburger R O.Probabilistic Basis for2000SAC Federal EmergencyMangement Agency Steel Moment Frame Guidelines [J]. Journal of Structure Engineering,2002,128(4):526-532
    [43] Mackie K and Stojadinovic B Probabilistic Seismic Demand Model for California Bridges [J]. Journalof Bridge Engineering,2001,6(6):468-480
    [44]李睿,董明.考虑P-Δ效应的高墩抗震计算[J].云南工业大学学报,1999,01:63-68+72
    [45]周国良.高墩及大跨桥梁的地震反应特性研究[D].中国地震局地球物理研究所,2004
    [46]阎志刚.高桥墩延性抗震性能研究[D].北京:北方交通大学,2000
    [47]刘育成.强震时抗弯构架杆件元素韧性因子需求分布之研究[D].台北:国立成功大学,2003
    [48] John L. Wilson. Earthquake Response of Tall Reinforced Concrete Chimneys [J]. Engineeringstructures,2003(25):11-24
    [49] GB50011-2001,中华人民共和国行业标准:建筑抗震设计规范[S].北京:中国建筑工业出版社,2008
    [50]范立础,桥梁抗震[M].上海:同济大学出版社,1997
    [51]范立础,卓卫东,桥梁延性抗震设计[M].北京:人民交通出版杜,2001
    [52] Structural Engineers Association Of California. SEAOC Version2000.Performance Based SeismicEngineering of Buildings[S]. Vols.I And II:Conceptual Framework. Sacremento(CA),1995
    [53] Federal emergency management agency. NEHRP guidelines for the seismic rehabilitation of buildings.FEMA273. FEMA274[S].Commentary.Washington (DC),1995
    [54] Smith K G. Innovation in Earthquake Resistant Concrete Design Philosophies: A Century Of ProgressSince Hennebique S Patent[J]. Engineering Structure,2001,23:72-81
    [55]范立础,李健中,王君杰.高架桥梁抗震设计[M].北京:人民交通出版社,2001
    [56]范立础,王志强.桥梁减隔震设计[M].北京:人民交通出版社,2001
    [57] Meng, Junyi. Seismic analysis and evaluation of skew highway bridges[D]. Syracuse University,2000
    [58] Ladjinovic, Dj Z, Folic, R J, Critical. Analysis of sensitivity coefficient for P-delta effects according toEC8[C]. The twelfth European Conference on Earthquake Engineering,2002
    [59]李宏男,结构多维抗震理论设计方法[M].北京:科学出版社,1998
    [60]肖晓春,地震作用下土一桩一结构动力相互作用的数值模拟[D].大连:大连理工大学,2003
    [61]屈爱平,高淑英.梁一墩一桩基的动力特性分析研究[J].西南交通大学学报,2001,36(6):641-644
    [62] Zhang, Jian. Seismic response amdysis and protection ofhighway over crossings includingsoil-strucmre interaction[D]. University of California: Berkeley,2002
    [63]陈波,吕西林,李培振等.均匀土一桩基一结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(3):91-99
    [64]孔德森.桩一土相互作用计算模型及其在桩基结构抗震分析中的应用[D].大连:大连理工大学,2004
    [65]韦晓,范立础,王君杰,考虑桩一士一桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97
    [66]刘立平.水平地震作用下桩一土一上部结构弹塑性动力相互作用分析[D].重庆:重庆大学,2005
    [67] Curras, Christina J. Seismic soil-pile-structure interaction for bridge and viaduct structures[D]. Davis:University of California,2000
    [68]肖晓春,地震作用下土一桩一结构动力相互作用的数值模拟[D].大连:大连理工大学,2003
    [69]朱东生,劳远昌,沈大元等.桥梁地震反应分析中输入地震波的确定[J].桥梁建设,2000(3):1-4
    [70]申爱国.大跨度桥梁抗震分析中的人工地震波[C].四川省公路学会桥梁专委会2000-2001年桥梁学术讨论会论文集,148-153
    [71]冯云田,李明瑞.复杂结构的弹性地震反应分析[J].地震工程与工程振动,1991,11(4):631-636
    [72]朱东生,虞庐松,刘世忠.不规则桥梁地震动输入主方向的研究[J].兰州铁道学院学报[自然科学版],2000,19(6):37-40
    [73]聂利英,李建中,范立础.复杂结构地震动输入方向的基本原理及其影响[J].地震工程与工程振动,2003,23(3):30-34
    [74]高晓安,周锡元.曲线桥梁在多向地震作用下的动力分析方法[J].特种结构,2005,22(1):56-59
    [75]潘盛山,许文俊,庄年,张哲.双层桥支座布置对抗震性能的影响[J].防灾减灾工程学报,2010,S1:31-34
    [76] Zhenyu Zhua, Iftekhar Ahmadb, Amir Mirm/rana. Fiber Element Modeling for Seismic Performanceof Bridge Colrunns Made of Concrete-Filled FRP Tubes. World Journal of Engineering
    [77]卓卫东,范立础. GFRP管一混凝土组合桥墩的概念及其抗震性能[J].福州大学学报(自然科学版),2005,33(1):73-79
    [78] Baris Binici. An Analytical Model for Stress-strain Behavior of Confined Concrete. EngineeringStructures,2005(27):1040-1051
    [79] G. Ayala and叶献国. Analytical Evaluation of the Structural Seismic Damage of Reinforced ConcreteFrames[C].第7届加拿大地震工程大会论文集,1995
    [80] Park Y J and Ang A HS. Seismic damage analysis of reinforced concrete buildings[J]. Journal ofstructural engineering, ASCE, Vol.1985,111(4):740-756
    [81] Assa B, Nishiyama M, Watanabe F. New Approach for Modeling Confined Concrete l:CircularColumns. ASCE[J]. Journal of Structural Engineering,2001,127(7):743-750
    [82]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报,2005,39(7):1003-1008
    [83]江见黥,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2004
    [84]周岑.考虑倒塌的钢筋混凝土桥梁地震反应全过程仿真分析研究[D].上海:同济大学,2003
    [85]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2005
    [86]汪梦甫,沈蒲生.钢筋混凝土空间高层框架非线性地震反应分析[J].湖南大学学报(自然科学版),1998,03:65-70
    [87]胡聿贤.地震工程学[M].北京:.地震出版社,1988
    [88]沈聚敏等.抗震工程学[M.].北京:中国建筑工业出版社,2000
    [89]朱伯龙等.建筑结构抗震设计原理[M].上海:同济大学出版社,1994
    [90]吕西林等.房屋结构抗震理论与实例[M].上海:同济大学出版社,1994
    [91]邢燕,牛荻涛.基于结构性能的抗震设计与抗震评估方法综述[J].西安建筑科技大学学报(自然科学版),2005(3):24-28
    [92]刘青兰.基于性能桥梁抗震设计研究[J].内蒙古公路与运输,2010,01:5-7
    [93]曹资等.建筑抗震理论与设计方法[M].北京:北京工业大学出版社,1997
    [94] Krawinkler H. Pushover analysis:why, how, when, and when not to use it [C]. proceedings forSEAOC65thannual convention.structural engineering association of California Maui. Hawall
    [95] Miki, T, Niwa, J. Nonlinear analysis of reinforced concrete viaducts subjected to seismic loads using3D lattice model[C]. First International Conference on Urban Earthquake Engineeringp.2004:433-440
    [96] Meng, Junyi. Seismic analysis and evaluation of skew highway bridges[D]. Syracuse University,2000
    [97]刘立平.水平地震作用下桩一土一上部结构弹塑性动力相互作用分析[D].重庆:重庆大学,2005
    [98] Curras, Christina J. Seismic soil-pile-structure interaction for bridge and viaduct structures[D].Davis:University of California,2000
    [99]种迅.基于性能抗震设计中建筑结构弹塑性反应简化分析方法[D].合肥:合肥工业大学,2002
    [100]李杰.自锚式悬索桥地震非线性时程响应分析和简化方法研究[D].成都:西南交通大学博士学位论文,2007
    [101]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005(2):43-48
    [102]刘庆华,钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249
    [103]梁智垚.非规则高墩桥梁抗震设计理论研究[D].上海:同济大学,2007
    [104]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005(2):43-48
    [105]王东升,李宏男,赵颖华,王国新. Ay-Dy格式地震需求谱及其在结构性能抗震设计中的应用[J].建筑结构学报,2006,27(1):60-65
    [106] Ladjinovic, Dj Z. Folic,R J,Critical.Analysis of sensitivity coefficient for P-delta effects according toEC8[C]. The twelfth European Conference on Earthquake Engineering,2002
    [107] Zhang, Jian. Seismic response amdysis and protection of highway over crossings includingsoil-structure interaction[D]. University of California: Berkeley,2002
    [108] Priestley M. J. N Performance based seismic design[A].12th World Conference on EarthquakeEngineering, Auckland[C],2000,1:283-290
    [109] Assa B, Nishiyama M, Watanabe F. New Approach for Modeling Confined Concrete l:CircularColumns. ASCE, Journal of Structural Engineering,2001,127(7):743-750
    [110] Chintanapkdee Chatpan, Chopra Anil K. Evaluation of the modal pushover analysis procedure usingvertically regular and irregular generic frames[C]. Earthquake Engineering Research Center,University of Califomia: Berkeley,2002
    [111] Chopra A.K, Goel R.K.A modal pushover analysis procedure to estimate seismic demands forunsymmetric-plan buildings:theory and preliminary evaluation[C]. Earthquake Engineering ResearchCenter, University of California: Berkeley,2003
    [112] Chintanapakdee Chatpan, Chopra Anil K. Evaluation of modal pushover analysis using verticallyirregular frames[C].13th World Conference on Earthquake Engineering: Conference Proceedings,Vancouver, British Columbia, Canada, August1-6,2004,Paper NO.2139
    [113] Fajfar P.A nonlinear analysis method for performance-based seismic design[J]. Earthquake Spectra,2000,16(3)573-592
    [114] Qiang X.A direct displacement-based seismic design procedure of inelastic structures[J]. EarthquakeStructure,2001,23(11):1453-1460
    [115] Qiang Xue, Cheng-Chung Chen.Performance-based seismic design of structures: a direct2splacement-based approach[J]. Engineering Structures,2003(25):1803-1813
    [116]马宏旺,赵国藩.钢筋混凝土矩形柱截面曲率延性系数概率分析[J].大连理工大学学报,2001,41(4):485-490
    [117]王建民,朱嚼.圆截面R C桥墩曲率极限状态和延性的概率分析[J].土木工程学报,2006,39(12):88-94
    [118]刘庆华,钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249
    [119]王建民,朱嚼,圆截面RC桥墩曲率极限状态和延性的概率分析[J].土木工程学报,2006,39(12):88-94
    [120]翟长海,公茂盛等.工程结构等延性地震抗力谱研究[J].地震工程与工程振动,2004,24(1):22-29
    [121] Kowalsky MJ, A displacement-based approach for the seismic design of continuous concretebridges[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):719-747
    [122] Ghobarah A, Abou-Elfath H, Biddah A. Response-based damage assessment of structures[J].Earthquake Engineering and Structural Dymamics,1999,28(1):79-104
    [123] muthukumar S, DesRoches R. Evaluation of impact models for seismic pounding[C]. Proc. of13thworld conference on earthquake engineering, Vancouver, B.C. Canada,2004
    [124]彭天波,李建中,范立础.能力设计方法在双层高架桥梁抗震设计中的应用[J].世界桥梁,2009,(1):12-15
    [125]彭天波,李建中,胡世德,范立础.双层高架桥的抗震性能[J].同济大学学报(自然科学版),2004,10:1355-1359
    [126]彭天波,双层高架桥的拟动力试验研究[D].上海:同济大学,2003
    [127]彭天波,李建中,胡世德,范立础.上海市共和新路双层高架桥的抗震试验研究[J].结构工程师,2005,03:39-43
    [128]张羽.双层连续梁桥地震响应分析[D].大连:大连理工大学,2012
    [129]王东升,孙治国,李晓莉,霍燚.汶川大地震曲线梁桥震害及破坏机理分析[J].防灾减灾工程学报,2010,30(5):572-579
    [130]柏章朋,邱永东.基于性能的抗震设计研究的主要内容[N].科技咨询导报—工程技术,2007(17):33-34
    [131]张敏红.中国公路桥梁抗震设计规范的变迁及对比研究[D].西安:长安大学,2010
    [132]徐犇.桥梁检测与维修加固百问[M].北京:人民交通出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700