用户名: 密码: 验证码:
华北克拉通南缘中生代银—铅—锌矿床成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北克拉通南缘是我国重要的多金属成矿带,优势矿种有金、钼、钨、银、铅、锌等。其中栾川钼矿带是我国最大的铝金属产地,小秦岭地区是我国仅次于胶东地区的第二大黄金产地。随着地质找矿工作的深入,过去十几年在华北南缘又先后探明了一批银-铅-锌矿床,使这一地区成为华北克拉通以及秦岭造山带重要的银-铅-锌资源产地。目前对这些银-铅-锌矿床的成因类型、成矿流体演化、成矿物质来源、成矿构造背景等方面的认识仍存在较大争议。本文以华北克拉通南缘银-铅-锌矿床较为聚集的三个矿田(南泥湖矿田、下峪矿田和付店矿田)为研究对象,对各个矿田内银-铅-锌矿床的矿化特征、银赋存状态、成矿作用时代、成矿流体和成矿物质来源进行系统研究,以揭示银-铅-锌矿床的成因及与矿田内其他矿床类型的关系,建立成矿系列,进而总结区域成矿规律和成矿作用地球动力学背景。
     (1)栾川地区的南泥湖矿田内发育矽卡岩型硫铁-铅-锌-(银)矿床和趣液脉型铅-锌-银矿床。前者以骆驼山矿床为代表,后者以冷水北沟矿床为代表,二者围绕矿田中心的南泥湖斑岩型钼(钨)矿床向外依次产出。骆驼山矿床产于南泥湖斑岩体外围西侧的元古代大理岩地层内,硫铁-铅-锌-(银)矿体主要呈层状或者透镜状发育于层间断裂带的矽卡岩中,矿化与矽卡岩化密切相关,野外观察和矿相学研究表明成矿过程可分为(1)矽卡岩阶段、(2)多金属硫化物阶段和(3)碳酸盐阶段。冷水北沟矿床产于矿田西北角的NNE向断裂带内,成矿过程可分为(1)石英-黄铁矿阶段、(2)石英-多金属硫化物阶段和(3)石英-碳酸盐阶段。
     黄铁矿微量元素组成的LA-ICP-MS分析结果显示,从南泥湖矿床、骆驼山矿床到冷水北沟矿床,黄铁矿中高温元素的含量逐渐降低,而低温元素的含量逐渐升高。例如,Co、Ni等元素在南泥湖矿床的黄铁矿中最为富集,Mn、Ni和Bi等元素在骆驼山矿床的黄铁矿中相对富集,而Pb、Zn、Cu、Au、Ag、As和Sb等多种微量元素在冷水北沟矿床的黄铁矿中相对富集。三个矿床中大多数黄铁矿的Co/Ni≥1,且Co、Ni含量从斑岩型、矽卡岩型到热液脉型矿床有逐渐下降的趋势。南泥湖矿床5件硫化物样品的δ34S为0.93~2.86‰(平均值为2.0‰),骆驼山矿床15件硫化物样品的δ34S为0.24~6.46‰(平均值为2.6‰),冷水北沟矿床11件硫化物样品的δ34S为0.70~8.07‰(平均值为4.09‰)。硫化物硫同位素组成自斑岩型钼矿床向外呈现塔式分布的特点,并具有向地层硫(集中于-13~-8‰和6~19‰两个范围)靠近的趋势。从斑岩型钼矿床到铅-锌-银矿脉,成矿流体的H-O同位素组成具有从岩浆水逐渐向大气水靠近的趋势。综上所述,以斑岩体为中心向外,南泥湖矿床、骆驼山矿床和冷水北沟矿床的成矿流体和成矿物质的来源以岩浆-热液为主,但随着成矿作用的进行逐渐有大气降水及其地层中的硫和其他元素进入成矿流体。南泥湖斑岩体的锆石U-Pb年龄为144.9±1.6Ma,斑岩型钼(钨)矿床的辉钼矿Re-Os年龄为144.9±0.7Ma142.8±0.6Ma,二者在误差范围内基本一致;冷水北沟矿床S031矿脉中绢云母的Ar-Ar坪年龄为121.5±1.2Ma。综合以上典型矿床矿化特征、蚀变特征、微量元素和同位素组成特征以及成岩成矿年代学的研究,认为南泥湖矿田中南塑岩型钼(钨)矿床、骆驼山矽卡岩型硫铁-铅-锌-(银)矿床和冷水北沟热液脉型铅-锌-银矿床构成典型的岩浆-热液成矿系列,成矿均与南泥湖斑岩岩浆活动有关。
     (?)熊耳山地区的下峪矿田内发育有大量银-铅-锌矿脉,它们赋存于熊耳山变质核杂岩中太华群变质岩内,矿脉空间分布和产状严格受NE-NNE向断裂构造带控制。沙沟、蒿坪沟以及铁炉坪矿床是下峪矿田重要的银-铅-锌矿床,其中蒿坪沟矿床内还发育有含金石英-黄铁矿脉,与银-铅-锌矿脉空间关系密切。沙沟矿床位于下峪矿田的西北角,对矿脉结构构造和矿石矿物及围岩蚀变的综合研究表明其成矿过程可分为(1)石英-菱铁矿阶段、(2)石英-闪锌矿阶段、(3)石英-银矿物-方铅矿阶段以及(4)石英-碳酸盐阶段。蒿坪沟矿床位于下峪矿田的北部,成矿作用可分为富金黄铁矿期和富银铅锌矿期。其中富金黄铁矿期包括(1)石英-菱铁矿阶段和(2)石英-黄铁矿阶段,矿脉结构表明其形成于韧性剪切变形环境;富银铅锌矿期包括(1)石英-铁白云石阶段、(2)石英-多金属硫化物阶段和(3)石英-方解石阶段,矿脉结构表明其形成于张性构造环境,与前人提出的地壳伸展型脉状银-铅-锌矿床的矿化特征相似。
     沙沟矿床和蒿坪沟矿床热液碳酸盐矿物的δ13CPDB为-5.82~-1.39‰,δ180SMOW为9.62~17.61‰。据此计算出成矿流体的δ13C和δ180值分别为-7.47~-.0.57‰和2.35~11.50‰,指示成矿流体比岩浆热液更富613C和δ18O。沙沟矿床18件硫化物样品的δ34s为1.1~6.3‰。蒿坪沟矿床富金黄铁矿期6件硫化物样品的δ34s为-0.65~3.72‰,富银铅锌矿期8件硫化物样品的δ34S为1.09~6.12‰。结合前人分析的铁炉坪矿床硫化物硫同位素组成数据可知,下峪矿田三个主要银-铅-锌矿床的硫同位素组成变化范围较大(δδ34S=-8.8~6.3‰),远大于典型的深源硫同位素(如岩浆硫或地幔硫)组成范围。沙沟矿床和蒿坪沟矿床的铅同位素组成较为一致,11件方铅矿样品铅同位素206Pb/204Pb、207Pb/204Pb和208Pb/204Pb的值分别为17.472~18.153、15.411~15.572和38.178~38.630,在铅同位素图解上落入元古代官道口群和栾川群的铅同位素组成范围,而与太华群和熊耳群的铅同位素组成有较大差别。黄铁矿的LA-ICP-MS微量元素分析结果显示,蒿坪沟矿床富金黄铁矿期和富银铅锌矿期的黄铁矿Co、Ni元素含量均变化较大,Co/Ni匕值位于火山成因矿床、矽卡岩矿床以及沉积矿床的范围,暗示成矿物质可能具有多源性。以上C-O-S-Pb同位素示踪以及黄铁矿的Co/Ni元素比值表明,下峪矿田银-铅-锌矿床的成矿流体和成矿物质可能主要来自俯冲于熊耳山地体深部的官道口群和栾川群海相碳酸盐地层所发生的变质脱挥发份作用,但可能有少量岩浆热液的混入。沙沟矿床S8矿脉绢云母Ar-Ar坪年龄为139.8±1.2Ma,蒿坪沟矿床H16矿脉绢云母的Ar-Ar似坪年龄为144.4±1.6Ma,表明下峪矿田内银-铅-锌矿床主要形成于晚侏罗世末-早白垩世初,早于蒿坪沟花岗斑岩体的侵位(135.4±0.9Ma和134.9±1.0Ma;锆石U-Pb年龄),暗示下峪矿田银-铅-锌成矿作用与蒿坪沟斑岩体没有直接的成因联系,但可能与区域上熊耳山及邻区早白垩世初大面积的岩浆活动有关。深部岩浆在向上侵位过程中使俯冲到熊耳地体之下的官道口群和栾川群海相地层发生变质脱水作用而产生大量流体及成矿金属元素。深部岩浆冷凝过程中释放的岩浆流体也可能部分加入到上述变质流体中,变质流体或混合流体沿深大断裂及其次级断裂带向上运移,最终在熊耳山核部太华群变质岩内NNE向断裂带内沉淀成矿。此外,微量元素及硫同位素组成特征表明,蒿坪沟矿床富金黄铁矿脉与富银铅锌矿脉可能分别形成于两次独立的成矿事件,其中富金黄铁矿脉与下峪矿田南部熊耳群地层中大量发育的脉状金矿床(如上宫金矿床)可能属于同一矿床类型,而富银铅锌矿脉与同一矿田内沙沟矿床银-铅-锌矿床属于另外一个矿床类型。
     (?)外方山地区付店矿田围绕东沟斑岩体和东沟钼矿床发育有大量银-铅-锌矿脉,以靠近斑岩体三元沟铅-锌-银矿床和远离斑岩体的老代仗沟银-铅-锌矿床为代表。三元沟矿床位于东沟斑岩体的南部,矿石中除了铅锌矿物以外还发育有丰富的铜矿物,成矿过程分为(1)石英-黄铁矿阶段、(2)多金属硫化物阶段和(3)石英-碳酸盐阶段。老代仗沟矿床位于东沟斑岩体西北侧远端,矿体均赋存于数条近EW向矿化断裂破碎带内,矿石内发育有大量银矿物,成矿过程可分为(1)石英-黄铁矿阶段、(2)黑褐色闪锌矿-方铅矿-黄铁矿阶段、(3)浅褐色闪锌矿-方铅矿阶段和(4)石英-碳酸盐阶段。
     三元沟矿床和老代仗沟矿床热液碳酸盐矿物的δ13CPDB范围为-9.05~-3.94‰,δ18OSMOw范围为12.10~16.61‰。经过同位素平衡方程计算,三元沟矿床成矿流体的δ13C和δ180分别为-6.35~.3.92‰和5.18~10.50‰,老代仗沟成矿流体的δ13C和δ18O分别为-8.60~.3.49‰和4.15~8.33‰,二者与岩浆热液C-O同位素的组成较为一致,暗示成矿流体主要为岩浆来源,但不排除其它来源流体的贡献。东沟矿床、三元沟矿床和老代仗沟矿床方铅矿的铅同位素组成相似,9件样品的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb的值分别集中于17.314~17.458、15.452~15.485和38.138~38.370,在铅同位素图解上分布于造山带铅和地幔铅之间,均表明矿石铅具有深部来源的特点。然而,自斑岩体向外,从东沟钼矿床到三元沟矿床硫化物的S同位素组成出现系统变化,且两个矿床δ34S范围均相对较宽(分别为0.36~9.91‰和5.52~16.24‰);但远离斑岩体的老代仗沟矿床S同位素组成则相对集中,并且δ34S平均值(7.8‰)介于东沟矿床(6.3‰)和三元沟矿床(9.5‰)之间,指示老代仗沟矿床可能与东沟斑岩成矿系统没有直接联系。黄铁矿微量元素的LA-ICP-MS分析结果表明,三元沟矿床的黄铁矿更为富集Cu、Au和As等元素,老代仗沟矿床则更富集Sb和Pb等元素,但两个矿床中黄铁矿的Ag含量均比较高。此外,东沟矿床和三元沟矿床中黄铁矿的Co、Ni元素比值一般大于1,而老代仗沟矿床中黄铁矿的Co、Ni元素含量及比值则变化较大,与东沟矿床和三元沟矿床明显不同。东沟斑岩体的锆石U-Pb年龄(1—17—.8±0.9Ma)与斑岩型钼矿床的辉钼矿Re-Os年龄(117.5±0.8Ma和116.4±0.6Ma)在误差范围内完全吻合。近斑岩体三元沟矿床矿脉绢云母的Ar-Ar坪年龄为115.9±0.9Ma,与东沟钼矿床的成矿年龄在误差范围内一致。远离斑岩体的老代仗沟矿床黑褐色闪锌矿-方铅矿-黄铁矿脉中绢云母的Ar-Ar坪年龄为124.7±1.2Ma,早于东沟斑岩体和钼矿床的成岩成矿年龄约7Ma。基于以上研究认为,付店矿田以东沟斑岩体为中心向外发育斑岩型钼矿床(东沟)和热液脉型铅-锌-银矿床(三元沟),并形成完整的岩浆-热液成矿系列。老代仗沟矿床与沟斑岩体没有直接成因联系,是该区早白垩世另外一次构造-岩浆热液成矿事件的产物。老代仗沟床在矿脉产状、矿化特征以及矿物组合等方面同下峪矿田沙沟矿床较为类似,二者可能属于同一成矿类型。
     基于对华北克拉通南缘南泥湖矿田、下峪矿田和付店矿田矿床类型的详细研究,作者认为区域上至少发育三种银-铅-锌矿床类型:矽卡岩型硫铁-铅-锌-(银)矿床(骆驼山)、近斑岩体热液脉型铅-锌-银矿床(冷水北沟、三元沟)、地壳伸展型脉状银-铅-锌矿床(沙沟、蒿坪沟、老代仗沟)。矽卡岩型硫铁-铅-锌-(银)矿床和近斑岩体热液脉型铅-锌-银矿床均与矿田内的斑岩体关系密切,二者具有相似的成矿流体和成矿物质来源。矽卡岩型硫铁-铅-锌-(银)矿床发育于斑岩体与大理岩接触带附近,成矿元素以Fe, Zn为主、Pb次之,局部富集Ag,围岩蚀变主要为矽卡岩化和绢云母化;热液脉型铅-锌-银矿床产于靠近斑岩体的断裂带内,成矿元素以Pb, Zn为主、Ag次之,围岩蚀变主要为硅化和绢云母化。地壳伸展型脉状银-铅-锌矿床与区内的斑岩体没有直接的成因联系,它们主要受区域深大断裂及其次级断裂构造控制,成矿流体和成矿物质主要来自于深部岩浆活动和变质作用。该类型银-铅-锌矿床成矿元素以Ag,Pb为主、Zn次之,矿脉内可见大量独立银矿物发育,黄铁矿中多富集Ag, Sb, Pb等微量元素,围岩蚀变以绢云母化和碳酸盐化为主。
     结合华北克拉通其它地区的研究资料,认为华北克拉通南缘银-铅-锌成矿作用是中生代华北克拉通破坏的浅部地质响应,而古太平洋板块向欧亚板块持续俯冲并发生运动转向可能是造成华北克拉通破坏的诱因。晚中生代古太平洋板块在华北克拉通下部俯冲和体制转换的过程中不仅引起软流圈的扰动和上涌,而且对上覆岩石圈进行强烈的交代,导致华北克拉通东部岩石圈的力学和化学性质发生重要变化。软流圈上升导致强烈的岩石圈伸展,同时引起岩石圈地幔和下地壳发生大范围的部分熔融,岩浆上升侵位过程中分异出富含成矿物质的岩浆热液,最终沉淀形成岩浆-热液成矿系列(如南泥湖和付店矿田);岩浆侵位过程中引起的热或者动力变质作用也可能造成中-上地壳范围的地层(以海相碳酸盐为主)发生变质脱挥发份,岩浆热液与变质热液混合并且共同向上运移,最终于浅部断裂带内形成脉状多金属矿床(如下峪矿田)。基于对华北克拉通南缘三个典型矿田尤其是银-铅-锌矿床成矿作用、岩浆活动、构造背景的综合研究,对区域上钼、银-铅-锌以及金矿床的找矿前景进行了初步分析,认为洛南-卢氏地区和外方山地区是寻找斑岩型铝矿床及相关铅-锌-银矿床类型的理想场所,熊耳山地区和外方山地区广泛发育的断裂构造带具有寻找地壳伸展型脉状银-铅-锌矿床的潜力,而熊耳山地区和崤山地区核部的太华群地层具有很好的脉状金矿床找矿前景。
Southern margin of the North China Craton is one of the most important metallogenic belts in China, that hosts numerous Au, Mo, W, and Ag-Pb-Zn deposits, including the Luanchuan Mo belt being the largest molybdenum district and the Xiaoqinling gold district being the second largest gold district in China. In the last two decades, a number of Ag-Pb-Zn deposits have been discovered in several districts, making this area to be an important Ag-Pb-Zn producer throughout the North China Craton and the Qinling Orogen. However, the mineralization type, fluid evolution, metals source, tectonic setting of these Ag-Pb-Zn deposits have been controversial. In this paper, mineralization characteristics, occurrences of precious metals, mineralization ages, origins of ore-forming fluids and metals of the Ag-Pb-Zn deposits from three key ore fields (Nannihu, Xiayu, Fudian) were systematically studied, to reveal the ore genesis and the relationships to other types of deposit in the same ore field, and finally to summarize regional metallogeny and to discuss the geodynamic background of the Mesozoic large scale mineralization at the southern North China Craton.
     In the Nannihu ore field, Luanchuan district, Fe-Pb-Zn-(Ag) skarn and hydrothermal Ag-Pb-Zn vein deposits are widespread. The former type is represented by the Luotuoshan deposit, and the latter type is represented by the Lengshuibeigou deposit. Both types of deposits are located at the periphery of the Nannihu granite porphyry and Nannihu Mo-(W) porphyry deposit, and the vein type of deposits are more far from the intrusion. The Luotuoshan deposit is located in the western periphery of the Nannihu porphyry deposits and hosted in the Proterozoic marble. The ore bodies are controlled by the interlayer fault zone of the skams. Three stages of mineralization have been recognized in the Luotuoshan deposit:(1) the skarn stage,(2) the polymetallic sulfide stage, and (3) the quartz-carbonate stage. Lengshuibeigou deposit is located in the NNE-trending faults in the Northwest of ore field, and the mineralization consists of three stages:(1) the quartz-pyrite stage,(2) the quartz-polymetallic sulfide stage, and (3) the quartz-carbonate stage.
     Trace elements of pyrite, analyzed by LA-ICP-MS, suggest that the porphyry and skarn deposits are enriched in high temperature elements (Co and Ni) whereas the vein Zn-Pb deposits are rich in low temperature elements (Pb、Zn、As and Sb). For example, pyrites from the Nannihu deposit are rich in Co and Ni and those from the Luotuoshan deposit are rich Mn, Ni and Bi, whereas pyrites from the Lengshuibeigou deposit are rich in Pb、Zn、Cu、Au、Ag、As and Sb. Most of the pyrites from the three types of deposits have the Co/Ni≥1, with Co and Ni contents decreasing from the porphyry deposit, skarn deposit, to hydrothermal vein deposit. The834S values of5sulfide samples from the Nannihu deposit are0.93~2.86‰(mean value=2.0‰),15sulfide samples from the Luotuoshan deposit are0.24~6.46‰(mean value=2.6‰), and11sulfide samples from the Lengshuibeigou deposit are0.70~8.07‰(mean value=4.0‰). The834S values have a wide range but are close to those of wall rocks (-13~-8‰and6~19‰) of the deposits. The H-O isotopes also show a tendency from magmatic fluids to meteoric waters following the porphyry deposit to the Pb-Zn-Ag veins. Therefore, the ore-forming fluids and materials of the three types of deposits are mainly derived from the magmatic-hydrothermal fluids, with gradually adding of meteoric waters and strata sulfur from the Nannihu, Luotuoshan, to the Lengshuibeigou deposits. Zricon U-Pb age of the Nannihu porphyry (144.9±1.6Ma) is in well consistent with molybdenite Re-Os date of the Nannihu deposit (144.9±0.7Ma and142.8±0.6Ma). Sericite of S031vein from the Lengshuibeigou deposit has a Ar-Ar plateau age of121.5±1.2Ma. Consequently, the Nannihu, Luotuoshan, and Lengshuibeigou deposits are a suite of magmatic-hydrothermal deposits which were genetically related to the intrusion of the Nannihu granite porphyry.
     Numerous Ag-Pb-Zn veins are located in the Xiayu ore field, Xiong'ershan district. These veins are distributed in the metamorphic rocks of the Taihua Group, and are controlled by the NE-to NNE-trending faults. The ore field has three key Ag-Pb-Zn deposits, including the Shagou, Haopinggou, and Tieluping deposits. The Shagou deposit is located in the northwest of the ore field, and consists of four stages of mineralization:(1) the quartz-siderite stage,(2) the quartz-sphalerite stage,(3) the quartz-silver minerals-galena stage, and (4) the quartz-carbonate stage. Haopinggou deposit is located in the north of the ore field, and consists of Au-bearing quartz-pyrite veins and Ag-bearing sphalerite and galena veins which were formed in the shearing and extensional zones, respectively. Two stages mineralization and alteration have been recognized in the quartz veins, including (1) the quartz-siderite stage and (2) the quartz-pyrite stage; while the Ag-bearing sphalerite and galena veins are composed of three stages:(1) the quartz-ankerite stage,(2) the quartz-polymetallic sulfide stage, and (3) the quartz-calcite stage.
     The carbonate minerals from Shagou and Haopingou deposits have δ13CPDB and δ18OSMOW values of-5.82~1.39‰and9.62~17.61‰, respectively, and the calculated δ13C and δ18O values for ore-forming fluids are-7.47~-0.57‰and2.35~11.50‰, respectively. It seems that the ore-forming fluids have higher C-O isotopes than those of magmatic fluids.18sulfide samples from the Shagou deposit have834S values of1.1~6.3‰, and6sulfide samples from the Au-bearing quartz-pyrite veins and8sulfide samples from the Ag-bearing sphalerite and galena veins from the Haopinggou deposit have834S values of-0.65~3.72‰and1.09~6.12‰, respectively. In addition with sulfur isotopes of the Tieluping deposit,δ34S values of the Ag-Pb-Zn veins in the Xiayu ore field, range from-8.8to6.3‰, showing a much wider range than deep-sourced sulfur (such as magmatic sulfur or mantle-derived sulfur). The Pb isotopic compositions of galena from the Shagou and Haopinggou deposits are quite similar, and11samples have206Pb/204Pb,207Pb/204Pb and2Q8Pb/204Pb values of17.472~18.153,15.411~15.572, and38.178~38.630, respectively. They plot in the range of the Proterozoic Guandaokou and Luanchuan Groups in the Pb-Pb diagram, but far away from the ranges of the Taihua and Xiong'er Groups. Pyrites from the Au-bearing quartz-pyrite veins and Ag-bearing sphalerite and galena veins have various Co and Ni contents, and their Co/Ni ratio scattered in the ranges of volcanogenic deposits, skarn deposits, and sedimentary environments in the Co versus Ni diagram, indicating the ore-forming materials may be of several origins. C-O-S-Pb isotopes and Co/Ni ratios of pyrite demonstrate the ore-forming fluids and materials of the Ag-Pb-Zn veins were derived from the metamorphic devolatilization of the marine sedimentary rocks previously subducted beneath the Xiong'ershan district, but with the involvement of some magmatic fluids. Ar-Ar plateau age of the sericites from S8vein in the Shagou deposit and H16vein from the Haopinggou deposit are139.8±1.2Ma and144.4±1.6Ma, respectively, indicating the Ag-Pb-Zn veins in the Xiayu ore field are formed during late Jurassic to early cretaceous. These ages are earlier than the zircon U-Pb ages of the Haopinggou granite porphyry, demonstrating there is no direct relationship between porphyry emplacement and Ag-Pb-Zn mineralization, but the mineralization may be related to the regional deep-seated intrusions. The emplacement of these intrusions induced the devolatilization of the Meso-Neoproterozoic marine sedimentary rocks and generated a lot of fluids and materials. Magmatic fluids may mix with the metamorphic fluid during this process. Moreover, based on the trace elements and sulfur isotope study, the Au-bearing quartz-pyrite veins and Ag-bearing sphalerite and galena veins maybe formed in two independent ore-forming events. The former may be the same type of deposit located in the Xiong'er Group in the south of Xiayu ore field; whereas the later veins may be the same type of those Ag-Pb-Zn veins in the Shagou deposit.
     Lots of Ag-Pb-Zn veins are distributed surrounding the Donggou granite porphyry and Donggou Mo deposit in the Fudian ore field, Waifangshan district, represented by proximal Sanyuangou Pb-Zn-Ag deposit and distal Laodaizhanggou Ag-Pb-Zn deposit. The Sanyuangou deposit is located in south of the Donggou granite porphyry, and consists of three stages of mineralization:(1) the quartz-pyrite stage,(2) the polymetallic sulfide stage, and (3) the quartz-carbonate stage. Laodaizhanggou deposit is located in distal northwest of the Donggou granite porphyry, and the ore veins are controlled by the EW-trending faults zones. Four stages of mineralization have been recognized in the Laodaizhanggou deposit:(1) the quartz-pyrite stage,(2) the dark brown sphalerite-galena-pyrite stage,(3) the light brown sphalerite-galena stage, and (4) the quartz-carbonate stage.
     The carbonate minerals from the Sanyuangou and Laodaizhanggou deposits have513CPDB and δ18Osmow of-9.05~-3.94‰and12.10~16.61‰, respectively, and the calculatedδ13C and δ18O values of ore-forming fluids for the Sanyuangou deposit are-6.35~-3.92‰and5.18~10.50‰, respectively, and for the Laodaizhanggou deposit are-8.60~-3.49‰and4.15~8.33 ‰, respectively. Both of the δ13C and δ18O values from Sanyuangou and Laodaizhanggou deposits are consistent with magmatic fluids, indicating the ore fluids may mainly be of magmatic origin. The Pb isotopic compositions of galena from the Donggou, Sangyuangou, and Laodaizhanggou deposits are quite similar,206Pb/204Pb,207Pb/204Pb and208Pb/204Pb values of9samples are17.314-17.458,15.452-15.485and38.138-38.370, respectively. The values plot between the range of Orogen reserve and Mantle reserve in the Pb-Pb diagram, indicating a deep-seated lead source. However, from the porphyry to outside, sulfide samples from the Donggou deposit and Sanyuangou deposit both have a wide range of834S (0.36~9.91‰and5.52~16.24‰, respectively). In contrast, sulfides from the Laodaizhanggou deposit have concentrated δ34S with the mean value between the mean values of the Donggou deposit and the Laodaizhanggou deposit. Pyrites from the Sanyuangou deposit are rich in Cu, Au, and As, while the Laodaizhanggou deposit are rich in Sb and Pb. But both of them are rich in Ag. Co/Ni ratios of pyrites from the Donggou and Sanyuangou deposits are both>1, whereas those from the Laodaizhanggou deposit are scattered. Zricon U-Pb data of the Donggou porphyry (117.8±0.9Ma) and Molybdenite Re-Os data of the Donggou deposit (117.5±0.8Ma and116.4±0.6Ma) are in good agreement, and both are consistent with the Ar-Ar plateau age of the sericite (115.9±0.9Ma) from the Sanguangou deposit. However, the Ar-Ar plateau age of the sericite from the Laodaizhanggou deposit is124.7±1.2Ma, which is about7Ma older than the ages of the Donggou porphyry and the deposit. Consequently, the Donggou porphyry Mo deposit and the Sanyuangou hydrothermal vein Pb-Zn-Ag deposit surrounding the Donggou porphyry were formed by the same magmatic-hydrothermal event in the Fudian ore field, whereas the Laodaizhanggou deposit has no relationship with the Donggou granite porphyry. The Laodaizhanggou deposit is quite similar with the Shagou deposit on occurrence of vein, mineralizing characteristics, and mineral assemblage. The two deposits may belong to the same type.
     Based on study of the typical deposits in the Nannihu, Xiayu, and Fudian ore fields in the southern North China Craton, three types of Ag-Pb-Zn deposit have been recognized in the area, including skarn Fe-Pb-Zn-(Ag) deposit (Luotuoshan), porphyry-proximal hydrothermal vein Pb-Zn-Ag deposit (Lengshuibeigou, Sanyuangou), and crustal-extension vein Ag-Pb-Zn deposit (Shagou, Haopinggou, Laodaizhanggou). Among these types, skarn Fe-Pb-Zn-(Ag) deposit and porphyry-proximal hydrothermal vein Pb-Zn-Ag deposit have a genetic relationship with the porphyry intrusion in the ore field, and have similar origins of the ore-forming fluids and metals. Ore-forming metals in skarn Fe-Pb-Zn-(Ag) deposit are mainly composed of Fe and Zn with minor Pb, while the porphyry-proximal hydrothermal vein Pb-Zn-Ag deposit consists mainly of Pb and Zn with minor Ag. The crustal-extension vein Ag-Pb-Zn deposit generally has no relationship with the porphyry in the ore field, but is controlled by the regional fault and its secondary fault zones. The ore-forming fluids and materials of this type of deposit are mainly derived from the deep-seated magmas and regional metamorphism, and the ore-forming metals are mainly composed of Ag and Pb with minor Zn.
     In combination with research data from other areas in North China Craton, we proposed that widespread Mesozoic Ag-Pb-Zn mineralization in the southern margin of North China Craton is one of consequences of the destruction of North China Craton, which might be stimulated by the subduction and transition of the Paleo-pacific plate beneath the North China Craton. The subduction of Paleo-pacific plate not only led to the disturbance and upwelling of the asthenosphere, but also resulted in strong metasomatism of the overlying lithosphere, giving rise to the important transformation of the mechanical and chemical properties of the North China Craton lithosphere. The upwelling magma emplaced into the shallow crust and differentiated the magmatic fluids carrying material. The ore-bearing magmatic-hydrothermal fluids precipitated the sulfides at different sites to form different types of deposits, such as those in the Nannihu and Fudian ore fields. The emplacement of upwelling magma could also result in the metamorphic devolatilization of the marine sedimentary rocks and mixed with the metamorphic fluids. These fluids penetrated along the shallow fault zones and formed the Ag-Pb-Zn veins (such as Xiayu ore field). Based on our comprehensive dataset, we proposed several prospecting districts potentials for Mo, Ag-Pb-Zn, and Au deposits in the southern North China Craton:the Lushi-Luonan and the Waifangshan districts are potential for looking for porphyry Mo deposits and porphyry-related Pb-Zn-Ag depsoits, the Xiong'ershan district and the Waifangshan district hosting lots of fault zones are potential for looking for the crustal-extension vein Ag-Pb-Zn deposit, while the Taihua Group in the cores of Xiong'ershan district and Xiaoshan district are potential for looking for vein Au deposit.
引文
[1]Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical geology,2002,192(1):59-79.
    [2]Babcock Jr, R. C., Ballantyne, G. H. and Phillips, C. H., et al. Summary of the geology of the Bingham district. Utah:Arizona Geological Society Digest,1995,20:316-335.
    [3]Beaudoin, G. and Sangster, D. F. A descriptive model for silver-lead-zinc veins in clastic metasedimentary terranes. Economic Geology,1992,87(4):1005-1021.
    [4]Beaudoin, G., Taylor, B. E. and Sangster, D. F. Silver-lead-zinc veins, metamorphic core complexes, and hydrologic regimes during crustal extension. Geology,1991,19(12): 1217-1220.
    [5]Beaudoin, G., Taylor, B. E. and Sangster, D. F. Silver-lead-zinc Veins and crustal hydrology during Eocene extension, southeastern British Columbia, Canada. Geochimica et Cosmochimica Acta,1992,56(9):3513-3529.
    [6]Bendezu, R. and Fontbote, L. Cordilleran Epithermal Cu-Zn-Pb-(Au-Ag) Mineralization in the Colquijirca District, Central Peru:Deposit-Scale Mineralogical Patterns. Economic Geology, 2009,104(7):905-944.
    [7]Bertelli, M., Baker, T. and Cleverley, J. S., et al. Geochemical modelling of a Zn-Pb skarn: constraints from LA-ICP-MS analysis of fluid inclusions. Journal of Geochemical Exploration, 2009,102:13-26.
    [8]Bonsall, T. A., Spry, P. G and Voudouris, P. C., et al. The geochemistry of carbonate-replacement Pb-Zn-Ag mineralization in the Lavrion District, Attica, Greece; fluid inclusion, stable isotope, and rare earth element studies. Economic Geology,2011,106(4): 619-651.
    [9]Bottinga, Y. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. The Journal of Physical Chemistry,1968,72(3): 800-808.
    [10]Bouabdellah, M., Beaudoin, G and Leach, D. L., et al. Genesis of the Assif El Mai Zn-Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence. Mineralium Deposita,2009,44(6): 689-704.
    [11]Box, S. E., Bookstrom, A. A. and Anderson, R. G. Origins of Mineral Deposits, Belt-Purcell Basin, United States and Canada:An Introduction. Economic Geology,2012,107(6): 1081-1088.
    [12]Brenan, J. M., Cherniak, D. J. and Rose, L. A. Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re-Os isotopic system. Earth and Planetary Science Letters, 2000,180(3):399-413.
    [13]Cabri, L. J., Chryssoulis, S. L. and de Villiers, J. P., et al. The nature of "invisible" gold in arsenopyrite. The Canadian Mineralogist,1989,27(3):353-362.
    [14]Cabri, L. J., Sylvester, P. J. and Tubrett, M. N., et al. Comparison of LAM-ICP-MS and Micro-PIXE results for palladium and rhodium in selected samples of Noril'sk and Talnakh sulfides. The Canadian Mineralogist,2003,41(2):321-329.
    [15]Cao, Y., Li, S. and Zhang, H., et al. Laser probe 40Ar/39 Ar dating for quartz from auriferous quartz veins in the Shihu gold deposit, western Hebei Province, North China. Chinese Journal of Geochemistry,2010,29(4):438-445.
    [16]Carothers, W. W., Adami, L. H. and Rosenbauer, R. J. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochimica et Cosmochimica Acta,1988,52(10):2445-2450.
    [17]Chang, L., Wu, D. and Knowles, C. R. Phase relations in the system Ag2S-Cu2S-PbS-Bi2S3. Economic Geology,1988,83(2):405-418.
    [18]Chen, L., Tao, W. and Zhao, L., et al. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth and Planetary Science Letters,2008,267(1-2):56-68.
    [19]Chen, L., Zheng, T. Y. and Xu, W. W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration. J. Geophys. Res,2006,111:1-15.
    [20]Chen, W., Zhang, Y. and Ji, Q., et al. Magmatism and deformation times of the Xidatan rock series, East Kunlun Mountains. Science in China Series B:Chemistry,2002,45(1):20-27.
    [21]Chen, Y. J., Pirajno, F. and Sui, Y. H. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China:A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita,2004,39:560-575.
    [22]Christensen, J. N., Halliday, A. N. and Lee, D., et al. In situ Sr isotopic analysis by laser ablation. Earth and Planetary Science Letters,1995,136(1):79-85.
    [23]Ciobanu, C. L., Cook, N. J. and Pring, A., et al.'Invisible gold'in bismuth chalcogenides. Geochimica et Cosmochimica Acta,2009,73(7):1970-1999.
    [24]Cook, N. J. and Chryssoulis, S. L. Concentrations of invisible gold in the common sulfides. The Canadian Mineralogist,1990,28(1):1-16.
    [25]Cook, N. J., Ciobanu, C. L. and Danyushevsky, L. V., et al. Minor and trace elements in bornite and associated Cu-(Fe)-sulfides:A LA-ICP-MS study. Geochimica et Cosmochimica Acta,2011,75(21):6473-6496.
    [26]Cook, N. J., Ciobanu, C. L. and Pring, A., et al. Trace and minor elements in sphalerite:A LA-ICPMS study. Geochimica et CosmochimicaActa,2009,73(16):4761-4791.
    [27]Coplen, T. B., Kendall, C. and Hopple, J. Comparison of stable isotope reference samples. Nature,1983,302(17):236-238.
    [28]Danyushevsky, L., Robinson, P. and Gilbert, S. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:Standard development and consideration of matrix effects. Geochemistry:Exploration, Environment, Analysis,2011,11:51-60.
    [29]Davidson, J., Tepley III, F. and Palacz, Z., et al. Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks. Earth and Planetary Science Letters,2001,184(2):427-442.
    [30]Deines, P. and Gold, D. P. The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochimica et CosmochimicaActa,1973,37(7):1709-1733.
    [31]Deol, S., Deb, M. and Large, R. R., et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization. Chemical Geology,2012.326-327:72-87.
    [32]Dong, Y. P., Zhang, G. W. and Neubauer, F., et al. Tectonic evolution of the Qinling orogen, China:review and synthesis. Journal of Asian Earth Sciences,2011,41(3):213-237.
    [33]Engebretson, D. C., Cox, A. and Gordon, R. G. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers,1985,206: 1-60.
    [34]Fan, Q. and Hooper, P. R. The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms. Journal of Petrology,1989, 30(5):1117.
    [35]Fleet, M. E., Chryssoulis, S. L. and MacLean, P. J., et al. Arsenian pyrite from gold deposits; Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. The Canadian Mineralogist,1993,31(1):1-17.
    [36]Flem, B., Larsen, R. B. and Grimstvedt, A., et al. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology,2002, 182(2):237-247.
    [37]Foord, E. E. and Shawe, D. R. The Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts; a review and some new data from Colorado, California and Pennsylvania. Canadian Mineralogist,1989,27(3):363.
    [38]Friedman, I. and O'Neil, J. R. Compilation of stable isotope fractionation factors of geochemical interest, USGPO1977.
    [39]Gao, S., Rudnick, R. L. and Carlson, R. W., et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters,2002, 198(3-4):307-322.
    [40]Gao, S., Zhang, J. and Xu, W., et al. Delamination and destruction of the North China Craton. Chinese Science Bulletin,2009,54(19):3367-3378.
    [41]Gaspar, M., Knaack, C. and Meinert, L. D., et al. REE in skarn systems:a LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica et cosmochimica acta,2008,72(1): 185-205.
    [42]Goldfarb, R. J., Groves, D. I. and Gardoll, S. Orogenic gold and geologic time:a global synthesis. Ore geology reviews,2001,18(1):1-75.
    [43]Goldfarb, R. J., Hart, C. and Davis, G., et al. East Asian gold:Deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Economic Geology,2007,102(3):341-345.
    [44]Griffin, W. L., Zhang, A. D. and O'Reilly, S. Y., et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle dynamics and plate interactions in East Asia,1998,27: 107-126.
    [45]Groves, D. I., Goldfarb, R. J. and Gebre-Mariam, M., et al. Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore geology reviews,1998,13(1):7-27.
    [46]Gunther, D., Audetat, A. and Frischknecht, R., et al. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasmamass spectrometry. Journal of Analytical Atomic Spectrometry,1998,13(4):263-270.
    [47]Halter, W. E., Heinrich, C. A. and Pettke, T. Magma evolution and the formation of porphyry Cu-Au ore fluids:evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 2005,39(8):845-863.
    [48]Han, Y. G, Zhang, S. H. and Pirajno, F., et al. New 40Ar-39Ar age constraints on the deformation along the Machaoying fault zone:Implications for Early Cambrian tectonism in the North China Craton. Gondwana Research,2009,16(2):255-263.
    [49]Han, Y. G, Zhang, S. H. and Pirajno, F., et al. U-Pb and Re-Os isotopic systematics and zircon Ce4+/Ce3+ratios in the Shiyaogou Mo deposit in eastern Qinling, central China:Insights into the oxidation state of granitoids and Mo (Au) mineralization. Ore Geology Reviews,2013, in press.
    [50]Hawkesworth, C. J., Gallagher, K. and Hergt, J. M., et al. Mantle and slab contribution in arc magmas. Annual Review of Earth and Planetary Sciences,1993,21:175-204.
    [51]He, Y. H., Zhao, G. C. and Sun, M., et al. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks:Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research,2009,168(3-4):213-222.
    [52]Heinrich, C. A., Pettke, T. and Halter, W. E., et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta,2003,67(18):3473-3497.
    [53]Hoefs, J. Stable isotope geochemistry, Springer Verlag,2009.
    [54]Hu, Z., Gao, S. and Liu, Y, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry,2008,23(8): 1093-1101.
    [55]Jemielita, R. A., Davis, D. W. and Krogh, T. E. U-Pb evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism. Nature,1990,346(831-834.
    [56]Johnson, C. A., Cardellach, E. and Tritlla, J., et al. Cierco Pb-Zn-Ag vein deposits; isotopic and fluid inclusion evidence for formation during the Mesozoic extension in the Pyrenees of Spain. Economic Geology,1996,91(3):497-506.
    [57]Joncas, I. and Beaudoin, G. The St. Eugene Deposit, British Columbia; a metamorphosed Ag-Pb-Zn vein in Proterozoic Belt-Purcell rocks. Economic Geology,2002,97(1):11-22.
    [58]Kajiwara, Y. and Krouse, H. R. Sulfur isotope partitioning in metallic sulfide systems. Canadian Journal of Earth Sciences,1971,8(11):1397-1408.
    [59]Kerrich, R. and Wyman, D. Geodynamic setting of mesothermal gold deposits:An association with accretionary tectonic regimes. Geology,1990,18(9):882-885.
    [60]Kimura, G, Takahashi, M. and Kono, M. Mesozoic collision-extrusion tectonics in eastern Asia. Tectonophysics,1990,181(1):15-23.
    [61]Kreuzer, O. P. Intrusion-hosted mineralization in the Charters Towers Goldfield, north Queensland:New isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Economic Geology,2005,100(8):1583-1603.
    [62]Kroner, A., Compston, W. and Zhang, G. W., et al. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology,1988,16(3):211-215.
    [63]Kroner, A., Wilde, S. A. and Zhao, G. C., et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China:Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research,2006,146(1):45-67.
    [64]Large, R. R., Bull, S. W. and Maslennikov, V. V. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Economic Geology,2011,106(3):331-358.
    [65]Large, R. R., Danyushevsky, L. and Hollit, C., et al. Gold and trace element zonation in pyrite using a laser imaging technique:implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology,2009,104(5):635-668.
    [66]Lawley, C., Richards, J. P. and Anderson, R. G, et al. Geochronology and Geochemistry of the MAX Porphyry Mo Deposit and its Relationship to Pb-Zn-Ag Mineralization, Kootenay Arc, Southeastern British Columbia, Canada. Economic Geology,2010,105(6):1113-1142.
    [67]Leach, D. L., Hofstra, A. H. and Church, S. E., et al. Evidence for Proterozoic and Late Cretaceous-early Tertiary ore-forming events in the Coeur d'Alene District, Idaho and Montana. Economic Geology,1998,93(3):347-359.
    [68]Leach, D. L., Landis, G. P. and Hofstra, A. H. Metamorphic origin of the Coeur d'Alene base-and precious-metal veins in the Belt basin. Idaho and Montana:Geology,1988,16(2): 122-125.
    [69]Li, J. W., Li, Z. K. and Zhou, M. F., et al. The Cretaceous Yangzhaiyu lode gold deposit, North China Craton:A link between Craton reactivation and gold veining. Economic Geology, 2012a,107(01):43-79.
    [70]Li, J. W., Bi, S. J. and Selby, D., et al. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth and Planetary Science Letters,2012b,349:26-37.
    [71]Li, J. W., Vasconcelos, P. M. and Zhang, J., et al.40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, Eastern China. The Journal of Geology,2003,111:741-751.
    [72]Li, J. W., Vasconcelos, P. and Zhou, M. F., et al. Geochronology of the Pengjiakuang and Rushan Gold Deposits, Eastern Jiaodong Gold Province, Northeastern China:Implications for Regional Mineralization and Geodynamic Setting. Economic Geology,2006,101:1023-1038.
    [73]Li, S. G., Xiao, Y. L. and Liu, D. L., et al. Collision of North China and Yangtze blocks and formation of coesite-bearing eclogites:Timing and processes. Chemical Geology,1993, 109(1-4):89-111.
    [74]Li, Z. K., Li, J. W. and Zhao, X. F., et al. Crustal-Extension Ag-Pb-Zn Veins in the Xiong'ershan District, Southern North China Craton:Constraints from the Shagou Deposit. Economic Geology,2013, in press.
    [75]Liu, D. Y., Nutman, A. P. and Compston, W., et al. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology,1992,20(4):339-342.
    [76]Liu, J., Davis, G. A. and Lin, Z., et al. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China:A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics,2005,407(1):65-80.
    [77]Liu, Y, Gao, S. and Hu, Z., et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China Orogen:U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths. Journal of Petrology,2010,51(1-2):537-571.
    [78]Liu, Y, Hu, Z. and Gao, S., et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008, 257(1):34-43.
    [79]Liu, Y., Hu, Z. and Zong, K., et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,2010,55(15):1535-1546.
    [80]Liu, R., Li, J. W., Bi, S. J., Hu, H., et al. Magma mixing revealed from in situ zircon U-Pb-Hf isotope analysis of the Muhuguan granitoid pluton, eastern Qinling Orogen, China:implications for late Mesozoic tectonic evolution. International Journal of Earth Science,2013, in press.
    [81]Longerich, H. P., Jackson, S. E. and Gunther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry,1996,11(9):899-904.
    [82]Ludwig, K. R. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel, Kenneth R. Ludwig 2003.
    [83]Lueth, V. W., Megaw, P. and Pingitore, N. E., et al. Systematic variation in galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology,2000, 95(8):1673-1687.
    [84]Lynch, J. V. G. Hydrothermal zoning in the Keno Hill Ag-Pb-Zn veins system, Yukon:A study in structural geology, mineralogy, fluid inclusions, and stable isotope geochemistry:Un-pub. [Dissertation]. University of Alberta,1989,190.
    [85]Mao, J. W., Xie, G. Q. and Bierlein, F., et al. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta,2008,72(18):4607-4626.
    [86]Mao, J. W., Xie, G. Q. and Pirajno, F., et al. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China:SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences:An International Geoscience Journal of the Geological Society of Australia,2010,57(1):51-78.
    [87]Mao, J., Goldfarb, R. J. and Zhang, Z., et al. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, central China. Mineralium Deposita,2002,37(3):306-325.
    [88]Maruyama, S., Isozaki, Y. and Kimura, G., et al. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to the present. Island Arc,1997,6(1):121-142.
    [89]Maslennikov, V. V., Maslennikova, S. P. and Large, R. R., et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Economic Geology,2009,104(8):1111-1141.
    [90]Mathur, R., Ruiz, J. and Tornos, F. Age and sources of the ore at Tharsis and Rio Tinto, Iberian Pyrite Belt, from Re-Os isotopes. Mineralium Deposita,1999,34(8):790-793.
    [91]McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics,1950,18:849-857.
    [92]McGoldrick, P. J. and Maier, R. C. Pyrite trace element halos to northern Australian sediment-hosted Zn Pb Ag deposits. Geochimica et Cosmochimica Acta Supplement,2006,70: 411.
    [93]Megaw, P. K. M., Ruiz, J. and Titley, S. R. High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico. Economic Geology,1988,83(8):1856-1885.
    [94]Menzies, M. A. and Xu, Y. G. Geodynamics of the North China craton. Mantle dynamics and plate interactions in East Asia,1998,27:155-165.
    [95]Morelli, R. M., Creaser, R. A. and Selby, D., et al. Re-Os Sulfide Geochronology of the Red Dog Sediment-Hosted Zn-Pb-Ag Deposit, Brooks Range, Alaska. Economic Geology,2004, 99(7):1569-1576.
    [96]Morelli, R. M., Creaser, R. A. and Selby, D., et al. Rhenium-Osmium geochronology of arsenopyrite in Meguma Group gold deposits, Meguma Terrane, Nova Scotia, Canada: Evidence for multiple gold-mineralizing events. Economic Geology,2005,100(6):1229-1242.
    [97]Morey, A. A., Tomkins, A. G. and Bierlein, F. P., et al. Bimodal distribution of gold in pyrite and arsenopyrite:examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, Western Australia. Economic Geology,2008,103(3):599-614.
    [98]Mumin, A. H., Fleet, M. E. and Longstaffe, F. J. Evolution of hydrothermal fluids in the Ashanti gold belt, Ghana; stable isotope geochemistry of carbonates, graphite, and quartz. Economic Geology,1996,91(1):135-148.
    [99]Mungall, J. E., Andrews, D. R. and Cabri, L. J., et al. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochimica et cosmochimica acta,2005,69(17):4349-4360.
    [100]Norman, M., Robinson, P. and Clark, D. Major-and trace-element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF:New data on international reference materials. The Canadian Mineralogist,2003,41(2):293-305.
    [101]Oberthur, T., Weiser, T. and Amanor, J. A., et al. Mineralogical siting and distribution of gold in quartz veins and sulfide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana:genetic implications. Mineralium Deposita,1997,32(1):2-15.
    [102]Ohmoto, H. and Rye, R. O. Isotopes of sulphur and carbon, in Barnes. Geochemistry of Hydrothermal Ore Deposits,1979:509-567.
    [103]O'Neil, J. R., Clayton, R. N. and Mayeda, T. K. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics,1969,51:5547-5558.
    [104]Paton, C., Hergt, J. M. and Phillips, D., et al. New insights into the genesis of Indian kimberlites from the Dharwar Craton via in situ Sr isotope analysis of groundmass perovskite. Geology,2007,35(11):1011-1014.
    [105]Peng, P., Zhai, M. and Ernst, R. E., et al. A 1.78 Ga large igneous province in the North China craton:The Xiong'er Volcanic Province and the North China dyke swarm. Lithos,2008,101(3): 260-280.
    [106]Qiu, J., Xu, X. and Lo, C. Potash-rich volcanic rocks and lamprophyres in western Shandong Province:40Ar-39Ar dating and source tracing. Chinese Science Bulletin,2002,47(2):91-99.
    [107]Raith, J. G. and Stein, H. J. Re-Os dating and sulfur isotope composition of molybdenite from tungsten deposits in western Namaqualand, South Africa:implications for ore genesis and the timing of metamorphism. Mineralium Deposita,2000,35(8):741-753.
    [108]Ratcliff, J. T., Bercovici, D. and Schubert, G, et al. Mantle plume heads and the initiation of plate tectonic reorganizations. Earth and planetary science letters,1998,156(3):195-207.
    [109]Ravikant, V. and Golani, P. R. Rb-Sr direct dating of pyrite from the Pipela VMS Zn-Cu prospect, Rajasthan, NW India. Journal of the Geological Society of India,2011,77(2): 149-159.
    [110]Raymond, O. L. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geology Reviews,1996,10(3):231-250.
    [111]Reich, M., Kesler, S. E. and Utsunomiya, S., et al. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta,2005,69(11):2781-2796.
    [112]Renders, P. J. and Seward, T. M. The stability of hydrosulphido-and sulphido-complexes of Au (I) and Ag (I) at 25℃. Geochimica et Cosmochimica Acta,1989,53(2):245-253.
    [113]Renne, P. R., Cassata, W. S. and Morgan, L. E. The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology:Time for a change? Quaternary Geochronology,2009,4(4): 288-298.
    [114]Rye, R. O. and Ohmoto, H. Sulfur and carbon isotopes and ore genesis:A review. Economic Geology,1974,69(6):826-842.
    [115]Sanchez-Espana, J., Velasco, F. and Boyce, A. J., et al. Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes. Mineralium Deposita,2003,38(5):519-537.
    [116]Selby, D. and Creaser, R. A. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite:Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta,2004,68(19):3897-3908.
    [117]Selby, D., Creaser, R. A. and Hart, C. J., et al. Absolute timing of sulfide and gold mineralization:A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology,2002,30(9):791-794.
    [118]Selby, D., Creaser, R. A. and Stein, H. J., et al. Assessment of the 187Re decay constant by cross calibration of Re-Os molybdenite and U-Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta,2007,71(8):1999-2013.
    [119]Selby, D., Kelley, K. D. and Hitzman, M. W., et al. Re-Os Sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology,2009,104(3):437-444.
    [120]Sharp, T. G. and Buseck, P. R. The distribution of Ag and Sb in galena:inclusions versus solid solution. American Mineralogist,1993,78(1-2):85-95.
    [121]Sheppard, S. M. F. and Schwarcz, H. P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contributions to Mineralogy and Petrology,1970,26(3):161-198.
    [122]Shibuya, E., Sarkis, J. S. and Jorge, A. S., et al. Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high-resolution inductively coupled plasma mass spectrometric technique. Journal of Analytical Atomic Spectrometry,1998, 13(9):941-944.
    [123]Sillitoe, R. H. The tops and bottoms of porphyry copper deposits. Economic Geology,1973, 68(6):799-815.
    [124]Sillitoe, R. H. Porphyry copper systems. Economic Geology,2010,105(1):3-41.
    [125]Stein, H. J. and Hannah, J. L. Movement and origin of ore fluids in Climax-type systems. Geology,1985,13(7):469-474.
    [126]Stein, H. J., Markey, R. J. and Morgan, J. W., et al. The remarkable Re-Os chronometer in molybdenite:how and why it works. Terra Nova,2001,13(6):479-486.
    [127]Stein, H. J., Morgan, J. W. and Schersten, A. Re-Os dating of low-level highly radiogenic (LLHR) sulfides:The Harnas gold deposit, southwest Sweden, records continental-scale tectonic events. Economic Geology,2000,95(8):1657-1671.
    [128]Stein, H. J., Sundblad, K. and Markey, R. J., et al. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania:testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita,1998,33(4): 329-345.
    [129]Su, W., Xia, B. and Zhang, H., et al. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China:Implications for the environment and processes of ore formation. Ore Geology Reviews,2008,33(3):667-679.
    [130]Sun, W. D., Ding, X., Hu, Y. H., et al. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planetary Science Letters.2007,262:533-542.
    [131]Tang, K. F., Li, J. W. and Selby, D., et al. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong'ershan area, southern North China Craton. Mineralium Deposita, 2013, in press.
    [132]Taylor, H. P. Stable isotope studies of ultramafic rocks and meteorites. Ultramafic and related rocks,1967:362-372.
    [133]Thomas, H. V., Large, R. R. and Bull, S. W., et al. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: insights for ore genesis. Economic Geology,2011,106(1):1-31.
    [134]Ulrich, T., Gunther, D. and Heinrich, C. A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature,1999,399:676-679.
    [135]Voudouris, P., Melfos, V. and Spry, P. G., et al. Carbonate-replacement Pb-Zn-Ag±Au mineralization in the Kamariza area, Lavrion, Greece:Mineralogy and thermochemical conditions of formation. Mineralogy and Petrology,2008,94(1-2):85-106.
    [136]Wan, Y., Liu, D. and Song, B., et al. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences,2005,24(5):563-575.
    [137]Wang, Z., Wilde, S. A. and Wang, K., et al. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt:late Archean magmatism and crustal growth in the North China Craton. Precambrian Research,2004,131(3):323-343.
    [138]Weiss, Y, Griffin, W. L. and Elhlou, S., et al. Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds. Chemical Geology,2008,252(3):158-168.
    [139]Weston, R. S., Cedell, T. and McCuaig, T. C., et al. PTt-deformation-fluid characteristics of lode gold deposits:evidence from alteration systematics. Ore Geology Reviews,1998,12(6): 381-453.
    [140]White, N. C. Porphyry-epithermal Cu-Au-Ag systems:Regional, district and local footprints, the guides to discovery. Society of Economic Geologists Conference 2004 SEG The University of Western Australia, Centre for Global Metallogeny,2004.
    [141]Wilde, S. A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:an association with lithospheric thinning. Academic annual conference of Institute of geology and geophysics, Chinese academy of sciences. Beijing, China.2003:419-446.
    [142]Williams-Jones, A. E., Samson, I. M. and Ault, K. M., et al. The genesis of distal zinc skarns: evidence from the Mochito Deposit, Honduras. Economic Geology,2010,105(8):1411-1440.
    [143]Wilson, S. A., Ridley, W. I. and Koenig, A. E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. Journal of Analytical Atomic Spectrometry,2002,17(4):406-409.
    [144]Worthington, J. E. Porphyry and other molybdenum deposits of Idaho and Montana, Idaho Geological Survey,2007.
    [145]Wu, F. Y., Lin, J. Q. and Wilde, S. A., et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters,2005,233(1-2): 103-119.
    [146]Wu, F. Y., Walker, R. J. and Yang, Y. H., et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta, 2006,70(19):5013-5034.
    [147]Xu, Y. G. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling-Taihangshan gravity lineament. Lithos,2007,96(1-2):281-298.
    [148]Yang, J. H., Chung, S. L. and Wildes, S. A., et al. Petrogenesis of post-orogenic syenites and crustal growth in the Sulu orogenic belt, East China:Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology,2005,214:99-125.
    [149]Yang, J. H., Sun, J. F. and Chen, F., et al. Sources and petrogenesis of late triassic dolerite dikes in the liaodong peninsula:Implications for post-collisional lithosphere thinning of the eastern North China Craton. Journal of Petrology,2007,48(10):1973-1997.
    [150]Yang, J. H., Wu, F. Y. and Chung, S. L., et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex:Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geological Society of America Bulletin,2007,119(11-12):1405-1414.
    [151]Yang, J. and Zhou, X. The Rb-Sr isochron of ore and pyrite sub-samples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance. Chinese Science Bulletin,2000,45(24):2272-2277.
    [152]Ye, L., Cook, N. J. and Ciobanu, C. L., et al. Trace and minor elements in sphalerite from base metal deposits in South China:a LA-ICPMS study. Ore Geology Reviews,2011,39(4): 188-217.
    [153]Zacharias, J., Fryda, J. and Paterova, B., et al. Arsenopyrite and As-bearing pyrite from the Roudny deposit, Bohemian Massif. Mineralogical Magazine,2004,68(1):31-46.
    [154]Zartman, R. E. and Doe, B. R. Plumbotectonics-the model. Tectonophysics,1981,75(1-2): 135-162.
    [155]Zeng, N., Izawa, E. and Motomura, Y, et al. Silver minerals and paragenesis in the Kangjiawan Pb-Zn-Ag-Au deposit of the Shuikoushan mineral district, Hunan Province, China. Canadian Mineralogist,2000,38(1):11-22.
    [156]Zhang, G. W, Bai, Y. B. and Sun, Y, et al. Composition and evolution of the Archaean crust in central Henan, China. Precambrian research,1985,27(1-3):7-35.
    [157]Zhang, L., Shen, Y. and Liu, T., et al.40Ar/39Ar and Rb-Sr isochron dating of the gold deposits on northern margin of the Jiaolai Basin, Shandong, China. Science in China Series D:Earth Sciences,2003,46(7):708-718.
    [158]Zhang, X., Cawood, P. A. and Wilde, S. A., et al. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Mineralium Deposita,2003, 38(2):141-153.
    [159]Zhao, G. C., He, Y. H. and Sun, M. The Xiong'er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana research,2009,16(2):170-181.
    [160]Zhao, G. C., Wilde, S. A. and Cawood, P. A., et al. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research,2001,107(1):45-73.
    [161]Zhao, T. P., Zhai, M. G and Xia, B., et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group:Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin,2004,49(23):2495-2502.
    [162]Zheng, J. P., Griffin, W. L. and O'Reilly, S. Y., et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, 2007,71(21):5203-5225.
    [163]Zheng, J., Griffin, W. L. and O'Reilly, S. Y, et al.3.6 Ga lower crust in central China:new evidence on the assembly of the North China Craton. Geology,2004,32(3):229-232.
    [164]Zhu, G., Jiang, D. and Zhang, B., et al. Destruction of the eastern North China Craton in a backarc setting:Evidence from crustal deformation kinematics. Gondwana Research,2012, 22(1):86-103.
    [165]Zhu, G., Wang, Y. and Liu, G., et al.40Ar/3 Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of Structural Geology,2005,27(8):1379-1398.
    [166]白凤军.豫西地区钼矿床类型、控矿因素与找矿模型研究.[学位论文].中国地质大学(北京),2010.
    [167]包志伟,曾乔松和赵太平等.东秦岭钼矿带南泥湖-上房沟花岗斑岩成因及其对铝成矿作用的制约.岩石学报,2009,25(10):2523-2536.
    [168]毕诗健.小秦岭金矿集中区中生代成矿作用及与华北克拉通破坏的关系.[学位论文].中国地质大学,2011,161p.
    [169]毕诗健,李建威和李占轲.华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义.地球科学-中国地质大学学报,2010,36(1):017-032.
    [170]毕诗健,李建威和赵新福.热液锆石U-Pb定年与石英脉型金矿成矿时代:评述与展望.地质科技情报,2008,69-76.
    [171]曾广策.河南嵩县南部碱性正长岩类的岩石特征及构造环境.地球科学:中国地质大学学报,1990,15(6):635-642.
    [172]陈美勇,刘俊来和胡建江等.大兴安岭北段三道湾子碲化物型金矿床的发现及意义.地质通报,2008,27(04):584-587.
    [173]陈旺和郭时然.河南洛宁蒿坪沟银铅金矿床地质特征.有色金属矿产与勘查,1994,3(006):336-341.
    [174]陈文,刘新宇和张思红.连续激光阶段升温40Ar/39Ar地质年代测定方法研究.地质论评, 2002.48:127-134.
    [175]陈衍景.造山型矿床、成矿模式及找矿潜力.中国地质,2006,(06):1181-1196.
    [176]陈衍景,隋颖慧和Franco, P. CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学.岩石学报,2003,019(03):551-568.
    [177]陈衍景,翟明国和蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报,2009,25(11):2695-2726.
    [178]陈衍景和富士谷.豫西金矿成矿规律.北京,地震出版社.1992.
    [179]陈衍景和郭抗衡.河南银家沟矽卡岩型金矿的地质地球化学特征及成因.矿床地质,1993,(03):265-272.
    [180]池际尚.中国东部新生代玄武岩及上地幔研究.武汉,中国地质大学出版社.1988.
    [181]戴宝章,蒋少涌和王孝磊.河南东沟钼矿花岗斑岩成因:岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约.岩石学报,2009,(11):2889-2901.
    [182]邓晋福.中国大陆根,柱构造:大陆动力学的钥匙,地质出版社.1996.
    [183]丁丽雪,马昌前和李建威等.华北克拉通南缘蓝田和牧护关花岗岩体:LA-ICPMS锆石U-Pb年龄及其构造意义.地球化学,2010,39(005):401-413.
    [184]段士刚,薛春纪和刘国印等.河南栾川地区铅锌矿床地质和硫同位素地球化学.地学前缘,2010,(02):375-384.
    [185]范宏瑞和谢奕汉.豫西熊耳山地区岩石和金矿床稳定同位素地球化学研究.地质找矿论丛,1994,9(001):54-64.
    [186]高光明和郭宇杰.河南熊耳山北坡西段的变质核杂岩和拆离断层.中南矿冶学院学报,1993,24(005):579-584.
    [187]高建京,毛景文和陈懋弘等.豫西铁炉坪银铅矿床矿脉构造解析及近矿蚀变岩绢云母40Ar-39Ar年龄测定.地质学报,2011,(07):1172-1187.
    [188]高建京,毛景文和叶会寿等.豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究.岩石学报,2010,26(3):740-756.
    [189]高山,周炼和凌文黎等.华北克拉通南缘太古-元古宙界线安沟群火山岩的年龄及地球化学.地球科学-中国地质大学学报,2005,(03):259-263.
    [190]高听宇,赵太平和原振雷等.华北陆块南缘中生代合峪花岗岩的地球化学特征与成因.岩石学报,2010,26(12):3485-3506.
    [191]高亚龙,张江明和叶会寿等.东秦岭石窑沟斑岩钼矿床地质特征及辉铝矿Re-Os年龄.岩石学报,2010,(03):729-739.
    [192]高阳,毛景文和叶会寿等.东秦岭外方山地区石英脉型钼矿床地质特征及成矿时代.矿床地质,2010,S1:189-190.
    [193]耿元生,王新社和沈其韩等.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究.中国地质,2007,(02):251-261.
    [194]郭保健.东秦岭中生代金属矿床组合与成矿规律研究.[学位论文].中国地质大学(北京),2006,
    [195]郭保健,毛景文和李厚民等.秦岭造山带秋树湾铜钼矿床辉钼矿Re-Os定年及其地质意义.岩石学报,2006,(09):2341-2348.
    [196]郭保健,徐孟罗和王志光等.熊耳山北坡拆离断层带地球化学特征及其与金银矿化的关系.矿产与地质,1997.
    [197]郭波,朱赖民和李犇等.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄,Hf同位素组成与成岩动力学背景.岩石学报,2009,25(2):265-281.
    [198]郭敬辉,陈福坤和张晓曼等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞后构造过程:锆石U-Pb年代学.岩石学报,2005,21(4):1281-1301.
    [199]韩以贵,李向辉和张世红等.豫西祁雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年.科学通报,2007,(11):1307-1311.
    [200]河南省地质矿产局.河南区域地质志.北京,地质出版社.1989.
    [201]河南省有色金属地质勘查总院.河南省洛宁县沙沟-月亮沟银铅矿区详查报告.2005.
    [202]胡芳芳,范宏瑞和杨进辉等.胶东乳山金矿蚀变岩中绢云母40Ar/39Ar年龄及其对金成矿事件的制约.矿物岩石地球化学通报,2006,(02):109-114.
    [203]胡浩.华北克拉通南缘磨沟碱性杂岩体形成时代、岩石成因及构造意义.[学位论文].中国地质大学,2009,53p.
    [204]胡浩,李建威和隋吉祥.东秦岭木龙沟夕卡岩型铁多金属矿床含矿岩体的成因研究.矿物学报,2011a,S1:27-28.
    [205]胡浩,李建威和邓晓东.洛南-卢氏地区与铁铜多金属矿床有关的中酸性侵入岩锆石U-Pb定年及其地质意义.矿床地质,2011b,(06):979-1001.
    [206]胡受奚,林潜龙和陈泽铭.华北板块与华南板块拼合带地质与成矿.南京,南京大学出版社.1988.
    [207]胡正国和钱壮志.洛南“秦仓沟组”一太华群南侧古韧性剪切带产物.西安地质学院学报,1994,16(4):25-34.
    [208]黄典豪,侯增谦和杨志明等.东秦岭铝矿带内碳酸岩脉型铝(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景.地质学报,2009,(12):1968-1984.
    [209]黄典豪,吴澄宇和杜安道等.东秦岭地区钼矿床的铼-锇同位素年龄及其意义.矿床地质,1994,(03):221-230.
    [210]黄凡,罗照华和卢欣祥等.河南汝阳地区竹园沟钼矿地质特征,成矿时代及地质意义.地质通报,2010,29(011):1704-1711.
    [211]贾承造.熊耳群火山岩系岩石地球化学特征及其大地构造意义.河南国土资源,1985,(2):01-08.
    [212]姜耀辉,蒋少涌和赵葵东等.辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约.科学通报,2005,50(019):2161-2168.
    [213]蒋少涌,戴宝章和姜耀辉等.胶东和小秦岭:两类不同构造环境中的造山型金矿省.岩石学报,2009,(11):2727-2738.
    [214]李厚民,陈毓川和叶会寿等.东秦岭—大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列.地质学报,2008,11.
    [215]李厚民,叶会寿和毛景文等.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义.矿床地质,2007,(04).
    [216]李厚民,叶会寿和王登红等.豫西熊耳山寨凹钼矿床辉钼矿铼-锇年龄及其地质意义.矿 床地质,2009,28(02):133-142.
    [217]李诺,陈衍景和孙亚莉等.河南鱼池岭钼矿床辉铝矿铼-锇同位素年龄及地质意义.岩石学报,2009,25(02):413-421.
    [218]李诺,陈衍景和张辉等.东秦岭斑岩铝矿带的地质特征和成矿构造背景.地学前缘,2007,(05):312-319.
    [219]李曙光,Hart, S. R和郑双根.中国华北,华南陆块碰撞时代的钐—钕同位素年龄证据.中国科学:B辑,1989,(003):312-319.
    [220]李艺和覃朝科.中国有色金属伴生银矿床中若干银矿物的初步研究.矿物学报,1999,19(4):01-12.
    [221]李永峰.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用.[学位论文].中国地质大学(北京),2005.
    [222]李永峰,毛景文和白凤军等.东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义.地质论评,2003,49(06):652-659.
    [223]李永峰,毛景文和胡华斌等.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质,2005,(03):292-304.
    [224]李永峰,毛景文和刘敦一等.豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义.地质论评,2006,52(001):122-131.
    [225]李永刚,翟明国和杨进辉等.内蒙古赤峰安家营子金矿成矿时代以及对华北中生代爆发成矿的意义.中国科学:D辑,2003,33(10):960-966.
    [226]李长民,邓晋福和苏尚国等.河北省东坪金矿钾质蚀变岩中的两期锆石年代学研究及意义.地球学报,2010,31(6):843-852.
    [227]李忠,刘少峰和张金芳等.燕山典型盆地充填序列及迁移特征:对中生代构造转折的响应.中国科学:D辑,2003,33(10):931-940.
    [228]林伟,王清晨和王军等.辽东半岛晚中生代伸展构造——华北克拉通破坏的地壳响应.中国科学:地球科学,2011,41(5):638-653.
    [229]凌文黎,谢先军和柳小明等.鲁东中生代标准剖面青山群火山岩锆石U-Pb年龄及其构造意义.中国科学:D辑,2006,36(5):401-411.
    [230]刘国印.华北陆块南缘铅锌银成矿规律及找矿方向研究.[学位论文].北京:中国地质大学,2007,99p.
    [231]刘建明,沈洁和赵善仁等.金属矿床同位素精确定年的方法和意义.有色金属矿产与勘查,1998,(02):44-50.
    [232]刘俊来,关会梅和纪沫等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束.自然科学进展,2006,16(001):21-26.
    [233]刘灵恩,胡国民和支凤歧.豫西寨凹隐伏岩体对周边银多金属矿的控矿作用.矿产与地质,2004,18(001):31-34.
    [234]卢欣祥,董有和尉向东等.小秦岭—熊耳山地区金矿成矿的临界超临界流体.黄金地质,2002,(03):1-6.
    [235]卢欣祥,李明立和王卫等.秦岭造山带的印支运动及印支期成矿作用.矿床地质,2008,(06):762-773.
    [236]卢欣祥,尉向东和董有等.小秦岭—熊耳山地区金矿时代.黄金地质,1999,(01):12-17.
    [237]卢欣祥和尉向东.秦岭环斑花岗岩的年代学研究及其意义.高校地质学报,1999,5(4):372-377.
    [238]卢欣祥和肖庆辉.秦岭印支期沙河湾奥长环斑花岗岩及其动力学意义.中国科学:D辑,1996,26(3):244-248.
    [239]陆松年,李怀坤和李惠民.成矿地质事件的同位素年代学研究.地学前缘,1999,02):142-149.
    [240]路凤香,韩柱国和郑建平等.辽宁复县地区古生代岩石圈地幔特征.地质科技情报,1991,10(2):1-20.
    [241]罗铬玖.中国钼矿床,河南科学技术出版社.1991.
    [242]罗铭玖,黎世美和卢欣祥.河南省主要矿产的成矿作用及矿床成矿系列.北京,地质出版社.2000.
    [243]罗铭玖,王亨治和庞传安.河南金矿概论.郑州:河南省地质矿产厅,1992.
    [244]罗镇宽和苗来成.胶东招莱地区花岗岩和金矿床,冶金工业出版社.2002.
    [245]马红义,吕伟庆和张云政等.河南汝阳东沟超大型钼矿床地质特征及找矿标志.地质与勘探,2007,(04):1-7.
    [246]毛景文,华仁民和李晓波.浅议大规模成矿作用与大型矿集区.矿床地质,1999,(04):291-299.
    [247]毛景文,谢桂青和张作衡等.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,2005,21(001):169-188.
    [248]毛景文,叶会寿和王瑞廷等.东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价.地质通报,2009,28(001):72-79.
    [249]毛景文,张作衡和余金杰等.华北及邻区中生代大规模成矿的地球动力学—背景:从金属矿床年龄精测得到启示.中国科学D辑,2003,(04):289-299.
    [250]毛景文,郑榕芬和叶会寿等.豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义.矿床地质,2006,25(04):359-368.
    [251]毛景文和王志良.中国东部大规模成矿时限及其动力学背景的初步探讨.矿床地质,2000,19(04):289-296.
    [252]苗来成,范蔚茗和翟明国.金厂沟梁一二道沟金矿田内花岗离子探针U-Pb年代学及意义.岩石学报,2003,19(1):071-080.
    [253]牛漫兰,朱光和谢成龙等.郯庐断裂带张八岭隆起南段花岗岩LA-ICP MS锆石U-Pb年龄及其构造意义.岩石学报,2008,24(08):1839-1847.
    [254]庞奖励.二道沟矿床绢云母的39Ar/40Ar年龄及其地质意义.陕西师范大学学报(自然科学版),1999,27(1):102-107.
    [255]裴福萍,许文良和杨德彬等.松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约.地球科学:中国地质大学学报,2008,33(5):603-617.
    [256]祁进平.河南栾川地区脉状铅锌银矿床地质地球化学特征及成因.[学位论文].北京大学,2006,
    [257]祁进平,张静和唐国军.熊耳地体南侧中晚元古代地层碳氧同位素组成:CMF模式的证 据.岩石学报,2005,21(5):1365-1372.
    [258]强山峰.小秦岭地区北矿带中生代金(钼)矿床成矿作用研究:以秦南和桥上寨金矿为例.[学位论文].中国地质大学,2012,103p.
    [259]强山峰,毕诗健和邓晓东等.豫西小秦岭地区秦南金矿床热液独居石U-Th-Pb定年及其地质意义.地球科学-中国地质大学学报,2013,(01):43-56.
    [260]乔秀夫,张德全和王雪英等.晋南西阳河群同位素年代学研究及其地质意义.地质学报,1985,59(3):258-268.
    [261]邱检生和王德滋.鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年—以五莲分岭山火山机构为例.高校地质学报,2001,7(3):351-355.
    [262]任纪舜.印支运动及其在中国大地构造演化中的意义.地球学报,1984.
    [263]任纪舜,牛宝贵和和政军等.中国东部的构造格局和动力演化.北京,地质出版社.1998.
    [264]邵济安和张履桥.华北北部中生代岩墙群.岩石学报,2002,18(3):312-318.
    [265]石铨曾,尉向东和李明立.河南省东秦岭山脉北缘的推覆构造及伸展拆离构造,地质出版社.2004.
    [266]孙大中,胡维兴和地质勘探.中条山前寒武纪年代构造格架和年代地壳结构,地质出版社.1993.
    [267]孙枢.华北断块南部前寒武纪地质演化.北京,冶金工业出版社.1985.
    [268]涂怀奎.郯庐深大断裂两侧主要矿产成矿特征研究.矿产与地质,1997,11(5):309-313.
    [269]万渝生,刘敦一和王世炎等.登封地区早前寒武纪地壳演化—地球化学和锆石SHRIMPU-Pb年代学制约.地质学报,2009,(07):982-999.
    [270]王冬艳,裴福萍和许文良等.华北地块南缘中段中生代花岗质岩石的40Ar-39Ar年代学研究.大地构造与成矿学,2005,(02):262-268.
    [271]王冬艳,许文良和冯宏等.辽西中生代晚期岩石圈地幔的性质:来自玄武岩和地幔捕虏体的证据.吉林大学学报(地球科学版),2002,(04):319-324.
    [272]王濮,潘兆橹和翁玲宝.系统矿物学(中).北京,地质出版社.1984.
    [273]王团华,毛景文和王彦斌.小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究—秦岭造山带岩石圈拆沉的证据.岩石学报,2008,24(006):1273-1287.
    [274]王团华,毛景文和谢桂青等.小秦岭、熊耳山金矿区中基性岩墙的岩石化学研究.地学前缘,2008,15(1):250-266.
    [275]王义天,毛景文和卢欣祥.嵩县祁雨沟金矿成矿时代的40Ar-39Ar年代学证据.地质论评,2001,47(5):551-555.
    [276]王义天,毛景文和卢欣祥等.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义.科学通报,2002,47(18):1427-1431.
    [277]王义天,叶会寿和叶安旺等.小秦岭北缘马家洼石英脉型金钼矿床的辉铝矿Re-Os年龄及其意义.地学前缘,2010,(02):140-145.
    [278]王长明,邓军和张寿庭等.河南南泥湖Mo-W-Cu-Pb-Zn-Ag-Au成矿区内生成矿系统.地质科技情报,2006,(6):47-52.
    [279]王长明,张寿庭和邓军等.河南冷水北沟铅锌矿地质地球化学特征及成因探讨.矿床地 质,2007,(02):175-183.
    [280]王志光,崔毫和徐孟罗.华北地块南缘地质构造演化与成矿.北京,冶金工业出版社.1997.
    [281]王志光和张录星.熊耳山变质核杂岩构造研究及找矿进展.有色金属矿产与勘查,1999,8(006):388-392.
    [282]魏俊浩,刘从强和赵永鑫等.辽宁五龙金矿主成矿阶段成矿持续时限.地质论评,2001,47(004):433-437.
    [283]吴福元,葛文春和孙德有等.中国东部岩石圈减薄研究中的几个问题.地学前缘,2003,10(3):51-60.
    [284]吴福元,孙德有和张广良等.论燕山运动的深部地球动力学本质.高校地质学报,2000,6(3):379-388.
    [285]吴福元,徐义刚和高山等.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报,2008,24(006):1145-1174.
    [286]伍家善,耿元生和沈其韩.华北陆台早前寒武纪重大地质事件.中国地质科学院文集,1992.
    [287]向君峰,毛景文和裴荣富等.南泥湖—三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义.中国地质,2012,(02):458-473.
    [288]肖娥,胡建和张遵忠等.东秦岭花山复式岩基中蒿坪与金山庙花岗岩体岩石地球化学,锆石U-Pb年代学和Lu-Hf同位素组成.岩石学报,2012,28(12):4031-4076.
    [289]谢桂青,毛景文和李瑞玲等.东秦岭宝丰盆地大营组火山岩SHRIMP定年及其意义.岩石学报,2007,23(10):2387-2396.
    [290]谢学锦,向运川和谢学锦等.巨型矿床的地球化学预测方法.谢学锦,邵跃,王学求.走向,1999,21:61-91.
    [291]徐启东和杨发城.豫西小秦岭金矿区的一组40Ar/39Ar定年数据.地质论评,1998,44(003):323-327.
    [292]许文良,孙德有和周燕.满洲里一绥芬河地学断面岩浆作用和地壳结构,地质出版社.1994.
    [293]许文良,王清海和王冬艳等.华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据.地学前缘,2004,(03):309-317.
    [294]闫峻,陈江峰和谢智等.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证据.科学通报,2003,48(14):1570-1574.
    [295]燕建设.马超营断裂带流体系统地球化学特征.物探与化探,2005,29(006):487-492.
    [296]燕建设,王铭生和杨建朝等.豫西马超营断裂带的构造演化及其与金等成矿的关系.中国区域地质,2000,19(02):166-171.
    [297]燕长海.东秦岭铅锌银成矿系统内部结构.北京,地质出版社.2004.
    [298]杨进辉和吴福元.华北东部三叠纪岩浆作用与克拉通破坏.中国科学(D辑:地球科学),2009,(07):910-921.
    [299]杨群周,彭省临和张侍威等.豫西寨凹斑岩型铜矿地质特征及其成矿远景.地质找矿论丛,2003,18(1):43-46.
    [300]姚军明,赵太平和李晶等.河南祁雨沟金成矿系统辉铝矿Re-Os年龄和锆石U-Pb年龄及Hf同位素地球化学.岩石学报,2009,(02):374-384.
    [301]姚军明,赵太平和李向辉.河南王坪西沟铅锌矿床单颗粒闪锌矿Rb-Sr定年.矿床地质,2010,S1:535-536.
    [302]叶会寿.华北陆块南缘中生代构造演化与铅锌银成矿作用.[学位论文].中国地质科学院,2006.
    [303]叶会寿,毛景文和李永峰等.豫西南泥湖矿田铝钨及铅锌银矿床地质特征及其成矿机理探讨.现代地质,2006a,20(001):165-174.
    [304]叶会寿,毛景文和李永峰等.东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉铝矿Re-Os年龄及其地质意义.地质学报,2006b,(07):1078-1088.
    [305]叶会寿,毛景文和徐林刚等.豫西太山庙铝质A型花岗岩SHRIMP锆石U-Pb年龄及其地球化学特征.地质论评,2008,(05):699-711.
    [306]翟明国.华北克拉通的形成演化与成矿作用.矿床地质,2010,(01):24-36.
    [307]翟明国,朱日祥和刘建明等.华北东部中生代构造体制转折的关键时限.中国科学(D辑:地球科学),2003,(10):913-920.
    [308]翟裕生,邓军和崔彬等.成矿系统及综合地质异常.现代地质,1999,(01):99-104.
    [309]张国伟.华北地块南部早前寒武纪地壳的组成及其演化和秦岭造山带的形成及其演化.西北大学学报:自然科学版,1988,18(1):21-23.
    [310]张国伟,董云鹏和姚安平.造山带与造山作用及其研究的新起点.西北地质,2001,34(1):1-9.
    [311]张国伟和孟庆任.秦岭造山带的造山过程及其动力学特征.中国科学:D辑,1996,26(3):193-200.
    [312]张进江,郑亚东和刘树文.小秦岭变质核杂岩的构造特征,形成机制及构造演化.北京,海洋出版社.1998.
    [313]张进江,郑亚东和刘树文.小秦岭金矿田中生代构造演化与矿床形成.地质科学,2003,38(01):74-84.
    [314]张乐骏,周涛发和范裕等.宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究.地质学报,2011,85(5):834-848.
    [315]张连昌,沈远超和刘铁兵等.山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代.中国科学D辑,2002,32(9):727-734.
    [316]张天义和朱嘉伟.东秦岭地区浅隐花岗岩体遥感识别模式.河南地质,1996,14(4):287-291.
    [317]张田和张岳桥.胶东半岛中生代侵入岩浆活动序列及其构造制约.高校地质学报,2007,13(2):323-336.
    [318]张宗清,刘敦一和付国民.北秦岭变质地层同位素年代研究,地质出版社.1994.
    [319]赵太平,翟明国和夏斌等.熊耳群火山岩锆石SHRIMP年代学研究:对华北克拉通盖层发育初始时间的制约.科学通报,2004,49(022):2342-2349.
    [320]郑建平,路凤香和余淳梅等.地幔置换作用:华北两类橄榄岩及其透辉石微量元素对比证据.地球科学-中国地质大学学报,2003,(03):235-240.
    [321]郑培玺.冀东一辽西地区太古代花岗质岩石成因与地壳演化.[学位论文].吉林大学,2009.
    [322]郑榕芬,毛景文和高建京.河南熊耳山沙沟银铅锌矿床中硫化物和银矿物的矿物学特征及其意义.矿床地质,2006,25(006):715-726.
    [323]郑亚东和王涛.中蒙边界区中生代推覆构造与伸展垮塌作用的运动学和动力学分析.中国科学:D辑,2005,35(004):291-303.
    [324]郑永飞和陈江峰.稳定同位素地球化学,科学出版社.2000.
    [325]支风岐,刘灵恩和索勇.河南省熊耳山西段沙沟西银铅矿区地质特征及找矿前景分析.矿产与地质,2004,18(001):35-38.
    [326]周珂,叶会寿和毛景文等.豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄.矿床地质,2009,(02):170-184.
    [327]周涛发,张乐骏和袁峰等.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘,2010,17(2):306-309.
    [328]周作侠和地质.华北地台南缘金(钼)矿床成因,地震出版社.1993.
    [329]朱光,胡召齐和陈印等.华北克拉通东部早白垩世伸展盆地的发育过程及其对克拉通破坏的指示.地质通报,2008,27(10):1594-1604.
    [330]朱光,牛漫兰和刘国生等.郯庐断裂带肥东段走滑运动的40Ar/39Ar法定年.地质学报,2005,79(003):303-316.
    [331]朱光和宋传中.郯庐断裂带走滑时代的40Ar/39Ar年代学研究及其构造意义.中国科学:D辑,2001,31(003):250-256.
    [332]朱日祥,陈凌和吴福元等.华北克拉通破坏的时间,范围与机制.中国科学:地球科学,2011,41(5):583-592.
    [333]朱日祥,徐义刚和朱光等.华北克拉通破坏.中国科学:地球科学,2012,42(8):1135-1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700