用户名: 密码: 验证码:
砂泥岩薄互层的高分辨率地震储层反演预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以作完成的三维高分辨地震资料的研究实践为基础,研究了高分辨率地震储层反演和储层预测的原理、方法及应用效果,重点研究高分辨率地震的反演处理方法理论及预测技术。其主要目的是针对陆相盆地的特殊性以及所限的资料条件,综合应用高分辨率地震、地质、测井、钻井、试油试采等多种信息开展高分辨率地震反演、储层预洲和油气检测等方面研究,探索出一条适合陆相地质条件的砂泥岩薄互层预测的切实可行的方法技术,从而达到提高储层和油气预测精度的目的。
    研究工作中原油田文一濮地区三维高分辨率地震资料为基础,进行高分辨率三维地震的储层反演预测及相关内容的研究。主要研究内容为:
    通过砂泥岩互层模型试验,分析了不同的砂泥岩组合的地震反射特征以及其分辨储层的能力,分析认为,薄互层反射波的振幅强弱主要由物性差异决定,频率对薄层厚度的敏感度与地层厚度成正比,反射波具有振幅调谐和频率调谐作用。
    采用先进的技术进行三维高分辨率采集、处理和解释,提高了地震资料的分辨率和解释精度。高分辨率采集主要采用“三高”、“二低”、“二小”、“二新”技术;高分辨处理,采用了一系列提高信噪比的方法,应用了有效的展信号频带的方法等。使地震剖面的分辨率有了大幅度的提高,原有资料的频率平均提高10-15Hz,主频在2500米处达到80Hz,频宽达到150Hz,为薄层的识别和岩性研究以及小断层和小断块的解释提供了可靠的资料。高分辨率解释方面,分别采用分步解释方法和高分辨率全三位儿解释方法、以及小幅度构造精细成图技术,分别从宏观地质体解释与小地质体解释相结合,从点面结合到三维立体空间相结合的方法。充分利用高分辨率地震资料同相轴多,分辨能力高的特点,进行构造精细解释,发挥了高分辨率地震资料的优势。
    在高分辨率地震资料的储层反演方面,进行高分辨率反演方法研究,对影响反演结果的各项参数,相关资料的预处理、初始模型的建立、子波分析等进行了系统地分析研究,在此基础上提出了提高地震反演精度和分辨率的多分辨率、分步反演的方法和技术思路。
    最后对储层的综合解释方法进行了系统研究,提出了包括数据驱动、门槛值法等几种更加有效的储层参数解释方法,有效地提高了储层参数的解释精度。应用砂泥岩互层的高分辨率储层反演和预测技术,预测储层的能力大大增强,反演资料基本上能够解释10米左右的薄层。
Thesis takes the research completed by author using three-dimensional high resolution seismic data as foundation, studying the technology, theory and effect of high resolution seismic reservoir inversion and prospect. As the important aspect, the high resolution inversion technique and prospect technology are studying. The main objective is studying high resolution inversion technique and prospect technology integrating high resolution seismic data, geologic data logging, drilling, testing etc, aim at the special of the basin and the data condition limit. And that, finding an effective prospect method and technology that adapt to the thin interbcds of sandstone and mudstone, so that the precision of oil and gas prospect can be improved .
    The study work is based on the 3D high resolution seismic data of wen pu region, carrying on 3D high resolution seismic study of inversion and prospect and related contents: Analyzing the §eismic reflect characteristic of the different combination of sandstone and mudstone and it distinguishes ability to the reservoir, through the model experiment of the thin interbeds of sandstone and mudstone. Analyzing to think, the amplitude of the seismic mainly is decided by the thing difference, the frequency becomes the direct proportion to the sensitive degree and the geologic layer thicknesses of the thin layer thickness, reflecting wave has the tune domino effect of the amplitude and frequency.
    The forerunner's technique are adopted to carry on the three high resolution seismic acquisition processing and interpretation so that the seismic resolution and accuracy were improved, the "three high" "two low" "two small" "two new" technique are adopted in high resolution seismic acquisition and some methods are adopted to improve the sign-to-noise such as expending the width of sign etc .Make the resolution of seismic section had the significant exaltation, the frequency of the original data raise the 10-15 Hz equally, the main frequency attain the 80 Hz in 2500 meters, the bandwidth attain the 150 Hz, identifying for the thin interbcds of sandstone and mudstone and small faulted blocks hermeneutic to provide the dependable data. In the aspect of the high resolution interpretation, adopting to tread to interpretation method and high resolutions separately respectively real three interpretation method, and small range structure is fine the diagram technique, interpretation to interpretation with small geology body to combine together from the macroscopic geology body respectively, from order to face to combine three method that stereoscopic space of 3D combine together.
    In the high resolution seismic inversion aspect, carrying on the high resolution inversion method research, such as the various parameters of result towards affect inversion, the primal model establishment, the wavelet analysis, etc. putting forward the method and the technique way of multi-resolutions inversion to exaltatcd seismic inversion accuracy and resolution
    Integrating interpretation method is carryed on finally, put forward to include the dala to drive, the threshold is worth the method etc. several kinds keep the reservoir parameter to interpretation the method more and effectively, raising to keep hermeneutic accuracy of the reservoir parameter availably.
    'The applied of the high resolution seismic inversion and prospect technique, the ability that predicts reservoir strengthens consumedly, the inversion data can interpretate the or so and thin bed of 10 meters basically.
引文
[ 1]张玉芬等,“薄互层地震反射系数序列振幅谱特征分析”,地球科学,1995,No.5
    [ 2]刘传虎,“模型正演技术在油气藏描述中的应用”,石油地球物理勘探,1993,28(4):477~483
    [ 3]师永民,“高分辨率砂泥岩薄互层储层综合预测技术”,石油地球物理勘探 2000,35(5):661~668
    [ 4]苏盛甫,“薄储集层的反射特征和定量解释方法”,石油地球物理勘探 1988,
    [ 5] 阿迈拉登,F。,李衍达等,1991,模式识别与图像处理。北京:石油工业出版社
    [ 6]金强等,1996,油藏预测---油藏综合研究新技术的应用。北京:石油工业出版社
    [ 7]纪有亮、张世奇等,1996,陆相断陷湖盆层序地层学。北京:石油工业出版社
    [ 8] 季钟霖等,1993,含油岩石弹性特征及油气的关系,地球物理学报,3(2)241~255
    [ 9] 李庆忠,1993,走向精确的道路—高分辨率地震勘探系统分析。北京:石油工业出版社
    [10] 李伯虎、王俊玲,1993,利用三维地震资料综合预测榆林地区砂体分布。石油勘探与开发 20(3):8~15
    [ 11] 刘企英,1994,利用地震信息进行油气预测。北京:石油工业出版社
    [ 12] 刘泽荣等,1996,油藏描述原理与方法技术。北京:石油工业出版社
    [13 ] 陆基孟,1991,地震勘探原理及资料解释。北京:石油工业出版社
    [14] 潘尧嘉,1991,含油气薄互层的群体分析与油气检测。石油地球物理勘探,26(2):255~258
    [15] 孙家振等,1996,多信息沉积微相综合判别与油区预测。中国学术期刊文摘(4):112
    [16] 谈大龙等,1995,G-log 技术在泌阳凹陷资料处理中的应用。石油物探,34(4):88-89
    [17] 徐怀大等,1990,地震地层学解释基础。武汉:中国地质大学出版社。
    [18 ] 信荃麟等,1990,油藏描述与油藏模型。北京:石油工业出版社。
    [19 ] 张德林,1996,地震储层预测及影像因素分析。石油地球物理勘探,31(1):1-10
    [ 20] 庄成三等,1994,储层模式识别技术,石油地球物理勘探,29(5):630-636
    [21] 伯格,O.R.,等,袁秉衡等译,1997,《地震地层学》续编。北京:石油工业出版社。
    [22] 莱夫赫,T.R 等,徐怀大译,1987,地球物理综合解释。北京:石油工业出版社。
    [23] Lstvan,A,等,1993,高分辨率地震在储层特性研究中的应用,国外油气勘探。5(4)441~456。
    [24 ] John B.S.Vail P.R., 张宏逵等译,1990,应用层序地层学。东营:石油大学出版社。
    [25 ] Neal,J.,1993,张振生,扬帆译,1995,层序地层学---一种局部成功的全球性理论。国外油气勘探,(4)411~424。
    [26 ] White,P,1994,地震解释与处理再次统一时代的到来,国外油气勘探,8(4):417~421。
    [27 ] Jef Caers Per Avseth Tapan Mukerji,Integrating Rock physics, Seismic Amplitudes, an Geological Models《JPT》V.54, No.6, June 2002
    
    [28 ] 杨文采,2002,非线性地球物理反演方法:回顾与展望,地球物理学进展。 17(2) 255-261。
    [29 ] 石万钟等,2001,ASON 在东濮凹陷 H99 块储层预测中的应用,地质科技情报,20(2),46~50。
    [30 ] 吴义杰,2003,东营凹陷隐蔽圈闭识别与描述方法研究,石油物探 334--337 25(1)
    [31]黄飞,2003PNN,及其在储层物性参数预测中的应用。物化探计算技术 78-82.
    [32]杨文采,1995,非线性反演方法的补充比较。(1)石油物探 1995,34(4)
    [33]彭真明等,2000,基于演化神经网络学习的储层参数预测方法,中国地球物理学会年刊〔C〕武汉,中国地质大学出版社。
    [34]朱广生,地震资料储层预测方法〔M〕北京石油工业出版社。1995。
    [35]牟永光,储层地球物理学〔U〕北京石油工业出版社 1996.。
    [36]黄绪宝,2001,V。xel Geo 在塔河油田碳酸盐岩储层预测中的应用。40(4)。
    [37]叶德胜,2000,塔里木盆地北部寒武-奥陶系碳酸盐岩储层特征及油所前景“成都”四川大学出版社。2000。
    [38]李卫忠,1998,波场分离压制面波方法研究,石油地球物理勘探。33(5)679-690。
    [39]张世晖,2003,巴彦浩特盆地火成岩的综合地球物理解释。物探与化探,27(5), 383-386。
    [40]张德林,2001,百口泉油藏的地震信息特征讨论,石油地球物理勘探。36(2), 252-262。
    [41]关昕,2001 变频合成地震记录,大庆石油地质与开发。20(4) 64-67。
    [42]谢同芳,2003,波阻抗反演在残雪油气田气藏描述中的应用。海洋石油 ,23(5) 23-28。
    [43]彭真明:波阻抗特征分析技术在储层厚度预测中的应用,天然气工业 。21(增)。
    [44]谢继容,1996,薄瓦层砂体地质模型的建立及其应用。23 成都理工学院学报增刊。
    [45]冯国庆,2003,布尔模拟与模拟退火结合的两阶段模拟方法及其应用,中国海上油气(地质)。 17(4) 276-279
    [46]肖阳,测井约束反演技术在油藏描述中的应用,石油地球物理勘探。36(5) 633-640。
    [47]吕义军,2003,测井约束反演技术在浊积岩油藏勘探中的应用,山东地质。 19(增)。
    [48]鲜本忠,2003,测井约束反演在泌阳凹陷下切谷储层预测 中的应用,石油大学学报。 27(5)。
    [49]宋维琪,2003,测井约束下的地震属性二次规划反演石油物探。 42(3) 298-301。
    [50]赵明,常规电测联合反演研究与实际应用。测井技术。 27(1) 16-20。
    [51]韩文功,2001,东部地区高分辨率地震资料应用及效果,石油物探。 4(3) 59-66。
    [52]谭学群,储层横向预测技术在秦家屯油田中的应用,内蒙古石油化工。 27 236-238。
    [53]李廷辉,2003,储层综合预测技术在隐蔽油气藏勘探中的应用,石油物探。 42(3) 340-345。
    [54]吴朝容,2003,川西幼陷蓬莱镇组河道砂体识别技术。物探与化探。 27(4) 299-303。
    
    [55]孙涛,2001,低渗透油田含油富集区地震预测技术,大庆石油地质与开发。 20(6) 58-61。
    [56]张永刚,2002,地震波阻抗反演技术的现状和发展,石油物探。 41(4) 385-390。
    [57]王萍,2003,地震储层描述技术的应用效果。物探与化探。 27(2) 88-91。
    [58] 刘宪斌,地震储层研究的现状与展望。地球学报。 23(1) 73-78。
    [59]姜亮,2003,地震道的非线性约束反演,石油地球物理勘探。 38(4) 435-440。
    [60]马劲风,2002,地震道反演面临的问题与进展,石油与天然气地质。 23(4) 321-325。
    [61]吴朝容,地震多参数油气预测方法用应用研究,沉积与特提斯地质。 22(4) 97-101。
    [62]李大伟,2001,地震勘探技术亦可用于油气运移研究。石油地球物理勘探。 36(4) 499-508。
    [63]马劲风,2003,地震勘探中广义弹性阻抗的正反演,地球物理学报。 46(1) 118-124。
    [64]陈遵德,1998,地震数据预测渗透率问题的讨论。石油物理勘探。 33(2) 86-73。
    [65]张延章,2003,地震相技术的应用用效果分析,中国海上油气(地质)。 17(3) 215-217。
    [66]张军华,2003,地震旋回的概念及应用,石油地球物理勘探。 38(3) 281-293。
    [67]钟俊义,2003,地震属性参数在安棚深层系储层预测中的应用。石油物探。 42(1) 82-85。
    [68]石万忠,2003,地震属性参数在胜坨油田气藏预测中的应用。石油与天然气地质。 24(2) 196-198。
    [69]王永刚,2002,地震属性的 GA-BP 优化方法,石油地球物理勘探。 37(6) 606-612。
    [70]王永刚,2003,地震属性分析技术在储层预测中的应用,石油大学学报。 27(3) 30-33。
    [71]陈军,2001,地震属性分析在储层预测中的应用 ,石油物探。 40(3) 94-100。
    [72]陈光辉,2003,地震属性信息预测储层厚度,河南石油。 17(2) 10-12。
    [73]于建国,2003,地震属性优化在储层预测中的应用,石油天然气地质。 24(3) 291-295 。
    [74]王金铎,2001,地震资料解释中的极性判别技术,石油物探。 40(2) 77-83。
    [75]刘根峰,2003,地震资料在层序地层学中的应用进层,地球物理学进展。 18(1) 24-29。
    [75]陈茂山,2001,第三代油气勘探资料解释系统发展过程中的挑战与机遇,石油地球物理勘探。 36(4) 508-514。 English literature:
    [1] Examples of multi-attribute, neural network-based seismic object detection de Groot, P., Ligtenberg, H., Oldenziel, T., Connolly, D. and Meldahl, P. (Statoil), 2004.In GS Memoir No. 29 "3D Seismic Technology; Application to the Exploration of Sedimentary Basins." Editors Davies, R.J., Cartwright, J.A., Stewart, S.A, Lappin, M. and Underhill, J.R.
    [2] Identifying seismic objects by their texture, orientation and size: A new interpretation tool Meldahl, P. (Statoil), Heggland, R. (Statoil), Bril, A., de Groot, P. and Aminzadeh, F., 2003. AAPG Annual Meeting, Extended abstract, Houston
    [3]An iterative method for identifying seismic objects by their texture, orientation and size Meldahl, P. (Statoil), Heggland, R. (Statoil), Bril, A., de Groot, P., 2001. 71st SEG conference, Extended abstract, San Antonio
    
     [4]Semi-automated object detection in 3-D seismic data Tingdahl, K., de Groot, P. and Heggland, R. (Statoil), 2001. Offshore, August 2001
    [5] Selecting and combining attributes to enhance detection of seismic objects de Groot, P., Ligtenberg, H., Meldahl, P. (Statoil) and Heggland, R. (Statoil), 2001. 63rd EAGE conference, Extended abstract, Amsterdam
    [6] Detection of seismic objects, the fastest way to do prospect and geohazard evaluation Heggland, R. (Statoil), Meldahl, P. (Statoil), de Groot, P. and Bril, A., 2001. 63rd EAGE conference, Extended abstract, Amsterdam
     [7] Semi-automated detection of seismic objects by directive attributes and neural networks, method and applications Meldahl, P. (Statoil), Heggland, R. (Statoil), Bril, B. and de Groot, P., 2000. 62nd EAGE conference, Extended abstract, Glasgow
    [8]Definition of geohazards in exploration 3-D seismic data using attributes and neural-network analysis Heggland, R., 2004.AAPG Bulletin, Special Theme Issue: High-resolution studies of continental margin geology and geohazards Volume 88, No. 6, June 2004.
    [9]Unravelling the petroleum system by enhancing fluid migration paths in seismic data using a neural network based pattern recognition technique Ligtenberg, H., 2003.Geofluids magazine, 3, November 2003, pp 255-261.
     [10] Application of gas chimney technology in the Lamprea area, offshore GOM Alvarado, J., Aminzadeh, F. and Connolly, D., 2003.SEG annual meeting, Dallas. Extended abstract.
     [11] Sealing quality analysis of faults and formations by means of seismic attributes and neural networks Ligtenberg, H., 2003.EAGE Fault and Top Seal conference, Montpellier, France
     [12] Fluid migration path detection and its application to basin modelling Ligtenberg, H. and Thomsen, R. (Maersk Oil), 2003.65th EAGE conference, Stavanger, Norway
     [13] Fluid migration path detection in seismic data, a valuable tool in oil and gas exploration Ligtenberg, H., 2003.European Geologist Magazine, volume 15, June 2003
     [14]Chimney detection and interpretation - revealing sealing quality of faults, geohazards, charge of and leakage from reservoirs Ligtenberg, H. and Connolly, D., 2003.Journal of Geochemical Exploration, May 2003. Contribution to Geofluids IV, Fourth international conference on fluid evolution, migration and interaction in sedimentary basins and orogenic belts, Utrecht,the Netherlands.
     [15]Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques Heggland, R. (Statoil), 2003. AAPG conference, Salt Lake City
     [16] Application of Chimney Cubes in the Design of Geochemical Surveys Heggland, R. (Statoil), 2003.AAPG conference, Salt Lake City
    [17]Looking for gas chimneys and faults Aminzadeh, F. and Connolly, D., 2002.AAPG Explorer, 23, nr 12, December 2002, pp 20-21
     [18] Geohazard detection and other applications of chimney cubes Aminzadeh, F., Connolly, D., Heggland, R. (Statoil), Meldahl, P. (Statoil) and de Groot, P., 2002.The leading Edge, July 2002, pp 681-685
    
    [19]Seismic evidence of vertical fluid migration through faults, Applications of Chimney and Fault detection Heggland, R. (Statoil), 2002.AAPG Hedberg Conference, Vancouver, BC, Canada
    [20]Determining migration path from seismically derived gas chimneys Aminzadeh, F., de Groot, P., Berge, T. (Forest Oil), Oldenziel, T. and Ligtenberg, H., 2002.AAPG Hedberg Conference, Vancouver, BC, Canada
    [21] Examples of seismic chimney detection and interpretation Ligtenberg, H., 2001. Subsurface sediment mobilisation conference, Ghent, Belgium
    [22] Seismic expression of hydrocarbon accumulations and seeps de Groot, P., 2001.ESF workshop Delft, August 2001
     [23]Mapping of fluid flow by the use of 3D seismic data and special processing Heggland, R. (Statoil), 2001.ESF workshop Delft, August 2001
     [24]Using gas chimneys as an exploration tool, Part 1 and Part 2 Aminzadeh, F., de Groot, P., Berge, T. (Forest Oil) and Valenti, G. (AGIP), 2001. World Oil, May 2001
    [25] Identifying faults and gas chimney using multiattributes and neural networks Meldahl, P. (Statoil), Heggland, R. (Statoil), Bril, A. and de Groot, P., 2001.The Leading Edge, May 2001
     [26]Detection of Seismic Chimneys by neural networks, a New Prospect Evaluation Tool Heggland, R. (Statoil), Meldahl, P. (Statoil), Bril, A. and de Groot, P. 2000. 62nd EAGE conference, Glasgow
     [27]Seismic chimney interpretation examples from the North Sea and the Gulf of Mexico Heggland, R. (Statoil), Meldahl, P. (Statoil), de Groot, P. and Aminzadeh, F., 2000. American Oil & Gas Reporter, February 2000
     [28]The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: Part 1; Methodology Meldahl, P. (Statoil), Heggland, R. (Statoil), de Groot, P. and Bril, A., 1999.69th SEG conference in Houston
    [29]The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: Part 2; Interpretation Meldahl, P. (Statoil), Heggland, R. (Statoil), de Groot, P. and Bril, A., 1999.69th SEG conference in Houston
    [30]Meta-attributes - the key to multivolume, multiattribute interpretation de Rooij, M. and Tingdahl, K., 2002. The Leading Edge, October 2002, pp 1050-1053
    [31]Fracture detection from pre-stack p-wave data de Rooij, M., Hemstra, N. and van Boom, R. (Wintershall), 2002.64th EAGE annual conference, Florence, Italy
     [32]Semi-automatic detection of faults in 3-D seismic signals Tingdahl, K., Steen, O. (Statoil), Meldahl, P. (Statoil) and Ligtenberg, H., 2001.71st SEG conference, Houston
    [33]Time-lapse seismic within reservoir engineering Oldenziel, T., 2003. PhD thesis, Delft University of Technology, pp. 204.
     [34]Neural network prediction of permeability in El Garia Formation, Ashtart oilfield, offshore Tunesia Ligtenberg, H. and Wansink, G. (formerly dGB), 2002.In: Nikravesh, M., Aminzadeh, F., and Zadeh, L.A. (Eds.), 2002. Soft computing and intelligent data analysis in oil exploration. Developments in Petroleum Science, Volume 51. Chapter 19, pp 397
    
     [35] Seismic reservoir characterization with limited well control Oldenziel, T., Aminzadeh, F., de Groot, P. and Nielsen, S. (GeoInfo; dGB agent), 2002. EXPOGEF, 7th International SBGf in Bahia, Brasil
     [36]Neural network prediction of permeability in El Garia Formation, Ashtart oilfield, offshore Tunesia Ligtenberg, H. and Wansink, G. (formerly dGB), 2001.Journal of Petroleum Geology JPG, vol.24(4), October 2001, pp 389
     [37]Prediction of static and dynamic parameters from time-lapse 3-D seismic Oldenziel, T., de Groot, P. and Kvamme, L. (formerly Statoil), 2000.62st EAGE Conference, Glasgow
     [38]Estimation of Reservoir Properties by Monte Carlo Simulation Nakayama, K. (JGI; dGB agent), 2000. SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama
    [39]Neural network-based prediction of porosity and water saturation from time-lapse seismic; a case study Oldenziel, T., de Groot, P. and Kvamme, L. (formerly Statoil), 2000.First Break, February 2000.
    [40]Volume Transformation by way of Neural Network Mapping de Groot, P., 1999. 61st EAGE Conference, Helsinki
    [41]Seismic Reservoir Characterisation Using Artificial Neural Networks de Groot, P., 1999. 19th Mintrop seminar, Muenster, Germany
    [42]Unsupervised segmentation in seismic data analysis Grennberg Fismen, B., Clausen, S., Yang, L., Carlin, M., Kavli, T. (all Sintef) and Wansink, G. (formerly dGB), 2001. ICIP conference in Thessaloniki, Greece
     [43]A new confidence bound estimation method for neural networks, an application example Wansink, G. (formerly dGB), Yang, L. (Sintef), et al., 2001. 63rd EAGE conference, Amsterdam
     [44]An evaluation of confidence bound estimation methods for neural networks Yang, L. (Sintef), et al., 2000. presented at ESIT
     [45]Reservoir parameter estimation using a hybrid neural network Aminzadeh, F., et al., 2000. Computer and Geoscience
     [46]Neural networks introduction A document from 1998 describing Multi-Layer-Perceptrons, Radial-Basis-Functions and Unsupervised-Vector-Quantiser.
     [47]Stochastic inversion of seismic data by evaluation of pseudo-wells Bril, A. and de Groot, P., 1998. 60th EAGE conference, Leipzig
    [48]Analysing and simulating stratigraphic patterns using Markov Chain analysis Bekkevold, J. and Bril, A., 1998 60th EAGE conference, Leipzig
    [49]dGB-GDI Introduction A general introduction to dGB-GDI including the integration framework concept, the well simulator and neural networks.
     [50]Monte Carlo statistics A document from 1997 on simulating correlated multi-variate stochastic variables. Be prepared for some heavy mathematics.
     [51]Rock-physics relationships A document from 1997 explaining Gassmann's equation and some other basic equations used
    in rock.
    
     [52]The use of pseudo-wells in seismic interpretation studies de Groot, P. and Bril, A., 1996. 58th EAGE conference in Amsterdam
    [53]Dealing with the geoscientific scaling problem - an Object-Oriented approach de Groot, P. and Bril, A., 1996. 1996 EAGE Winter Symposium
    [54] Soft computing and intelligent data analysis in oil exploration Nikravesh, M., Aminzadeh, F. and Zadeh, L.A., ed., 2003. With contributions from Ligtenberg, H. and Wansink, A.G. and Tingdahl, K. Developments in pertoleum science series, vol. 51. Elsevier.
    [55]Point bar geometry, connectivity and well test signatures de Rooij, M., Corbett, P. (Herriot-Watt) and Barens, L. (Total), 2002. First Break, volume 20
    [56]Challenges direct future of geophysics Aminzadeh, F., 2000. Special millenium edition of the American Oil and Gas Journal
     [57] Quantitative interpretation generally needs no seismic attributes de Groot, P. and Bril, A., 1997. 59th EAGE conference, Geneva
    [58] Should we store all data in standardized data stores? Bril, A. and de Groot, P., 1996. 58th EAGE conference, Amsterdam

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700