用户名: 密码: 验证码:
23MnNiCrMo54圆环链用钢组织及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国产23MnNiCrMo54圆环链钢虽然与日本进口的23MnNiCrMo54钢有相同的化学成分,但是利用它在制作圆环链时却存在着变形不均、疲劳寿命低等问题。为此,在对两种不同产地的23MnNiCrMo54钢进行深入研究的基础上,我们发现国产钢存在着组织不均的现象,尤其是碳化物的形态不规则和分布不均匀。进一步的研究表明国产钢存在着严重的合金元素Mo和Cr的偏析。为使国产的23MnNiCrMo54钢能够赶上或超过日本进口的同类钢的性能水平,必须获得细小均匀的球状碳化物组织。但是,低碳钢与高碳钢不同,组织中存在着明显的碳分布不均匀的现象,从而使低碳钢的球化处理比较困难。为此,在通过1150℃×6h扩散退火消除合金元素的成分偏析的基础上,我们主要采取了两种工艺措施实现低碳钢的均匀化:形变和非形变热处理
     1.23MnNiCrMo54钢经880℃×0.5h淬火后在680℃-720℃范围内回火,随着回火温度的升高,铁素体回复再结晶的倾向增大,碳化物粒子析出量增多。回火温度升至720℃时,碳化物粒子有聚集长大的趋势。且在回火温度一定的条件下,随着回火时间的延长,铁素体回复再结晶的倾向增大,碳化物粒子析出量增多。因此,700℃×10h回火有利于获得均匀细小碳化物粒子。
     2.在700℃×10h高温回火之前,在500℃增加一个中间回火更有助于23MnNiCrMo54钢获得细小弥散分布的碳化物粒子,同时钢的力学性能也得到显著改善。
     3.在600℃和650℃分别对23MnNiCrMo54钢进行形变热处理能大大促进碳化物的析出,且23MnNiCrMo54钢形变处理后的微观组织受Z参数和变形量的影响。Z参数和变形量较大时,获得等轴状铁素体及弥散分布的粒状碳化物组织;反之,除了铁素体和弥散分布的粒状碳化物外,还存在部分贝氏体组织。且Z参数越小,贝氏体数量越多,尺寸越大。
     4.23MnNiCrMo54钢形变热处理后分别在变形温度回火,更进一步促进了碳化物颗粒的均匀析出。同时由于形变能的释放使钢的硬度降低,符合圆环链编链要求。因此,采用形变热处理使23MnNiCrMo54钢获得理想微观组织的最佳工艺条件为:
     650℃变形,变形量:0.5,变形速率:0.1s~(-1),650℃×3h回火。
Comparing domestic 23MnNiCrMo54 steel with 23MnNiCrMo54 steel made in Japan, We find that they have the same chemical compositions, but the link chain made of domestic 23MnNiCrMo54 steel had the drawbacks, such as non-uniform in deformation, low in fatigue life, and so on, in comparison with the link chain produced in Japan. Investigation on microstructure revealed that the domestic steel was composed of inhomogeneous microstructure, in which the carbides were irregular in morphology and non-uniformly distributed, and that the domestic steel has an apparent aggregation in alloying element-molybdenum and chromium. To make domestic 23MnNiCrMo54 steel can reach or exceed the level of the same type steel, it is required to gain fine, uniform spheroidized carbide microstructure. But, low carbon steel is different from high carbon steel, in which has obvious uneven carbon. So this phenomena make low carbon steel spheroidized difficult. In order for this, on the base of annealing at 1150 C 6h to eliminate alloy agg
    regation, we adopted two kinds of heat-treating processes, the heat treatment with deformation and the heat treatment without deformation.
    1. 23MnNiCrMo54 steel is quenched at 880 Cfor 0.5h and tempered at between 680 C and 720 C. With the temper temperature improved, the trend get bigger of ferrite's recovering and recrystallion and the precipitation amount of carbide get more. When the temper temperature rose to 720 掳C ,the carbide get aggregated. Also, under the condition of stable temper temperature and with the temper time long, the trend get bigger of ferrite's recovering and recrystallion and the precipitation amount of carbide get more. So 23MnNiCrMo54 steel is tempered at 700 C for 10h is benefit for gaining uniform ,fine carbide .
    2. Addition of a tempering at 500 C before the tempering at 700 C was powerful for the steel to obtain the fine and homogeneous carbides and then to show good mechanical properties.
    3. 23MnNiCrMo54 steel deformed and heat treated at 600 C or 650 C respectively can accelerate the precipitation of carbide and the microstructure is influenced by parameter Zener-Hollomon and strain. The microstructure was composed of the equal axial ferrite and disperse carbide at the condition of the bigger parameter Zener-Hollomon and the greater deformation. However, some Bainite in addition to the ferrite and disperse carbide presented in the samples with the smaller parameter Zener-Hollomon and the less deformation, and the amount and the size of the Bainite increased with a decrease in the
    
    
    parameter Zener-Hollomon and the strain.
    4. After this, 23MnNiCrMo54 steel is tempered at deformation temperature, not only carbides go on precipitating , but also deformation energy is free and decrease hardness of steel to require of make the link chain.
引文
1.杨鸿森,崔玉华,张振洪,等,矿用圆环链应力的测定.西安交通大学科学技术报告,1983.12,83-436
    2.金毓洲,张振洪.矿用圆环链井下使用情况调研报告.西安交通大学科学技术报告,1984.1,84-031
    3.T.A 舍列金娜,白荣久译.矿山机械的防腐措施.国外煤炭,1984(1)
    4.张家口煤矿机械厂:金毓洲、吕兴武、田润福、余侃、西安交通大学:张振洪、张良运、刘兆仁“低碳合金23MnNiCrMo52钢制φ18×64D级高强度矿用圆环链复合强韧化的研究”中国机械工程学会材料学会低碳马氏体学术讨论会论文集 1983,3
    5.项程云.合金结构钢.北京:冶金工业出版社,1999.08
    6.赵连诚.金属热处理原理.哈尔滨:哈工大出版社,1987
    7.张振洪等,矿用圆环链专用23MnNiCrMo64钢的性能,《机械工程材料》No2,1985
    8.徐庆莘,《提高矿用圆环链质量的研究》,(全国低碳马氏体应用技术成果交流会,1984)
    9.安运铮.热处理工艺学.北京:机械工业出版社,1986.12
    10.雷廷权,傅家骐.热处理工艺方法300种.北京:中国农业机械出版社,1982.03
    11.结城晋.热处理.1973,V.13
    12.崔忠圻.金属学与热处理原理.哈尔滨:哈尔滨出版社,1998.09
    13. K.Tsuzaki*,E.Sato,S.Furimoto, T. Furuhara and T. Maki Formation of AN(α+θ)microduplex structure without thermomechanical processing in superplastic ultrahigh carbon steels Scripta Materialia. 1999, Vol.40.No.6. PP.675-681,
    14.董军锁.亚共析钢共析渗碳体相的快速球化.湖南冶金,1999,5:10-14
    15.吴凡,刘健,胡君遂.亚共析钢碳化物相的快速直接球化.国防科技大学学报,1999.6:27-31
    16. Bainite transformation during continuous cooling of low carbon microalloyed steel. Marerials Science and Technology March 2001 VoL.17:296-301
    17.宋文娣,张克芹,吕建,等.一种含硅贝氏体钢的连续转变动力学及其金相组织.金属热处理,2002,27,No.2:28-29
    18.上海机械学院合肥工业大学合编.钢铁材料及其热处理工艺.上海:上海科学技术出版社,1976
    19.王连伟,毛征东.过冷奥氏体转变温度对16Mn钢珠光体退化的影响.钢铁,2002年,第37卷,第2期
    20. A.P. Singh, A. Prasad, K. Prakash, D. Sengupta, G.M.D. Murty, and S. Jha. Materuals Science and Technology, 1999,2 Vol. 15:121121-126
    21.田村今男著,王国栋译.高强度低合金钢的控制轧制与控制冷却.北京:冶金工业出版社,1992,6
    22.王泾文.温变形对碳钢组织细化的作用.安徽机电学院学报,1999,12:10-12
    23.闫俊萍,刘宗昌,李强,等.23MnNiCrMo煤机链条钢TTT曲线的研究.金属热处理,2002,6:33-34
    24.吴凡、董军锁,中碳当量冷顶锻钢碳化物相快速球化的工业实验,钢铁研究学报,1997.8:64-66
    25.刘宗昌,赵莉萍,王贵,等,煤机链条钢的中温回火转变,金属热处理,2001,26,No.2:35-37
    26.刘宗昌,闫俊萍,赵莉萍,等.23MnNiCrMo钢的相变及组织特征.包头钢铁学院学报,2001,20,No.1:30-33
    27.刘宗昌,赵莉萍,闫俊萍,等,23MnNiCrMo煤机链条钢的球化退火,特殊钢,第2001,22,NO.1:45-47
    28. J.M.O'Breen and W.F. Hostord. Journal of Materials Enineering and Performance,1997.2:69-72
    29.李清斌.合金中的扩散性相变及合金热力学.北京:冶金工业出版社.1984,8
    
    
    30.黄继华.金属及合金中的扩散.北京:冶金工业出版社,1996,8
    31.陆政,杨守杰,姜海峰.一种新型超高强铝合金的均匀化工艺研究.航空材料学报,2001.6:15-17
    32. M. Gojic, L. kosec, P. matkovic. Journal of materials science 33 (1998) 395-403
    33. K. A ihara et al. Proceedings of the 57th International Conference of the Wire Association International Atlanta, 1987
    34. K. A ihara et al. The Sumitam o Search, No. 42, Appril 1990, :1
    35. (3),1983,22~23
    36. I. Tamura et al. Theromechnical Processing of High Strength Low Alloy Steels. Butterw orth &Co., London,1988,:1~16
    37. J. L. Robbins et al. Journal of the Iron and Steel Institution 1964,202;804
    38. Y. G. Nakagawa et al. Metallurgical Transaction. 1972,3:3223
    39.王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.北京:冶金工业出版社,1995
    40.朱和国,吴申庆.自生铝基复合材料的制备、性能及反应机理.材料导报,1998,12(4):61-64
    41.李会莉,陈岁元.热变形参数对奥氏体再结晶过程的影响.沈阳航空工业学院学报.2002,19:88-90
    42. R.Priestner,in Thermomechanical Processing of Autensite,ed.A.J.De Ardo et al.,p.78,TMS,Warrendale
    43. B. Mintz, S. Yue,and J.J.Jonas,Int.Mater, Rev.36,187(1991)
    44. A. Najafi-Zadeh,J.j.Jonas,and S.Yue,Mater. Sci.Forum. 113-115,441 (1993)
    45. D.N.Hawkins,A.A.Shuttleworth,J.Mech.Working Technol.2(1979)333.
    46. D.B.Santos,R.A.N.M.Barbosa, Metalurgia-ABM 43 (354)(1987)279
    47. R. Priestner, A.K. Ibraheem,Proceedings of 39eh Annual Conference of Metallurgests of CIM,CIM,Ottawa,Canada,Aygust 20-23,2000 p.351
    48. P.C.M.Rodrigues,E.V.Pereloma, D.B.Santos,Mater.Sci.Eng.A283 (2000) 136
    49. D.Z.Yang,E.L.Brown,D.K.Matlok, G.Krauss,Metall Trans.A 16(1985) 1385.
    50. A.Cperry, S.W.Thompson,J.G.Speer, Iron steel Maker 6(septemper 2000)47
    51. Y.Matsumura,H.Yada, Trans.ISIJ 2791987) 492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700