用户名: 密码: 验证码:
多畴低维铁电材料电热性能的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于电热效应的铁电固体制冷器具有高效、环保、应用范围广等优点被认为是最具潜力的固体制冷器之一。目前,铁电材料只有在居里温度附近的较小温度范围内才具有巨电热效应,限制了铁电材料电热制冷的商业化应用。因此,如何调控低维铁电材料的电热性能实现在较宽的温度范围内具有巨电热效应,是实现铁电材料制冷商业化应用的关键。本论文结合电畴结构模拟的相场方法和电热性能研究的热力学理论,建立了多畴低维铁电材料电热性能计算的理论模型,研究了多畴低维铁电材料的电热性能,获得了电热性能与畴变的关联机理和电热的调控机理。该研究结果为制备具有宽温域巨电热效应的铁电固体制冷器提供了理论依据。
     本论文的具体工作和相应结果如下:
     1、建立了PbZr_(0.4)Ti_(0.6)O_3/PbTiO_3铁电超晶格电热性能计算的热力学理论模型。研究了超晶格的层间作用、电极功函数差和厚度比等因素对电热性能的调控机理。获得了铁电超晶格电热性能的调控机理。
     在PbZr_(0.4)Ti_(0.6)O_3/PbTiO_3铁电超晶格中,PbTiO_3层的厚度比(PTO)对其电热性能有较大的影响。当从0.69增大到0.7时,PbZr_(0.4)Ti_(0.6)O_3/PbTiO_3铁电超晶格中PbZr_(0.4)Ti_(0.6)O_3层从铁电c-相(P_1=P_2=0, P_3≠0)转变为顺电相(P_1=P_2=0, P_3=0)。与此同时,铁电超晶格的绝热温度变化出现峰值,这是由于铁电超晶格的层间失配应变使PbZr_(0.4)Ti_(0.6)O_3层从铁电相转变为顺电相所引起的。铁电超晶格中上下电极功函数不同形成的电极功函数差会使超晶格的绝热温度变化减小,这是由于电极功函数差形成的内建电场使外电场减小所导致的。
     2、结合铁电材料90°畴结构模拟的相场方法和电热性能分析的热力学理论,建立了90°畴结构铁电材料电热计算的理论模型。研究了90°畴结构与电热性能的关联性。获得了畴壁密度、畴壁宽度及应变等因素对电热性能的调控机理。
     (a)室温下,90°畴结构的BaTiO_3(BTO)绝热温度变化(ΔT)为2.94K(28nm),大于室温下单畴BTO铁电薄膜的电热性能(ΔT=0.8K),这是由于90°畴壁对电热性能有贡献所引起的。BTO的绝热温度变化随畴壁宽度和畴壁密度的增大而增大。当尺寸减小到临界尺寸(20nm)时,BTO从90°畴结构转变为单畴结构。与此同时,绝热温度变化从2.89K骤降到0.96K,这是由于单畴结构中缺少90°畴壁对电热贡献所引起的。
     (b)室温下,90°畴结构的PbZr0.8Ti0.2O_3(PZT(80/20))铁电薄膜有巨电热效应(ΔT=8.53K,32nm)。PZT(80/20)薄膜绝热温度变化的大小随外加交变电场振幅的增大而增大。PZT(80/20)薄膜与基底的失配应变为压应变时(um=-0.012),PZT(80/20)薄膜的绝热温度变化ΔT=9.8K,大于无失配应变时绝热温度变化;当失配应变为拉应变(um=+0.012),ΔT=7.1K,小于无失配应变时绝热温度变化。由于失配应变改变了薄膜的晶格常数,引起极化大小改变,导致了PZT(80/20)薄膜绝热温度变化改变。
     3、结合180°畴结构模拟的相场方法和电热性能分析的热力学理论,建立了180°畴结构PbTiO_3(PTO)电热性能计算的理论模型。研究了180°畴结构与电热性能的关联机理和电热的调控机理。并提出一种新型固体制冷器设计思想。
     计算结果表明,室温下PTO铁电薄膜的180°畴壁两端发现正/负电热效应共存的现象,这是由外电场方向与极化方向不同所导致的。通过计算PTO薄膜与外电场的入射角、外电场的大小和薄膜与基底的失配应变的关系,180°畴结构PTO铁电薄膜电热性能的调控机理。最后根据PTO铁电薄膜180°畴壁两端正/负电热效应共存现象,提出了一种基于铁电薄膜正/负电热效应的新型固体制冷器设计方案。
     4、结合涡旋畴结构模拟的相场方法和电热性能分析的热力学理论,建立了涡旋畴结构铁电材料电热计算的理论模型。研究了涡旋畴结构与电热性能的关联性。获得了外电场、屏蔽因子和表面张力等对铁电材料电热性能的调控机理。
     (a) Bi4Ti3O12(BIT)铁电纳米片中,为减小退极化场作用会形成涡旋畴结构并形成新的序参量—涡旋矩。外加环形电场Q作用下,BIT涡旋矩(G)变化会产生巨电热效应。环形电场变化ΔQ=0.15mV/2时,BIT铁电纳米片绝热温度变化峰值出现在610oC附近(ΔT=16.6K),且ΔT随ΔQ的增大而增大。退极化场屏蔽因子k减小到临界尺寸(0.7)以下,BIT从涡旋畴结构转变为单畴结构。在涡旋畴结构中,BIT纳米片的ΔT随k增大略有小幅增大。
     (b)考虑表面张力,PTO铁电纳米片为减小退极化场作用会形成涡旋畴结构,表面张力不会影响PTO铁电纳米片的电畴结构。该结果证实在铁电纳米结构的涡旋畴结构模拟中可不考虑表面张力。PTO铁电纳米片的电热性能随表面张力增大而减小。这是由于表面张力改变PTO的晶格常数,导致极化变化改变最终而影响电热性能。PTO纳米片的绝热温度变化随其尺寸的变化而改变。
Recently, there has been growing interest in study of the electrocaloric effect(ECE) which is a change in the temperature of a material upon the application orwithdrawal of an electric field under adiabatic conditions. The ECE can provide analternative cooling technology for reducing greenhouse gases that are used heavily indomestic and industrial refrigeration. However, it is noticed that the giant ECEreported in previous works mainly appears at the phase transform temperature fromthe ferroelectric phase into the paraelectric phase, which limits the commercialapplication of ECE. In fact, the giant ECE over a broad temperature range is veryimportant for exploiting the commercial refrigeration. In this research project, basedon the domain switching tuned by the strain in ferroelectric thin films, the mechanismof ECE tuned by the strain will be studied. A phase field method based on thetime-dependent Ginburg-Landau equation will be developed to study the domainswitching properties of ferroelectric thin films in electromechanical coupling. Amodel will be established to analyze the relationship between the asymmetric domainswitching and the ECE. And the effect of the domain switching with theelectromechanical coupling on the ECE is calculated and predicted by using thismodel. The main results have been presented as follow.
     1、ECE of the PbZr_(0.4)Ti_(0.6)O_3/PbTiO_3ferroelectric superlattices under the dcelectric field. The influence of the misfit strain and the electrode work functionon ECE has been studied.
     A thermodynamic model is developed to investigate the ECE of thePbZr_(0.4)Ti_(0.6)O_3/PbTiO_3ferroelectric superlattices. The ECE of the superlatticeconsisting of ferroelectric layers PbTiO_3(PTO) and PbZr_(0.4)Ti_(0.6)O_3(PZT) withthickness hAand hBare calculated as a function of the volume fraction βPTO=hPTO/(hPTO+hPZT). An ECE anomaly could be found at the specific composition. Inparticular, we found that a maximum adiabatic temperature change (ΔT=5.3K)appears for the critical volume of PTO. This large ECE is attributed to the largechange in spontaneous polarization associated with the phase transform, caused by themisfit strain between the ferroelectric sublayers.
     2、ECE of the ferroelectric thin film with90°domain structures under the ac electric field. The influence of the domain wall density, the width of the domainwall and the misfit strain on the ECE has been studied.
     (a) The domain wall contribution to the ECE in the BaTiO_3(BTO) at roomtemperature is investigated by using a phase field model combined withthermodynamics analysis. The results show that the domain structure which relates tothe size has a significant effect on the ECE in the BTO. When the size of the BTOdecreases, the domain structure undergoes a transition from a multidomain structureto a monodomain structure. In the multidomain BTO, the adiabatic temperaturechange increases with increasing of the domain wall density and domain wall width.In the monodomain BTO, the adiabatic temperature change almost retains constantwith the value of0.95K which is smaller than that in the multidomain structure. Thevariation of the adiabatic temperature change at different domain structure isattributed to the domain wall contribution to ECE.
     (b) A phase field model based on the time-dependent Ginburg-Landau equation(TDGL) is developed to investigate the ECE of PbZr0.8Ti0.2O_3thin film with90°multi-domain structure. The rhombohedral domain morphology is obtained throughnumerically solving the TDGL equation with periodic boundary conditions at roomtemperature. Then the ECE of PbZr0.8Ti0.2O_3thin film is investigated by thethermodynamics analysis. It is shown that a great ECE exists with an applied acelectric field at room temperature. The magnitude of ECE greatly depends on theexternal applied electric field and becomes a periodic time-dependent quantity. Thetheoretical calculations also reveal that both compressive and tensile misfit strainscaused by the mismatch between the film and the substrate can largely affect theelectrocaloric properties. It reveals that the compressive substrate strain enhances theECE of PbZr0.8Ti0.2O_3thin film while the tensile substrate strain suppresses it.
     3、ECE of the ferroelectric thin film with180°domain structures under the dcelectric field. We provide the conceptual design of the ferroelectric thin film with180°domain structures as solid-state refrigerators.
     The coexistence of the negative and positive ECE is firstly found in theferroelectric thin film with180°domain structures using the phase field basedsimulation. The calculation results reveal that a negative adiabatic temperature change(ΔT=-3.4K) and positive adiabatic temperature change (ΔT=3.1K) coexist in thePbTiO_3thin film with180°domain structures under the dimensional electric field ΔE=0.1. The coexistence of the negative and positive ECE is caused by the directionof the applied electric field different from the dipole direction of180°domainstructures. And the influence of electric field and misfit strain on ECE are studied.The coexistence of negative and positive ECE in the thin film with180°domainstructures can provide a new way to design solid-state refrigerators.
     4、Electrocaloric effects of the ferroelectric nanoparticle with vortex domainstructures under the curled electric field. The domain wall contribution to theadiabatic temperature change in ferroelectric nanoparticle is investigated inmuch detail.
     (a) ECE of the Bi4Ti3O12(BIT) ferroelectric nanoparticle with vortex domainstructures under the curled electric field is investigated by using a phase field method.A large adiabatic temperature change (T=16.6K) is found in the BIT nanoparticlewith the vorticity vector of the curled field change Q=0.15mV-2at620oC. Thislarge T is attributed to the large change of toroidal moment which associated withvortex domain structures in the nanoparticle under the curled electric field. Theseresults indicate that the ferroelectric nanostructure with vortex domain structures canbe exploited for using as solid state refrigeration.
     (b) The influence of intrinsic surface tension on the ECE in the ferroelectricnanomaterial with vortex domain structures is studied by using the phase field method.The calculation results show that that a giant adiabatic temperature change (T=5.8K)related to the toroidal moment change appears in the PTO ferroelectric nanoparticlewith the surface tension coefficient=5N/m under the vorticity vector of curledelectric field (Q1=0mV/2, Q1=0.9mV/2) at room temperature. And themagnitude of the adiabatic temperature change decreases with the increase of surfacetension. In additional, the decrease of size is found to enhance the ECE of PTOnanoparticle with vortex domain structures.
引文
[1] F. S. Rowland, M. J. Molina, Stratospheric sink for chlorofluormethanes chlorineatomc-atalysed destruction of ozone [J]. Nature,1974,249:810-812.
    [2] R. S. Stolarski, A. J. Krueger, M. R. Schoeberl, R. D. Mcpeters, P. A. Newman, J. C. Alpert,Nimbus7satellite measurements of the springtime antarctic ozone decrease [J]. Nature,1986,322:808-811.
    [3] G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I.Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J.Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. F. Levelt, A.Makshtas, C. T. Mcelroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. von der Gathen,K. A. Walker, N. S. Zinoviev, Unprecedented arctic ozone loss in2011[J]. Nature,2011,478:469-475.
    [4] Z. Yan, J. Christofferson, A. Shakouri, G. Zeng, J. E. Bowers, E. T. I. Croke, On-chip highspeed localized cooling using superlattice microrefrigerators [J]. Components andPackaging Technologies, IEEE Transactions on,2006,29:395-401.
    [5] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, A. Planes, Inversemagnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nature Materials,2005,4:450-454.
    [6] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, O. Gutfleisch, Giant magnetocaloric effectdriven by structural transitions [J]. Nature Materials,2012,11:620-626.
    [7] A. M. Rowe, J. A. Barclay, Ideal magnetocaloric effect for active magnetic regenerators [J].Journal of Applied Physics,2003,93:1672-1676.
    [8] V. K. Pecharsky, K. A. Gschneidner, Tunable magnietic regeneratror alloy with a giantmagnetocaloric effect for magnetic refrigeration form20to290K [J]. Applied PhysicsLetters,1996,70:3299-3311.
    [9] F. J. Disalvo, Thermoelectric cooling and power generation [J]. Science,1999,285:703-706.
    [10] G. Min, D. M. Rowe, Cooling performance of integrated thermoelectric microcooler [J].Solid-State Electronics,1999,43:923-929.
    [11] T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. Laforge, Quantum dot superlatticethermoelectric materials and devices [J]. Science,2002,297:2229-2232.
    [12] T. Harman, P. Taylor, D. Spears, M. Walsh, Thermoelectric quantum-dot superlattices withhigh ZT [J]. Journal of Electronic Materials,2000,29: L1-L2.
    [13] S. Lu, Q. Zhang, Electrocaloric materials for solid-state refrigeration [J]. AdvancedMaterials,2009,21:1983-1987.
    [14] J. F. Scott, Electrocaloric materials [J]. Annual Review of Materials Research,2011,41:1-12.
    [15] X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, L.Ma osa, N. D. Mathur, Giant electrocaloric strength in single-crystal BaTiO3[J]. AdvancedMaterials,2013,9:1360-1365.
    [16] Y. S. Ju, Solid-state refrigeration based on the electrocaloric effect for electronics cooling[J]. Journal of Electronic Packaging,2010,132:41004.
    [17] M. Valant, Electrocaloric materials for furture solid-state refrigeration technologies [J].Progress in Materials Science,2012,57:980-1009.
    [18] S. B. Liu, Y. Q. Li, Research on the electrocaloric effect of PMN/PT solid solution forferroelectrics mems microcooler [J]. Materials Science and Engineering B,2004,113:46-49.
    [19]钟维烈,铁电体物理学[M].北京:科学出版社,2000.
    [20] L. P. Kadanoff, O. G, W. Tze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palciauskas, M.Rayl, J. Swift, D. Aspnes, J. Kane, Static phenomena near critical points: theory andexperiment [J]. Reviews of Modern Physics,1967,39:395-431.
    [21]殷之文,电介质物理学[M].北京:科学出版社,2002.
    [22] D. A. Hall, M. M. Ben-Omran, P. J. Stevenson, Field and temperature dependence ofdielectric properties in BaTiO3-based piezoceramics [J]. Journal of Physics: CondensedMatterials,1998,10:461.
    [23] D. A. Hall, Review nonlinearity in piezoelectric ceramics [J]. Journal of Materials Science,2001,36:4601-4757.
    [24] T. M. Tritt, Thermoeletric materials holey and unholey semiconductors [J]. Science,1999,283:804-805.
    [25] S. Corkovic, Q. Zhang, Enhanced pyroelectric coefficient of antiferroelectric-ferroelectricbilayer thin films [J]. Journal of Applied Physics,2009,105:61610-61615.
    [26] J. F. Scott, Applications of modern ferroelectrics [J]. Science,2007,315:954-959.
    [27] S. Ray, Y. V. Kolen'Ko, D. Fu, R. Gallage, N. Sakamoto, T. Watanabe, M. Yoshimura, M.Itoh, Direct observation of ferroelectricity in quasi-zero-dimensional barium titanatenanoparticles [J]. Small,2006,2:1427-1431.
    [28] T. Kijima, S. Satoh, H. Matsunaga, M. Koba, Ultra thin fatigue free Bi4Ti3O12film fornovolatile ferroelectric memories [J]. Japanese of Journal Applied Physics,1996,35:1246-1250.
    [29] P. Kobeco, I. Kurtchatov, Dielectric properties of rochelle salt crystal [J]. Z Physics,1930,66:192-205.
    [30] G. H. Induzierte, Induzierte ferroelektrizitat von SrTiO3bei sehr tiefen temperatur und uberdiekalterzeugung durch adiabatic entpolarisierung(in german)[J]. Helv Physical Acta,1956,29:210-212.
    [31] G. G. Wiseman, J. K. Kuebler, Electrocaloric effect in ferroelectric rochelle salt [J].Physical Review,1963,131:2023-2027.
    [32] I. Shepherd, G. Feher, Cooling by adiabatic depolarization of H-molecules in KCl [J].Physical Review Letters,1965,15:194-198.
    [33] G. Lombardo, R. O. Pohl, Electrocaloric effect and a new type of impurity mode [J].Physical Review Letters,1965,15:291-293.
    [34] R. O. Pohl, V. L. Taylor, W. M. Goubau, Electrocaloric effect in doped alkali halides [J].Physical Review,1969,178:1431-1436.
    [35] W. N. Lawless, Specific heat and electrocaloric properties of KTaO3at low temperatures [J].Physical Review B,1977,16:433-439.
    [36] P. D. Thacher, Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr,Ti)O3compounds [J]. Journal Applied Physics,1968,39:1996-2002.
    [37] A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Giantelectrocaloric effect in thin films PZT(95_5)[J]. Science,2006,311:1270-1271.
    [38] B. Neese, B. J. Chu, S. G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Large electrocaloriceffect in ferroelectric polymers [J]. Science,2008,321:821-823.
    [39] S. Prosandeev, I. Ponomareva, L. Bellaiche, Electrocaloric effect in bulk andlow-dimensional ferroelectrics from first principles [J]. Physical Review B,2008,78:52103.
    [40] S. Lisenkov, I. Ponomareva, Giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3alloysfrom first-principles [J]. Physical Review B,2012,86:104103.
    [41] I. Ponomareva, S. Lisenkov, Bridging the macroscopic and atomistic descriptions of theelectrocaloric effect [J]. Physical Review Letters,2012,108:167604.
    [42] G. Akcay, S. P. Alpay, G. A. Rossetti, J. F. Scott, Influence of mechanical boundaryconditions on the electrocaloric properties of ferroelectric thin films [J]. Journal AppliedPhysics,2008,103:24101-24104.
    [43] G. Akcay, S. P. Alpay, J. V. Mantese, J. G. A. Rossetti, Magnitude of the intrinsicelectrocaloric effect in ferroelectric perovskite thin films at high electric fields [J]. AppliedPhysics Letters,2007,90:252009.
    [44] J. Zhang, A. A. Heitmann, S. P. Alpay, J. G. A. Rossetti, Aspects of the electrocaloricbehavior of ferroelectric thin films a review of the predictions of the Landau Ginzburgtheory [J]. Integrated Ferroelectrics,2011,125:168-175.
    [45] B. Rozic, M. Kosec, H. Ursic, J. Holc, B. Malic, Q. M. Zhang, R. Blinc, R. Pirc, A. Z.Kutnjak, Influence of the critical point on the electrocaloric response of relaxorferroelectrics [J]. Journal of Applied Physics,2011,110:64118.
    [46] R. Pirc, Z. Kutnjak, R. Blinc, Q. M. Zhang, Electrocaloric effect in relaxor ferroelectrics [J].Journal of Applied Physics,2011,110:74113.
    [47] H. X. Cao, Z. Y. Li, Electrocaloric effect in BaTiO3thin films [J]. Journal of AppliedPhysics,2009,106:94104.
    [48] Y. Liu, X. P. Peng, X. J. Lou, H. Zhou, Intrinsic electrocaloric effect in ultrathinferroelectric capacitors [J]. Applied Physics Letters,2012,100:192902.
    [49] J. Hagberg, A. Uusimaki, H. Jantunen, Electrocaloric characteristics in reactive sintered0.87Pb(Mg1/3Nb2/3)O3-0.13PbTiO3[J]. Applied Physics Letters,2008,92:132901-132909.
    [50] D. Saranya, A. R. Chaudhari, J. Parui, S. B. Krupanirhi, Electrocaloric effect of PMN-PTthin films near morphotropic phase boundary [J]. Bulletin of Materials Science,2009,32:259-262.
    [51] S. G. Lu, B. Rozic, Q. M. Zhang, Z. Kutnjak, R. Pirc, M. Lin, X. Li, L. Gorny, Comparisonof directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers [J].Applied Physics Letters,2010,97:202901.
    [52] A. S. Mischenko, Q. Zhang, R. W. Whatmore, N. D. Mathur, Giant electrocaloric effect inthe thin film relaxor ferroelectric0.9PbMg1/3Nb2/3O3–0.1PbTiO3near room temperature[J]. Applied Physics Letters,2006,89:242912,1-3.
    [53] G. Sebald, L. Seveyrat, J. Capsal, P. Cottinet, D. Guyomar, Differential scanningcalorimeter and infrared imaging for electrocaloric characterization of poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) terpolymer [J]. Applied Physics Letters,2012,101:22907.
    [54] Y. Bai, G. Zheng, S. Shi, Direct measurement of giant electrocaloric effect in BaTiO3multilayer thick film structure beyond theoretical prediction [J]. Applied Physics Letters,2010,96:192902.
    [55] Y. Bai, G. Zheng, S. Shi, Kinetic electrocaloric effect and giant net cooling of lead-freeferroelectric refrigerants [J]. Journal of Applied Physics,2010,108:104102.
    [56] Y. Bai, G. Zheng, K. Ding, L. Qiao, S. Shi, D. Guo, The giant electrocaloric effect and higheffective cooling power near room temperature for BaTiO3thick film [J]. Journal ofApplied Physics,2011,110:94103.
    [57] H. Chen, T. L. Ren, X. M. Wu, Giant electrocaloric effect in lead free thin film of strontiumbismuth tantalite [J]. Applied Physics Letters,2009,94:182902.
    [58] J. H. Qiu, Q. Jiang, Effect of electric field on electrocaloric effect in Pb(Zr1xTix)O3solidsolution [J]. Physics Letters A,2008,372:7191-7195.
    [59] J. Parui, S. B. Krupanidhi, Electrocaloric effect in antiferroelectric PbZrO3thin films [J].Physics of the Solid State,2008,2:230-232.
    [60] T. M. Correia, J. S. Young, R. W. Whatmore, J. F. Scott, N. D. Mathur, Q. Zhang,Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTiO3relaxor thin film [J].Applied Physics Letters,2009,95:182904.
    [61] B. Peng, H. Fan, Q. Zhang, A giant electrocaloric effect in nanoscale antiferroelectric andferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3thin film at room temperature [J].Advanced Functional Materials,2013, DOI:10.1002/adfm.201202525.
    [62] T. M. Correia, S. Kar-Narayan, J. S. Young, J. F. Scott, N. D. Mathur, R. W. Whatmore, Q.Zhang, PST thin films for electrocaloric coolers [J]. Journal of Physics D: Applied Physics,2011,44:165407.
    [63] C. T. Nelson, B. Winchester, Y. Zhang, S. J. Kim, A. Melville, C. Adamo, C. M. Folkman,S. H. Baek, C. B. Eom, D. G. Schlom, L. Q. Chen, X. Q. Pan, Spontaneous vortexnanodomain arrays at ferroelectric heterinterfaces [J]. Nano Letters,2011,11:828-834.
    [64]杨卫,力电失效学[M].北京:清华大学出版社-Springer Verlag,2001.
    [65]方岱宁,刘金喜,压电与铁电体的断裂力学[M].北京:清华大学出版社,2008.
    [66] I. Ponomareva, L. Bellaiche, R. Resta, Dielectric anomalies in ferroelectric nanostructures[J]. Physical Review Letters,2007,99:227601.
    [67] Z. Y. Feng, D. Lin, H. S. Luo, S. Li, D. N. Fang, Effect of uniaxial stress on theelectromechanical response of (001)-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3crystals [J]. Journalof Applied Physics,2005,97:24103.
    [68] Y. W. Li, F. X. Li, Two-dimensional domain switching induced tensile fracture in acrack-free lead titanate zirconate ceramics under orthogonal electromechanical loading [J].Applied Physics Letters,2010,97:102903.
    [69] W. J. Chen, Y. Zheng, B. Wang, Phase field simulations of stress controlling the vortexdomain structures in ferroelectric nanosheets [J]. Applied Physics Letters,2012,100:62901.
    [70] J. B. Neaton, K. M. Rabe, Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3superlattices [J]. Applied Physics Letters,2003,82:1586.
    [71] H. Nyund, H. M. Christen, M. F. Chisholm, Strong polarization enhancement inasymmetric three component ferroelectric superlattices [J]. Nature,2005,433:395-398.
    [72] J. F. Ihlefeld, C. M. Folkman, S. H. Baek, G. L. Brennecka, M. C. George, J. F. Carroll, C.B. Eom, Effect of domain structure on dielectric nonlinearity in epitaxial BiFeO3films [J].Applied Physics Letters,2010,97:262904.
    [73] I. I. Naumov, L. Bellaiche, H. Fu, Unusual phase transitions in ferroelectric nanodisks andnanorods [J]. Nature,2004,432:737-740.
    [74] I. I. Naumov, H. X. Hu, Spontaneous polarization in one-dimensional Pb(ZrTi)O3nanowires [J]. Physical Review Letters,2005,95:247601-247602.
    [75] S. Prosandeev, I. Ponomareva, I. Naumov, I. Kornev, L. Bellaiche, Original properties ofdipole vortices in zero-dimensional ferroelectrics [J]. Journal of Physics: CondensedMatterials,2008,20:193201.
    [76] H. Fu, L. Bellaiche, Ferroelectricity in barium titanate quantum dots and wires [J]. PhysicalReview Letters,2003,25:257601.
    [77] I. Kornev, H. X. Fu, L. Bellaiche, Ultrathin films of ferroelectric solid solutions under aresidual depolarizing field [J]. Physics Review Letters,2004,93:196101-196104.
    [78] W. Cao, L. E. Cross, Theory of tetragonal twin structures in ferroelcectic perovskites with afirst order phase transition [J]. Physical Review B,1991,44:5-12.
    [79] R. Ahluwalia, T. Lookman, A. Saxena, W. Cao, Domain-size dependence of piezoelectricproperties of ferroelectrics [J]. Physical Review B,2005,72:14112.
    [80] R. Ahluwalia, W. Cao, Influence of dipolar defects on switching behavior in ferroelectrics[J]. Physical Review B,2000,63:12103.
    [81] Y. L. Li, S. Y. Hu, Z. K. Liu, L. Q. Chen, Effect of substrate constraint on the stability andevolution of ferroelectric domain structures in thin films [J]. Acta Materialia,2002,50:395-411.
    [82] Y. L. Li, S. Choudhury, Z. K. Liu, L. Q. Chen, Effect of external mechanical constraints onthe phase diagram of epitaxial PZT thin films-thermodynamic calculations and phase fieldsimulations [J]. Applied Physics Letters,2003,83:1608-1610.
    [83] L. Hong, A. K. Soh, S. Y. Liu, L. Lu, Vortex structure transformation of BaTiO3nanoparticles through the gradient function [J]. Journal of Applied Physics,2009,106:24111-24114.
    [84] Y. Zhang, J. Li, D. Fang, Size dependent domain configuration and electric field drivenevolution in ultrathin ferroelectric films: a phase field investigation [J]. Journal of AppliedPhysics,2010,107:34107.
    [85] Y. Zhang, J. Y. Li, D. N. Fang, Oxygen-vacancy-induced memory effect and largerecoverable strain in a barium titanate single crystal [J]. Physical Review B,2010,82:64103.
    [86] W. W. Cao, S. Tavener, S. M. Xie, Simulation of boundary condition influence in asecond-order ferroelectric phase transition [J]. Journal of Applied Physics,1999,86:5739-5746.
    [87] W. D. Dong, D. M. Pisani, C. S. Lynch, A fnite element based phase field model forferroelectric domain evolution [J]. Smart Materials&Structures,2012,21:94014.
    [88] M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, J. M. Triscone, Tailoringthe properties of artificially layered ferroelectric superlattices [J]. Advanced Materials,2007,19:4153-4159.
    [89] Y. L. Li, S. Y. Hu, D. Tenne, A. Soukiassian, D. G. Schlom, X. X. Xi, K. J. Choi, C. B.Eom, A. Saxena, T. Lookman, Q. X. Jia, L. Q. Chen, Prediction of ferroelectricity inBaTiO3/SrTiO3superlattices with domains [J]. Applied Physics Letters,2007,91:112914.
    [90] S. Zhong, S. P. Alpay, J. V. Mantese, High dielectric tunability in ferroelectric-paraelectricbilayers and multilayer superlattices [J]. Applied Physics Letters,2006,88:132904.
    [91] M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M.Rabe, J. M. Triscone, Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3superlattices [J]. Physical Review Letters,2005,95:177601.
    [92] G. Rijnders, D. H. A. Bank, Build your own superlattice [J]. Nature,2005,433:369-370.
    [93] H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, D. H. Lowndes, Strongpolarization enhancement in asymmetric three-component ferroelectric superlattices [J].Nature,2005,433:395-399.
    [94] V. A. Stephanovich, I. A. Luk'Yanchuk, M. G. Karkut, Domain-enhanced interlayercoupling in ferroelectric/paraelectric superlattices [J]. Physical Review Letters,2005,94:47601.
    [95] H. Tabata, H. Tanaka, T. Kawai, Formation of artificial BaTiO3/SrTiO3superlattices usingpulsed laser deposition and their dielectric properties [J]. Applied Physics Letters,1994,65:1970-1972.
    [96] K. Johnston, X. Huang, J. B. Neaton, K. M. Rabe, First-principles study of symmetrylowering and polarization in BaTiO3/SrTiO3superlattices with in-plane expansion [J].Physical Review B,2005,71:100103.
    [97] Y. L. Li, S. Y. Hu, D. Tenne, A. Soukiassian, D. G. Schlom, L. Q. Chen, X. X. Xi, K. J.Choi, C. B. Eom, A. Saxena, T. Lookman, Q. X. Jia, Interfacial coherency andferroelectricity of BaTiO3/SrTiO3superlattice films [J]. Applied Physics Letters,2007,91:252901-252904.
    [98] N. A. Pertsev, P. E. Janolin, J. M. Kiat, Y. Uesu, Enhancing permittivity of ferroelectricsuperlattices via composition tuning [J]. Physical Review B,2010,81:144116-144118.
    [99] A. L. Roytburd, S. Zhong, S. P. Alpay, Dielectric anomaly due to electrostatic coupling inferroelectricparaelectric [J]. Applied Physics Letters,2005,87:102901-102909.
    [100] N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev, Effect of mechanical boundaryconditions on phase diagrams of epitaxial ferroelectric thin films [J]. Physical ReviewLetters,1998,80:1991-1998.
    [101] N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, R. Waser, Phase diagrams and physicalproperties of single-domain epitaxial PZT thin films [J]. Physical Review B,2003,67:54101-54107.
    [102] Y. L. Li, S. Y. Hu, L. Q. Chen, Ferroelectric domain morphologies of (001)PbZr1-xTixO3epitaxial thin films [J]. Journal of Applied Physics,2005,97:34111-34112.
    [103] S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu,J. F. Scott, J. W. Ager, L. W. Martin, R. Ramesh, Above bandgap coltages fromferroelectric photovolataic devices [J]. Nature Nanotechnology,2010,10:1-5.
    [104] F. Xu, S. Trolier-Mckinstry, W. Ren, B. Xu, Z. L. Xie, K. J. Hemker, Domain wall motionand its contribution to the dielectric and piezoelectric properties of lead zirconate titanatefilms [J]. Journal of Applied Physics,2001,89:1336-1348.
    [105] G. Catalan, J. Seidel, R. Ramesh, J. F. Scott, Domain wall nanoelectronics [J]. Reviews ofModern Physics,2012,84:119-156.
    [106] N. A. Pertsev, G. Arlt, A. G. Zembilgotov, Domain-wall and intrinsic contributions to thedielectric response of epitaxial ferroelectric films [J]. Microelectronic Engineering,1995,29:135-140.
    [107] H. Huang, X. L. Zhong, S. H. Xie, Y. Zhang, J. B. Wang, Y. C. Zhou, Piezoresponse forcemicroscopy observation of domain switching in Bi3.15Nd0.85Ti3O12thin film prepared bypulsed laser deposition [J]. Journal of Applied Physics,2011,110:54105.
    [108] G. Arlt, The influence of microstructure on the properties of ferroelectric ceramics [J].Ferroelectrics,1990,104:217-227.
    [109] Y. L. Li, L. E. Cross, L. Q. Chen, A phenomenological thermodynamic potential for BaTiO3single crystals [J]. Journal of Applied Physics,2005,98:64101.
    [110] J. Wang, T. Y. Zhang, Size effect in epitaxial ferroelectric islands and thin films [J].Physical Review B,2006,73:144107.
    [111] Y. L. Li, L. Q. Chen, Temperature-strain phase diagram for BaTiO3thin films [J]. AppliedPhysics Letters,2006,88:72905.
    [112] A. G. Zembilgotov, N. A. Pertsev, H. Kohlstedt, R. Waser, Ultrathin epitaxial ferroelectricfilms grown on compressive substrates: competition between the surface and strain effects[J]. Journal of Applied Physics,2002,91:2247.
    [113] L. Hong, A. K. Soh, Y. C. Song, L. C. Lim, Interface and surface effects on ferroelectricnano-thin films [J]. Acta Materialia,2008,56:2966-2974.
    [114] P. Marton, I. Rychetsky, J. Hlinka, Domain walls of ferroelectric BaTiO3within theGinzburg-Landau-Devonshire phenomenological model [J]. Physical Review B,2010,81:144125.
    [115] J. Hlinka, P. Marton, Phenomenological model of a90domain wall in BaTiO3typeferroelectrics [J]. Physical Review B,2006,74:104104.
    [116] L. J. Mcgilly, A. Schilling, J. M. Gregg, Domain bundle boundaries in single crystal BaTiO3lamellae searching for naturally forming dipole flux closure_qyadrupole chains [J]. NanoLetters,2010,10:4200-4205.
    [117] A. Schilling, T. B. Adams, R. M. Bowman, J. M. Gregg, G. Catalan, J. F. Scott, Scaling ofdomain periodicity with thickness measured in BaTiO3single crystal lamellae andcomparison with other ferroic [J]. Physical Review B,2006,74:24115.
    [118] G. Arlt, D. Hennings, G. de With, Dielectric properties of fine grained barium titanateceramics [J]. Journal Applied Physics,1985,4:1619-1625.
    [119] Y. Zhang, J. Hong, B. Liu, D. Fang, Strain effect on ferroelectric behaviors of BaTiO3nanowires: a molecular dynamics study [J]. Nanotechnology,2010,21:15701.
    [120] J. E. Spanier, A. M. Kolpak, J. J. Urban, Ferroelectric phase transition in individual singlecrystalline BaTiO3nanowires [J]. Nano Letters,2006,
    [121] J. Wang, M. Kamlah, T. Y. Zhang, Phase field simulations of ferroelectric nanoparticleswith different long range electrostatic and elastic interactions [J]. Journal of AppliedPhysics,2009,105:14101-14104.
    [122] R. Clarke, The ferroelectric-ferroelectric transition in rhombohedral lead zirconate-titanate[J]. Ferroelectrics,1976,12:207-209.
    [123] X. Chen, X. Qian, X. Li, S. G. Lu, H. Gu, M. Lin, Q. Shen, Q. M. Zhang, Enhancedelectrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-basedterpolymer/copolymer blends [J]. Applied Physics Letters,2012,100:222902.
    [124] D. G. Schlom, L. Chen, C. Eom, K. M. Rabe, S. K. Streiffer, J. Triscone, Strain tuning offerroelectric thin films [J]. Annual Review of Materials Research,2007,37:589-626.
    [125] X. Li, S. Lu, X. Chen, H. Gu, X. Qian, Q. M. Zhang, Pyroelectric and electrocaloricmaterials [J]. Journal of Materials Chemistry,2013,1:23-37.
    [126] M. J. Haun, E. Furman, S. J. Jang, L. E. Cross, Thermodynamic theory of the leadzirconate-titanate solid solution system, part I: phenomenology [J]. Ferroelectrics,1989,99:13-25.
    [127] M. J. Haun, E. Furman, T. R. Halemane, L. E. Cross, Thermodynamic theory of the leadzirconate-titanate solid solution system, part IV: tilting of the oxygen octahedra [J].Ferroelectrics,1989,99:55-62.
    [128] J. Ricote, R. W. Whatmore, D. J. Barber, Studies of the ferroelectric domain configurationand polarization of rhomboheral PZT cermics [J]. JournaL of Physics: Condens Matterials,2000,12:323-337.
    [129] J. Wang, Y. L. Li, L. Q. Chen, T. Y. Zhang, The effect of mechanical strains on theferroelectric and dielectric properties of a model single crystal-phase field simulation [J].Acta Materialia,2005,53:2495-2507.
    [130] J. Per ntie, J. Hagberg, A. Uusim ki, H. Jantunen, Electric-field-induced dielectric andtemperature changes in a011-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3single crystal [J]. PhysicalReview B,2010,82:134119.
    [131] J. H. Qiu, J. N. Ding, N. Y. Yuan, X. Q. Wang, J. Yang, Orientation dependence of theelectrocaloric effect in PbTiO3/SrTiO3multilayers [J]. Solid State Communications,2012,152:856-859.
    [132] P. F. Liu, J. L. Wang, X. J. Meng, J. Yang, B. Dkhil, J. H. Chu, Huge electrocaloric effect inlangmuir-blodgett ferroelectric polymer thin films [J]. New Journal of Physics,2010,12:23035.
    [133] G. B. Stephenson, K. R. Elder, Theory for equilibrium180ostripe domains in PbTiO3films[J]. Journal of Applied Physics,2006,100:51601.
    [134] D. C. Ma, Y. Zheng, C. H. Woo, Phase filed simulation of domain structrue forPbTiO3/SrTiO3superlattices [J]. Acta Materialia,2009,57:4736-4744.
    [135] M. J. Haun, E. Furman, S. J. Jiang, L. E. Cross, Thermodynamic theory of PZT solidsolution system [J]. Ferroelectrics,1989,99:13-25
    [136] W. L. Zhong, B. D. Qu, P. L. Zhang, Y. G. Wang, Thickness dependence of the dielectricsusceptibility of ferroelectric thin films [J]. Physical Review B,1994,50:12375.
    [137] K. Aoyagi, T. Kiguchi, Y. Ehara, T. Yamada, H. Funakubo, T. J. Konno, Diffractioncontrast analysis of90°and180°ferroelectric domain structures of PbTiO3thin films [J].Science and Technology of Advanced Materials,2011,12:34403.
    [138] B. Li, J. B. Wang, X. L. Zhong, F. Wang, Y. C. Zhou, Room temperature electrocaloriceffect on PbZr0.8Ti0.2O3thin film [J]. Journal of Applied Physics,2010,107:14109.
    [139] M. G. Stachiotti, M. Sepliarsky, Toroidal ferroelectricity in PbTiO3nanoparticles [J].Physical Review Letters,2011,106:137601.
    [140] J. Wang, Y. Su, Stability of polarization vortices within two interacting ferroelectricnanoparticles [J]. Physics Letters A,2011,375:1019-1022.
    [141] J. Wang, M. Kamlah, Domain control in ferroelectric nanodots through surface charges [J].Applied Physics Letters,2008,93:262904.
    [142] B. J. Rodriguez, X. S. Gao, L. F. Liu, W. Lee, I. I. Naumov, A. M. Bratkovsky, D. Hesse, M.Alexe, Vortex polarization states in nanoscale ferroelectric arrays [J]. Nano Letters,2009,9:1127-1131.
    [143] L. J. Mcgilly, J. M. Gregg, Polarization closure in PbZr0.42Ti0.58O3nanodots [J]. NanoLetters,2011,11:4490-4495.
    [144] Y. Ivry, D. P. Chu, J. F. Scott, C. Durkan, Flux closure vortexlike domain structures inferroelectric thin films [J]. Physical Review Letters,2010,104:207602.
    [145] N. Balke, B. Winchester, W. Ren, Y. H. Chu, A. N. Morozovska, E. A. Eliseev, M. Huijben,R. K. Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche,L. Q. Chen, S. V. Kalinin, Enhanced electric conductivity at ferroelectric vortex cores inBiFeO3[J]. Nature Physics,2012,6:81-88.
    [146] I. Naumov, H. X. Fu, Vortex to polarization phase transformation path in ferroelectricPbZrTiO3nanoparticles [J]. Physical Review Letters,2007,98:77603.
    [147] L. E. Cross, R. C. Pohanka, A thermodynamic analysis of ferroelectricity in bismuth titanate[J]. Journal of Applied Physics,1968,39:3992-3995.
    [148] C. H. Woo, Y. Zheng, Depolarization in modeling nano-scale ferroelectrics using the landaufree energy functional [J]. Applied Physics A-Materials Science&Processing,2008,91:59-63.
    [149] D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J. Yoon, T. K. Song, T. W. Noh,Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3capacitors [J]. Physical Review Letters,2005,95:237601-237602.
    [150] J. Wang, M. Kamlah, Intrinsic switching of polarization vortex in ferroelectric nanotubes [J].Physical Review B,2009,80:1210-1211.
    [151] T. Cast An, A. Planes, A. Saxena, Thermodynamics of ferrotoroidic materials:toroidocaloric effect [J]. Physical Review B,2012,85:144429.
    [152] A. S. Neto, L. E. Cross, Electro-mechanical behaviour of single domain single crystals ofbismuth titanate (Bi4Ti3O12)[J]. Jouunal of Materials Science,1982,17:1409-1412.
    [153] J. Wang, S. Q. Shi, L. Q. Chen, Y. L. Li, T. Y. Zhang, Phase field simulations offerroelectric/ferroelastic phase field simulations of ferroelectric/ferroelastic [J]. ActaMaterialia,2004,52:749-764.
    [154] Y. Shen, D. R. Clarke, P. A. Fuierer, Anisotropic thermal conductivity of the aurivillusphase, bismuth titanate (Bi4Ti3O12): a natural nanostructured superlattice [J]. AppliedPhysics Letters,2008,93:102907.
    [155] J. Wang, Switching mechanism of polarization vortex in single-crystal ferroelectricnanodots [J]. Applied Physics Letters,2010,97:192901.
    [156] Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectricrelaxors as a critical phenomenon [J]. Nature,2006,441:956-959.
    [157] Y. Zheng, C. H. Woo, B. Wang, Surface tension and size effect in ferroelectric nanotubes[J]. Journal of Physics: Condensed Matterials,2008,20:135216.
    [158] R. Kretschmer, K. Binder, Surface effects on phase transitions in ferroelectrics and dipolarmagnets [J]. Physical Review B,1979,20:1065-1076.
    [159] S. Lin, T. Q. Lu, W. W. Cao, Theoretical study on the influence of surface imperfections onthe properties of ferroelectric thin films in first-order ferroelectric systems [J]. Physics ofthe Solid State,2006,243:2952-2961.
    [160] H. Huang, C. Q. Sun, P. Hing, Surface bond contraction and its effect on the nanometricsized lead zirconate titanate [J]. Journal of Physics: Condensed Matterials,2000,12: L127.
    [161] K. Ishikawa, T. Uemori, Surface relaxation in ferroelectric perovskites [J]. Physical ReviewB,1999,60:11841-11845.
    [162] Z. H. Zhou, X. S. Gao, J. Wang, K. Fujihara, S. Ramakrishna, V. Nagarajan, Giant strain inPbZr0.2Ti0.8O3nanowires [J]. Applied Physics Letters,2007,90:52902.
    [163] K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size inbarium titanate [J]. Journal of the American Ceramic Society,1989,72:1555-1558.
    [164] W. Ma, M. Zhang, Z. Lu, A study of size effects in PbTiO3nanocrystals by Ramanspectroscopy [J]. Physica Status Solidi (a),1998,166:811-815.
    [165] Y. Q. Chen, Y. F. En, Y. Huang, X. D. Kong, X. J. Zheng, Y. D. Lu, Effects of surfacetension and axis stress on piezoelectric behaviors of ferroelectric nanowires [J]. AppliedPhysics Letters,2011,99:203106.
    [166] Z. H. Zhou, X. S. Gao, J. Wang, K. Fujihara, S. Ramakrishna, V. Nagarajan, Giant strain inPbZr0.2Ti0.8O3nanowires [J]. Applied Physics Letters,2007,90:52902.
    [167] X. Dai, H. X. Cao, Q. Jiang, V. C. Lo, Influence of thermal strains on the electrocaloric anddielectric properties of ferroelectric nanoshells [J]. Journal of Applied Physics,2009,106:34103.
    [168] A. N. Morozovska, E. A. Eliseev, M. D. Glichuk, Ferroelectricity enhancement in confinednanorods direct variational method [J]. Physical Review B,2006,73:214106.
    [169] W. L. Zhong, Y. G. Wang, P. L. Zhang, B. D. Qu, Phenomenological study of the size effecton phase transitions in ferroelectric particles [J]. Physical Review B,1994,50:698-703.
    [170] A. M. Stoneham, Measurement of surface tension by lattice parameter changes: theory forfaceted microcrystals [J]. Journal of Physics C: Solid State Physics,1977,10:1175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700