用户名: 密码: 验证码:
多尺度聚丙烯纤维混凝土力学性能试验和拉压损伤本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多尺度聚丙烯纤维混凝土(Multi-scale polypropylene fiber concrete,简称MPFC)是指同种品质,几何形态不同的两种或两种以上的聚丙烯纤维混掺在混凝土中的新型复合建筑材料。聚丙烯细纤维对混凝土的早期塑性开裂有抑制作用,对后期硬化混凝土抗裂性改善较小。以往采用聚丙烯纤维与钢纤维混掺的方法阻止硬化混凝土的开裂,提高韧性。但钢纤维存在易锈蚀,价格高等缺点,而聚丙烯粗纤维是一种新型增强增韧材料,具有耐腐蚀性能好,价格低等优点。在环境较为恶劣的工程中可代替钢纤维使用。鉴于此,本研究采用室内试验、理论分析和数值模拟相结合的方法,对MPFC试件进行较为深入的力学性能研究,主要研究内容和成果如下:
     ①对MPFC进行抗裂性试验研究,结果表明聚丙烯细纤维在塑性态混凝土中的阻裂效应优于粗纤维,聚丙烯粗纤维在混凝土硬化阶段的抗裂效果优于细纤维;多尺度聚丙烯纤维在塑性态混凝土中的阻裂存在着正、负两种效应,在硬化阶段的抗裂效果与粗纤维相当。
     ②通过单轴拉伸试验研究MPFC的抗拉性能,结果显示MPFC的抗拉峰值荷载较素混凝土有较小提高;MPFC在单向拉伸荷载作用下,应力-应变曲线下降段出现了低应力-应变硬化现象,MPFC抗拉韧性的改善幅度优于单掺聚丙烯纤维混凝土。
     ③对MPFC进行单轴抗压试验研究,结果显示MPFC抗压峰值荷载有小幅提高;MPFC的抗压应力-应变曲线下降段比素混凝土平缓。MPFC峰值后的应力随应变的增加降低缓慢,应力一应变曲线下包面积较大,其峰值后的抗压韧性性能得到较好改善。
     ④对MPFC进行四点弯曲试验研究,结果表明MPFC的抗弯强度有小幅提高;MPFC在弯曲荷载作用下,荷载-挠度曲线下降段出现非常明显的低荷载-变形硬化特性,曲线所包面积较大,峰值荷载后抗弯韧性的改善幅度远大于聚丙烯细纤维混凝土,同时也大于聚丙烯粗纤维混凝土。通过对比拉、弯性能指标建立MPFC拉弯对应关系,MPFC弯拉强度比值在2.15~2.80之间,抗弯韧性指数大于抗拉韧性指数,但数据整体变化趋势相同,表明四点弯曲试验可以代替单轴拉伸试验,成为评价MPFC独特力学性能的简单实用试验方法。
     ⑤根据试验结果,建立适合于描述MPFC抗拉、抗压特性的损伤本构模型,得到聚丙烯纤维混凝土损伤因子的曲线形状参数,为此类MPFC在工程中的应用提供理论基础。
     ⑥基于有限差分理论,推导多尺度聚丙烯纤维混凝土拉压损伤本构模型的有限差分表达形式;结合FLAC3D软件良好的开发平台,利用VC++程序实现多尺度聚丙烯纤维混凝土损伤模型的二次开发,获得该模型的动态链接计算程序,并通过试验模拟和算例分析验证二次开发模型程序的正确性和合理性。
     ⑦利用多尺度聚丙烯纤维混凝土损伤模型的二次开发计算程序,对多尺度聚丙烯纤维隧道衬砌进行数值分析。结果表明多尺度聚丙烯纤维改善了混凝土的抗变形能力,提高了混凝土的刚度。
Multi-scale polypropylene fiber concrete (MPFC) refers to the new type ofcomposite building materials that the same quality with different geometry of two ormore than two kinds of polypropylene fiber mix in concrete. Polypropylene fine fibercan prevent the early plastic cracking of concrete, but in the hardened process ofconcrete, toughness and crack resistance is improved very small. Steel fiber can reducethe crack number, shorten the crack length and improving toughness for hardening ofthe concrete, but steel fiber is easy to rust and the price is higher. Polypropylene crudefiber is a new kind of enhanced toughening materials, has a good performance atcorrosion resistant and the price is lower, so steel fiber can be substituted by thepolypropylene crude fiber in the engineering of the relatively bad environment. In viewof the above background, researches carried out in this paper would use a combinationmethods including testing research, theoretical analysis and numerical simulation, themain research contents and conclusions can be drawn as follows:
     ①The crack resistance tests of MPFC show that the polypropylene fine fiber isbetter than crude fiber in the plastic state concrete for crack resistance effect, however,the polypropylene crude fiber is better than fine fiber in the hardening stage; Thecracking resistance of multi-scale polypropylene fiber has both positive and negativeeffects in the plastic state concrete and it is the almost same for anti-cracking effect tocrude fiber in the hardening phase.
     ②The uniaxial tension tests of MPFC show that the peak tensile loads of MPFCwere increased; The decline period of the stress-strain curve of uniaxial tensile load forMPFC appears strain hardening characteristics for low stress, and the tensile toughnessof MPFC is better than that of only mixing polypropylene fiber concrete.
     ③The compressive tests of MPFC show that the compressive peak load of MPFCis increased; The MPFC compressive stress-strain curve of the decline is flat than theplain concrete. The stress decrease slowly with increasing strain after peak for MPFC,stress-strain curve area is larger, the compressive resilience performance is improved.
     ④Four-point bending tests of MPFC show that the bending strength of MPFCincrease slightly; The decline period of the load-deflection curve of bending load forMPFC appears strain hardening characteristics in low load and low load curve area islarger, the flexural toughness of MPFC is greater than that of the polypropylene finefiber concrete and is better than that of the polypropylene crude fiber concrete. The relationships between tensile and flexural properties are established by the comparisonof basic mechanical indexes under tensile and bending load. MPFC flexural-tensilestrength ratio is between2.15to2.80, flexural toughness index is greater than thetensile toughness index, but the same change in the overall trend of the data.Thecomparison results show that the four-point bending test method is a simple andpractical method to estimate the special mechanical performance of MPFC substitutingfor the uniaxial tensile test method.
     ⑤According to the results of tensile and compressive test, established the MPFCdamage constitutive model of tensile, compression characteristic, getting the curveshape parameter of polypropylene fiber concrete damage factor. It provides a theoreticalbasis for widely application in engineering with MPFC.
     ⑥On the basis of the finite difference theory,finite difference expression oftension and compression damage constitutive models for multiple-scales polypropylenefiber concrete were derived; Combined with the good redevelopment platform ofFLAC3Dsoftware and using VC++program to achieve the secondary development ofdamage model for multi-scale polypropylene fiber concrete, the dynamic linkcalculation procedure of the models were obtained. And through the simulation andtest numerical example to verify the correctness and rationality of the secondarydevelopment program model.
     ⑦The secondary development calculation program for the damage model ofmulti-scale polypropylene fiber concrete was applied to numerical analysis ofmulti-scale polypropylene fiber tunnel lining. The results show that the multi-scalepolypropylene fibers improved the deformation resistance and the rigidity of theconcrete.
引文
[1]谷章昭,倪梦象,樊钧,等.合成纤维混凝土的性能及其工程应用[J].建筑材料学报,1999,2(2):159-162.
    [2]沈荣熹.聚烯烃粗纤维增强混凝土的性能及应用[J].科技导航,2009,(3):42-50
    [3]黄承逵.纤维混凝土结构[M].机械工业出版社,2004.5:1-338.
    [4]戴建国,宋玉普,赵国藩.低弹性模量纤维混凝土剩余弯曲强度的力学意义[J].混凝土与水泥制品,1999(1):35-38.
    [5] Saiah A, Altouhat, David A, Lange. Creep, Shrinkage, and cracking of restrained concrete atearly age[J].ACI Materials Journal,2001,(4):323-331
    [6] Banthia N, Nandakumar N. Crack growth resistance of hybrid fiber reinforced cementcomposites[J]. Cement and Concrete omposites,2003,(5):3-9
    [7] Bentur A, Kovler K. Evaluation of early age cracking characteristics in cementitioussystems[J]. Materials and Strucritres,2003,(8):183190
    [8]戴建国,黄承逵,赵国藩.混凝土中非结构裂缝分析及合成纤维控制[J].建筑结构,2000,(9):56-59
    [9]鞠丽艳,张雄.聚丙烯纤维控制砂浆塑性收缩裂缝的研究[J].施工技术,2003,(4):18-19
    [10] Banthia N, Yan C. Shrinkage cracking in polyolefin fiber reinforced concrete[J]. ACIMaterials
    [11] Wang Kejin, Shah S P, Pariya P. Plastic shrinkage cracking in concrete materials influenceof fly ash and fibers[J]. ACI Materials Journal,2001,(6):458--464
    [12]戴建国,刘明,黄承逵.聚丙烯纤维混凝土和砂浆的塑性收缩试验研究[J].沈阳建筑工程学院学报,2000,(3):195-198
    [13] Soroushian Parviz, Faiz Mirza, Abdufralinian Alhozajiny. Plastic shrinkage cracking ofpolypropylene fiber reinforced concrete[J]. ACI Materials Journal,1993,(5):553-560
    [14]马一平,谈慕华,吴科如.聚丙烯纤维几何形态对水泥砂浆塑性干缩开裂性能的影响[J].混凝土与水泥制品.2001,(4):38-40
    [15]张佚伦,詹树林,钱晓倩,等.聚丙烯纤维混凝土早期收缩性能试验研究[J].新型建筑材料,2006,(1):25-28.
    [16]禹凯,钱晓倩,张轶伦,等。聚丙烯纤维对混凝土早期收缩影响的试验研究[J].混凝土,2006,211(5):64-66
    [17]刘数华,何林.聚丙烯纤维混凝土抗裂性的试验研究[J].化学建材,2005,21(2):50-53
    [18]李东,叶以挺.聚丙烯纤维混凝土早期抗裂性能试验研究[J].混凝土与水泥制品,2009,(6):39-42
    [19]李红君,屠柳青,秦明强,等.聚丙烯纤维混凝土早期开裂敏感性的研究[J].建材世界,2009,30(1):241-44
    [20]王可良,刘玲.C25喷射聚丙烯纤维混凝土的试验研究[J].混凝土与水泥制品,2011,(1):54-57
    [21]潘超,冯仲齐,陈凯.低弹模聚丙烯纤维凝土本构模型及力学性能研究[J].混凝土与水泥制品,2011,(5):36-40
    [22]马宏旺,王益群,徐正良,等.地铁车站含聚丙烯纤维混凝土结构的抗裂防渗性能研究[J].上海交通大学学报,2010,44(1):74-80
    [23]张玉新.合成纤维混凝土楼板中长期非荷载抗裂性能[J].广西大学学报,2010,35(1):181-187
    [24]郭海洋,刘建树,赵明等.改性异型聚丙烯PP增强水泥混凝土抗裂性研究.山东纺织科技[J].2001,(5):11-13
    [25]李光伟.聚丙烯纤维对混凝土抗裂性能的影响[[J].水电站设计.2002,(6):98-101
    [26]朱缨.纤维增强混凝土结构防裂和抗渗的研究[[J].混凝土,2003,168(11):31-32
    [27]葛其荣,郑子祥,高翔,等.宁波白溪水库二期面板聚丙烯纤维混凝土试验研究[[J],建筑结构。2001年第9期:63-66
    [28]徐至钧.纤维混凝土技术及应用[M].北京:中国建筑工业出版社,2003
    [29]邢锋,冷发光,冯乃谦等.克裂速纤维增强混凝土抗裂性能[J].复合材料学报,2002,(6):120-124
    [30]曹诚,刘兰强.关于聚丙烯纤维对混凝土性能影晌的几点认识[J].混凝土,2000,(9):49-51
    [31] Kraai P P. ACI-544, Measurement of properties of fiber reinforced concrete[J]. ACIMaterials Journal,1998,(1):45-65
    [32] P.S. Song, S. Hwang, B.C. Sheu. Strength properties of nylon-and polypropylene-fiber-reinforced concretes.Cement and Concrete Research,2005,(35):1546-1550.
    [33] Yeol Choi, Robert L. Yuan.Experimental relationship between splitting tensile strength andcompressive strength of GFRC and PFRC.Cement and Concrete Research,35(2005):1587-1591.
    [34] Tavakoli M. Tensile and compressive strengths of polypropylene fiber reinforced concrete(SP-142), Special Publication, January,1994,61-72
    [35]杨华美,杨华全,李家正,等.掺纤维水工混凝土性能试验研究[J].施工技术2010,39(12):53-55
    [36]曹雅娴,申向东,胡文利.聚丙烯纤维加固水泥土的三轴试验研究[J].公路,2011,(5):158-162
    [37]付春松,聚丙烯纤维对现浇混凝土楼板非荷载裂缝影响的试验研究[D].广西大学,2006,5
    [38]熊燕,南水北调中线穿黄工程南岸渠道机械化衬砌施工技术[J].河南水利与南水北调,2010,(9):11-13
    [39]何伟.聚丙烯纤维混凝土在桥面施工中的应用[J].市政技术,2011,29(1):58-60
    [40]曾兆平,周凯,刘小清.广州国际体育演艺中心综合施工技术的应用[J].广州建筑,2010,38(5):18-21
    [41]何湘安,聚丙烯纤维喷射混凝上在地下厂房锚喷支护中的应用研究[J].中国水运,2011,11(6):216-217
    [42]于丽君,王亚芹.聚丙烯纤维在闹德海水库除险加固坝下消能工程中的应用[J].中国科技信息,2010,(1):91-92
    [43]桑普天,庞建勇,闾沛.喷射聚丙烯纤维混凝土在矿业工程中的应用[J].混凝土与水泥制品,2011,(8):38-41
    [44]王迪明,周勇.聚丙烯纤维在预应力锚索中的应用[J].中国高新技术企业,2009,129(18):170-171
    [45] H Vajm,P Balaguru. Effect of large-diameter polymeric fibers on shrinkage cracking ofcement composites[J].ACI Materials Journal.2002,99(4):345-351.
    [46] Byung Hwan Oh, Ji Cheol Kim, Young Cheol Choi. Fracture behavior of concrete membersreinforced with structural synthetic fibers[J].Engineering Fracture Mechanics,2007,(74):243-257.
    [47]王伯昕,黄承逵.粗合成纤维混凝土抗裂与抗冲击性能试验研究[C].第十一届全国纤维混凝土学术会议论文集.大连:大连理工大学出版社,2006:135-141.
    [48] Thomas Voigt,Van K Bui,Surendra P Shah.Drying shrinkage of concrete reinforced withfibers and welded-wire fabric[J].ACI Materials Journal,2004,101(3):233-241.
    [49] Ramakrishnan V.Rencent advancements in concrete fiber composites.Concrete Lecture1993,Ameircan Concrete Institute,Singapore Chapter,Singapore
    [50] Ramakrishnan V.Performance characteristics and application of high-performance polyoefinfiber reinforced concretes.SP-171,Proceedings of the third CANMET/ACI InternationalConference, Advances in Concrete Technology, American Concrete Institute, Detroit,1997:671-692
    [51] Ramakrishnan V.Materials and properties of fiber reinforced concrete.Proceedings of theInternational Symposium on Fiber Reinforced Concrete,Madras,India,1987:2.3-2.23
    [52] Gopalratnam V S,Shah S P,Batson G B,Criswell M E,Ramakrishnan V and WecharantaM.Fracture toughness of fiber reinforced concrete.ACI Materials Journal,1991,88(4):339-353
    [53] F Papworth. Design guidelines for the use of fibre reinforced shotcrete in ground support[J].Shotcrete,2002,(9):16-21
    [54] Lars Malmgren. Strength,ductility and stiffness of fiber reinforced shotcrete[J].Magazine ofConcrete Research,2007,59(4):287-291.
    [55]毕远志,孔一凡,华渊.改性聚丙烯(粗)对混凝土增强增韧性能影响的试验研究[J].建筑节能,2007,35(12):36-40.
    [56] Moncef Nelhdi, Jennifer Duquetter Ladanchuk. Fiber synergy in fiber-reinforcedl sell一consolidating concrete[J].ACI Materials Journal,2004,101(6):508-517.
    [57] Y Ding,Y Zhang,el al. The investigation on strength and flexural toughness of fiber cocktailself-compacting high performance concrete[J],2009,(23):448-452.
    [58]金剑,刘丽君,史小兴.凯泰(CTA)改性聚丙烯粗纤维在混凝土中的应用研究[C」.第十一届全国纤维混凝土学术会议论文集,大连:大连理工大学出版社,2006:411-416.
    [59]邓宗才,李建辉,孙宏俊,等.新型增强混凝土梁的抗弯冲击特性[J].公路.2004,168(12):163-169
    [60]李建辉,邓宗才,张建军,等.异型塑钢纤维混凝土的抗弯韧性[J].混凝土与水泥制品.2005,146(6):32-35
    [61]李建辉,邓宗才.改性聚丙烯纤维混凝土性能.北京工业大学建筑工程学院试验报告(内部版).2005
    [62]邓宗才,李建辉,王现卫,等.粗合成纤维混凝土抗弯韧性及疲劳特性试验研究[J].新型建筑材料,2006,7:8-10.
    [63]赖建中,孙伟,董贺祥.粗合成纤维混凝土力学性能及纤维一混凝土界面粘结行为研究[J].工业建筑。2006,36(11):94-97.
    [64]阳知乾.聚丙烯粗纤维增强混凝土应用研究进展[J].合成纤维SFC,2009,(6):10-14
    [65]焦红娟,史小兴,刘丽君.粗合成纤维混凝土的性能及应用[J].混凝土与水泥制品2010,(1):46-49
    [66]张伟,聚丙烯纤维高强混凝土的力学性能试验研究[D].太原理工大学,2010,5
    [67] C.X.Qiana P.Storeven.Development of hybrid polypropylene-teel Fibre-reinforcedconcrete.Cement and concrete Researeh,2000,30:63-69.
    [68] Chunxinag Qain, Piet Storeven. Fracture properties of concrete reinforced with steel-polypropylene hybrid fibres.Cement and Concrete Research,2000,22:343-351.
    [69]钱红萍,贡浩平,孙伟.纤维混杂增强水泥基复合材料特性的研究[J].混凝土与水泥制品,1997(6):43-47.
    [70]华渊,曾艺.纤维混杂效应的试验研究[[J].混凝土与水泥制品,1998(4):45-49.
    [71]华渊,姜稚清.混杂纤维增强水泥基复合材料的疲劳损伤模型[J].建筑材料学报,1998(2):144-149
    [72]孙伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[[J].硅酸盐学报,2000,(2):95-99.
    [73]荀勇,周启兆,沈刘甲.含混杂纤维的注浆纤维混凝土力学性能及应用[[J].混凝土与水泥制品,2000,(4):39-41
    [74] Parviz Soroushian, Hafez Elyajnany, Atef Tlili and Ken OstoWari.Mixed-mode FractureProperties Of Conerete Reinforced With Low Volume Fractions of Steel and PolypyleneFibers.Cement and Concrete Composites.1998,(20):67-78.
    [75]焦楚杰,孙伟,秦鸿根.聚丙烯一钢纤维高强混凝土弯曲性能试验研究[J].建筑技术,2004,35(1):48-50.
    [76]刘斯凤,孙伟,张云升.新型超高性能混凝土的力学性能研究及工程应用[J].工业建筑,2002,32(6):1-3.
    [77]王凯,张义顺,王信刚.低掺量S-P混杂纤维增强增韧的作用研究[J].哈尔滨工业大学学报,2003,35(10):1209-1211.
    [78]孙海燕,何真,龚爱民.混杂纤维对混凝土力学及抗裂性能的影响[J].混凝土与水泥制品,2009,(2):48-51
    [79]林一宁,蔡巍.混杂纤维高性能混凝土抗裂试验研究[J].桥梁建设,2009,(增2):97-100
    [80]高丹盈,王占桥,朱海堂,等.混杂纤维高强混凝土断裂性能[J].水力发电学报,2008,27(1):129-134
    [81]潘慧敏,贺丽娟.混杂纤维混凝土耐高温性能试验研究[J].铁道建筑,2009,(10):110-112
    [82]宁博,欧阳东,易宁,等.混杂纤维混凝土在地铁管片中的应用混凝土与水泥制品,2011,(1):50-53.
    [83]焦红娟,金剑,史小兴.有机仿钢丝粗纤维与钢纤维在喷射混凝土中的性能研究[J].混凝土,2007,(7):54-56.
    [84]邓宗才,李建辉,刘国栋.混杂粗纤维增强混凝土力学特性试验研究[J].混凝土,2006,(8):50-55.
    [85]郑捷,钢纤维和聚丙烯粗纤维喷射混凝土性能研究[J].华东公路,2011,190(4):24-26
    [86]曹小霞,郑居焕.钢纤维和聚丙烯粗纤维对活性粉末混凝土强度和延性的影响[J].安徽建筑工业学院学报(自然科学版),2011,19(2):58-61
    [87]赵鹏飞,毕巧巍,杨兆鹏.混杂粗纤维轻骨料混凝土的力学性能及耐久性的试验研究[J].硅酸盐通报,2008,27(4):852-856
    [88] R H Haddad, R J AI-Saleh, N M AI-Akhras.Effect of elevated temperature on bondbetween steel reinforcement and fibe r reinforced concrete[J].Fire Safety Journal,2008.(43):334-343.
    [89] Sun Wei, Chen Dontong. The Effect of Hybrid Fiber and Coupling Agents on FiberReinforced Cement Matrix Proceeding of3rd Beijing International Symposium on Cementand Concrete, Beijing,1993.
    [90]孙家瑛.混杂聚丙烯纤维混凝土性能研究[J].混凝土,2003,(11):16-18.
    [91]蔡迎春,代兵权.改性聚丙烯纤维混凝土抗冻性能试验研究[J].混凝土,2010,249(7):63-65
    [92]彭华,乐运国,曹定胜,等.高性能复合纤维与细灰增强纤维混凝土的性能研究[J].第十届全国纤维混凝土学术会议论文集,上海,2004.
    [93]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [94]蔡四维,蔡敏.纤维混凝土的损伤理论[J].合肥工业大学学报.2000,23(1):73-77
    [95]高建明,孙伟.钢纤维混凝土疲劳性能的研究[J].混凝土与水泥制品,1989,1:10-12.
    [96]程红强,高丹盈.聚丙烯纤维混凝土冻融损伤试验研究[J].东南大学学报,2010,40:197-200.
    [97]薛云亮,李庶林,林峰.考虑损伤阀值影响的钢纤维混凝土损伤本构模型研究[J].岩土力学,2009,30(7):1988-1992.
    [98]康亚明,刘长武,韩小刚等.钢纤维几何尺寸对钢纤维混凝土损伤变形特性的影响[J].土木工程学报,2010,43(4):119-124.
    [99]姚武.纤维混凝土的低温性能和冻融损伤机理研究[J].冰川冻土,2005,27(4):545-549.
    [100]邓宗才,王现卫,李建辉,等.基于劈拉强度的纤维混凝土损伤特性[J].公路交通科技(应用技术版):25-27
    [101]邓宗才.高性能合成纤维混凝土[M].北京:科学出版社,2003.
    [102]彭勃,郑伟.混凝土单轴直接拉伸强度试验方法的研究[J].湖南大学学报(自然科学版),2004,31(2):79-83.
    [103]蔡向荣,超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D],大连理工大学,2010
    [104]过镇海著.混凝土的强度和本构关系:原理与应用[M].北京:中国建筑工业出版社,2004.
    [105]高丹盈,赵军,汤寄予.掺有纤维的高强混凝土劈拉性能试验研究[J].土木工程学报,2005,38(7):21-27.
    [106]赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999
    [107]焦楚杰,詹镇峰,彭春元,等.混杂纤维混凝土抗压试验研究[J].广州大学学报(自然科学版),2007,6(4):70-74.
    [108]张慧丽,矿渣聚丙烯纤维混凝土性能研究[D].西北农林科技大学,2010.
    [109]易成,逄治宇,戴成琴,纤维拔出时耗能机理对纤维混凝土力学性能的影响[J].哈尔滨建筑大学学报,1998,31(6):88-93.
    [110]邵晓蓉,聚丙烯纤维混凝土结构性能的试验研究[D].浙江大学,2006.
    [111]李贺东,徐世烺.超高韧性水泥基复合材料弯曲性能及韧性评价方法[J].土木工程学报,2010,43(3):32-39.
    [112] Gopalaratnam V S, Gettu R. On the characterization of flexural toughness in fiber reinforcedconcretes [J].Cement and Concrete Composites,1995,17(3):239-254
    [113] ASTM C1018-89Standard test method for flexural toughness and first2crack strength offiber reinforced concrete [S]
    [114] JSCE—SF4b Method of test for flexural strength and flexural toughness of steel fiberreinforced concrete [S]
    [115]邓宗才,张鹏飞,薛会青,等.纤维素纤维及混杂纤维混凝土的弯曲韧性[J].北京工业大学学报,2008,34(8):852-856.
    [116]徐世烺,王楠,李庆华.超高韧性水泥基复合材料增强普通混凝土复合梁弯曲性能试验研究[J].土木工程学报,2010,43(5):17-23.
    [117] Fordyce M W, Wodehouse R G. GRC and buildings. London:Butterworth&Co.,1983.
    [118] J.W. Dougill. Some observations on failure of quasi brittle materials under thermal stress[J].Cement and Concrete Research,1973,3(4):469-474.
    [119] Kachanov M, Eric Montagut. Interaction of a crack with certain microcrack arrays[J].Engineering Fracture Mechanics,1986,25(5):625-636.
    [120] Jacky Mazars. A description of micro-and macroscale damage of concrete structures[J].Engineering Fracture Mechanics,1986,25(6):729-737.
    [121] Loland K E. Continuum damage model for load response estimation of concrete[J]. Cementand Concrete Research,1980,10:395-402.
    [122] Krajcinovic D. Damage mechanics[J]. Mech. Maters.,1989,8(2):117-197.
    [123] Saanouni K, Sidoroff F. Damaged hyperelastic solid with an induced volume variationEffect of loading paths[J]. Studies in Applied Mechanics,1998,46:503-522.
    [124]余寿文.断裂损伤与细观力学.力学与实践,1988,6:12-18.
    [125]王军著.损伤力学的理论与应用[M].北京:科学出版社,1997.
    [126]曹明. ABAQUS损伤塑性模型损伤因子计算方法研究[J].道路工程,2012,2:51-54.
    [127]庄茁,朱以文著. ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1998.
    [128]王金昌,陈页开著. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700