用户名: 密码: 验证码:
阿利特—硫铝酸钡钙水泥的制备及组成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统硅酸盐水泥已经得到了广泛的应用,并且在二十一世纪仍然是最重
    要的建筑材料之一。但其具有的早期强度偏低,烧成温度高,硬化水泥浆体体
    积收缩等缺点不能适应现代建筑对高性能胶凝材料的要求,因此,如何提升水
    泥材料的性能,特别是早期力学性能、体积稳定和耐久性,并达到节约能源、
    节约资源、保护环境的目的,是水泥科技领域研究的重要方向,对国民经济与
    社会发展具有重要意义。通过矿物复合技术制备新型高性能水泥材料是解决这
    些问题的有效途径之一。
     近年来,硫铝酸钡钙矿物的发现,引起了众多学者的关注。组成为
    2.75CaO-3Al_20_3·1.25BASO_4(C_2.75B_1.25A_3 S)的硫铝酸钡钙具有优良的快硬早
    强性能,特别是其早期力学性能明显优于无水硫铝酸钙4CaO-3Al_2O_3.·CaSO_4
    (C_4A_3(?)),而且该矿物的烧成温度低,并在水化硬化过程中具有体积微膨胀等
    特性,能够有效的改善硅酸盐水泥的早期性能和耐久性,但是其后期强度增进
    率低。本文将硫铝酸钡钙矿物与硅酸盐熟料矿物体系进行复合,充分发挥硫铝
    酸钡钙和阿利特这两种高胶凝性矿物的优点,制备了早期性能优良的高胶凝性
    阿利特-硫铝酸钡钙水泥材料,系统研究了其制备工艺及组成、结构与性能的
    关系。
     本文首先研究了C_2.75B_1.25A_3S的形成动力学、热分解特性和水化性能,结
    果表明:该矿物在1000"C左右就开始形成,1300-1350℃生成速度较快,继续
    升高温度到1370℃以上,开始发生缓慢分解,其热稳定性明显高于C_4A_3(?);
    C2.75B_1.25A_3S矿物的水化速率较快,快硬早强性能突出;在1150~1300~C温度
    范围内C_2.75B_1.25A_3S的形成反应属于扩散动力学范围,满足Glinstling动力学
    方程F(a)=1-2 a/3一(1-a)~2/3=K(T.c)t,矿物形成的扩散活化能为280.39
    kJ·mol(-1)。当合成温度为1350"C时,C_2.75B_1.25A_3S的形成同时受扩散和界面化
    学反应控制,满足界面化学反应方程F(a)=1-(1-a)~(1/3)=K(T.c)t;当少量CaF_2
    存在时, C_2.75B_1.25A_3S形成过程中一直伴随有C_llA_7'CaF_2的生成,当煅烧温
    度低于1300"C时,CaF_2能促进C_2.75B_1.25A_3(?)矿物的生成,高于1300~C时,由
    于C_llA_7·CaF_2的形成速度加快,CaF_2可能会延缓C_2.75B_1.25A_3(?)的形成。
     采用正交实验的方法优选了熟料组成和煅烧制度,应用材料热力学的基本
    原理对熟料组成进一步优化,并综合考虑了水泥的力学性能和新型干法制造工
    艺对熟料组成设计的要求,确定了熟料最佳组成。在优化选择熟料组成的基础
    上,考虑到SO_3和BaO在熟料烧成过程中有少量挥发或固溶,使C_2.75B_1.25A_3S
Traditional Portland cement has been widely used, and it is still one of the most important building materials in the 21st century. But it has some shortcomings, such as lower early strength, high sintering temperature and the bulk shrinkage of hardening paste etc., which can't suit for the need of high-performance cementing material for modern construction. Therefore, how to improve the performance of cement, especially its early mechanics performance, bulk stabilization and endurance, saving energy sources and resource, protecting environment, are the main researching direction of science and technology of cement. It will take on important significance for country economy and social development. The technology of composite minerals is an availability approach for synthesizing a new high performance cement.In recent years, a mineral named barium calcium sulphoaluminate (3CaO3Al2O3-BaSO4) has been synthesized in laboratory successfully and many scientists are interested in the mineral performance. The barium calcium sulphoaluminate , whose composition is 2.75CaO3Al2O3-1.25BaSO4 (C_2.75B_1.25A_3S ), has the optimal performance of rapid hardening and early strength. Its early mechanics performance is better than that of calcium sulphoaluminate(C4A3 s) which is the main mineral of sulphoaluminate cement . Furthermore, the sintering temperature of the mineral is lower and has tiny bulk expansion in the hydration process that can improve the early performance and endurance of Portland cement. In this paper, the mineral of barium calcium sulphoaluminate and the mineral system of Portland cement clinker were compound. The high cementing alite-barium calcium sulphoaluminate cement was obtained that has the main excellences both of alite and barium calcium sulphoaluminate minerals. The technology preparation, constituent, structure and performance of the cement were investigated carefully.First, the synthesis dynamics, decomposition and hydration behavior of C2.75B1.25A3 S were studied. The results show that the mineral start to be synthesized at about 1000℃, the producing rate is rapid at 1300-1350℃. When temperature is higher than 1370℃, C2.75B1.25A3S begins to be decomposed very
    slowly. The hydrating rate of C2.75B1.25A3 5" is fast and it has excellent fast-hardening and early-strength performance. The kinetics of C2.75B1.25A3 S formation obey Glinstling formula F(a)=l-2a/3-(l-a)2/3=K{TC)t from 1150"C to 1300 °C, the diffusing activation energy of the mineral is 280.39kJmol'1. At 1350 *C, the kinetics of C2.75B1.25A3 S formation not only obeys Glinstling formula but also the equation of interface reaction F(a)=l-(l-a)1/3=K(TC)t. The presence of suitable amount of CaF2 can accelerate the formation of C2.75B1.25A3S when the sintering temperature is lower than 1300"C, but when the sintering temperature is higher man 1300"C, due to the formation of CnA7CaF2, the formation rate of C2.75B1.25A35 is retarded.Clinker constituent and burning technology were picked out and optimized by using orthogonal test method. The optimal mineral constituent of clinker is confirmed on the basis of mechanics performance, new dry process technology and theory count of material thermodynamics. At the base of the optimizing composition, excessive amount of SO3 and BaO was mixed into the clinker system to compensate SO3 and BaO volatilization or solid phase dissolution. The suitable addition of SO3, BaO and CaF2 in the clinker system was chosen out according to mechanics performance of cement. The results show that the alite and barium calcium sulphoaluminate minerals can compound and coexist in a clinker. It established the basic of alite - barium calcium sulphoaluminate cement. When the content of barium calcium sulphoaluminate is 6% and that of Portland clinker system with silica modulus 2.5, iron modulus 1.5 and KH 0.92 is 94%, the composite clinker has low Gibbs free energy and high reaction trend. In addition, mixed CaF2 can improve the reaction trend. Excessive SO3 and BaO in the clinker is benefit to the mechanics performance of cement, and the optimal excessive content of SO3 and BaO is 50% The suitable addtion of CaF2 is 0.6-1% and the sintering temperature is about 1380TI:. In the conditions of the optimal composition and preparing technology, the compressive strength of the alite-barium calcium sulphoaluminate cement is 27, 70 and 119MPa at Id, 3d and 28d curing age respectively, indicating excellent early strength and steady long-term strength.The influence of water/cement ratio, aluminium/sulfur ratio on the hydration rate, hydration degree, composition, microcosmic structure and porosity of hardened cement paste were researched by means of XRD, SEM-EDS, ESEM,
    DTA-TG and light microscopy, mercury intrusion porosimetry and hydration heat analysis. The results show that the hydration rate and early strength of the cement can be obviously improved with increasing gypsum and the optimal aluminium/sulfur ratio is 1/0.9. The hardened paste has dense structure and the most size of pores is smaller than lOnm.The hardened cement paste contains much more mineral AFt than that of Portland cement, which don't make harmful pores decreasing with the increase of gel/space. It may be one of the reasons that the relation between the mechanics performance and the gel/space of the cement discord with f = Axn.Based on the work of laboratory, the product experiment obtained good effect. The results show that the compressive strength of alite-barium calcium sulphoaluminate cement is up to 28.1, 38.6 and 60.7MPa at Id, 3d and 28d respectively. The cement exhibits early-high strength, lower sintering temperature, about 1350°C and good grindability that can save energy sources. In addition, making the cement can use barium industrial residue that can save resource and protect environment.
引文
(1) 王燕谋等.硫铝酸盐水泥.北京工业大学出版社,1999,p26-60
    (2) F.Puertas, M.T.B.Varela, S.G. Molina. Kinetics of the thermal decomposition of C_4A_3(?) in air. Cement and Concrete Research, 1995, 25(3):572-580.
    (3) Feng Xiuji, Liao Guanglin, et al. Structrue and Properties of 3CA·SrSO_4 and 3CA·BaSO_4.2th International Symposium on Cement and Concrete, Beijing, 1989.
    (4) 张丕兴,张冠英.4CaO·3Al_2O_3·CaSO_4晶体结构研究.中国建筑材料科学研究院学报,1991,3(4):10-18.
    (5) Y.R.Krivoborodov, S.V.Samchcnko. Phase formation in alumino ferrite system in present of calcium sulfate. 2th International. Symposium on Cement and Concrete , Beijing, 1989,p78-81.
    (6) S.I.Ivashchenko. Cements based on modified portland and sulfoaluminate belite clinkers. 9th International Congress on Chemistry of Cement, New Delhi, 1992, Vol.Ⅲ,p222-226.
    (7) M.M.Ali, Shri Gopai and S.K.Handoo. Studies on the formation kinetics of calcium sulphoaluminate. Cement and Concrete Research, 1994,24(4):715-720.
    (8) 陆平.C_4AF、C_4A_3(?)和C_(11)A_7·CaF_2的形成及早期水化.硅酸盐学报,1985,13(3):275-283.
    (9) Hyung-seok Kim, Ji-what Ahn, Jong-young Hyun. Synthesis of calcium sulfoaluminate clinker using alunite. Materials Science Forum 2003, vol.439. 4th International Symposium on ECO-Materials Process & Design, Korea,2003. p106-114
    (10) 冯修吉,龙世宗.磷、氟、铁、钛对C_4A_3(?)形成和2C_2S·CaSO_4分解的影响.第二届水泥学术会议论文集.北京:中国建材工业出版社,1988,p339-344.
    (11) 徐玲玲,杨南如,钟白茜.MgO对C_4A_3(?)水化性能的影响.硅酸盐学报,1995,23(2):206-210.
    (12) P.K.Mehta. Effect of lime on hydration of pastes containing gypsum and calcium aluminate or calcium sulfoaluminate. J.Amer.Cera.Soc. 1973, 56(6): 315-319.
    (13) F.Hanie, I.Kapradik, A.Gabrisova. Mechanism of hydration reactions in the system C_4A_3(?)-CaO--C(?)-H_2O referred to hydration of sulphoalumnite cement. Cement and Concrete Research, 1989,19:671-682.
    (14) A.K.Chatterjee. Special cements, In: J.Bensted, P.Bame(Eds.),Structure and Performance of cements. London and New York:E and FN Spon, 2002.226-231.
    (15) M.Su, Y.Wang, L.Zhang. Preliminary study on the durability of sulfo/ferro-aluminate cements. In: H.Justnes(Ed.),Proceedings of the 10* International Congress on the Chemistry of cement, Amarkai AB and Congrex,Gothenburg,Sweden, 1997,vol.IV, p.4iv029, p12.
    (16) M.Su, W.Kurdowski, F.Sorrentino. Development in non-portland cement Proceedings of the 9th International Congress on the Chemistry of cement, New Delhi, India,Vol.l,1992,p317-514.
    (17) Nobue Fukuda. Fundamental studies on the expansive cement. Proceedings of the 7* International Congress on the Chemistry of cement, Supplementary paper IV-69,p341-350.
    (18) O.Andac, F.P.Glasser. Microstructure and microchemistry of calcium sulfoaluminate cement. In S.Diamond,(Eds),Materials Res. Soc.Proceeding, Materials Research Society,Pittsburgh,PA, 1995,p135-142.
    (19) S.Sahu and J.Majling. Phase compatibility in the system of CaO-SiO_2-Al_2O_3-Fe_2O_3-SO_3 referred to sulphoaluminate belite cement clinker. Cement and Concrete Research, 1993,23(6): 1331-1339.
    (20) S.Sahu and J.Majling. Preparation of sulphoaluminate belite cement from fly ash. Cement and Concrete Research, 1994,24(6):1065-1072.
    (21) I.Janotka, L.Krajci, A.Ray. The hydration phase and pore structure formaton in the blends of sulfoaluminate-belite cements with portland cement. Cement and Concrete Research, 2003,33(4):489-497.
    (22) J.Beretka Effect of composition on the hydration properties of rapid hardening sulfoaluminate cements. Proceedings of the 10~(th) International Congress on the Chemistry of Cement, Gothenburg,Sweden,1997,Vol.II,p.2ii029, p8.
    (23) F.P.Glasser, L.Zhang, etal. High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cement and Concrete Research, 2001, 31(12):1881-1886.
    (24) D.Kalogridis, GCH.Kostogloudis, etal. A quantitative study of the influence of non-expansive sulfoaluminate cement on the corrosion of steel reinforcement. Cement and Concrete Research, 2000, 30(11):1731-1740.
    (25) S.Sahu, V.Tomkova, etal. Influence of particle sizes of individual minerals on the hydration processes in the system C_2S-C_4AS-CS. Cement and Concrete Research, 1993, 23(3):693-699.
    (26) L.Zhang, F.P.Glasser. New concretes based on calcium sulfoaluminate cement. In: R.K.Dhir, D.Dyer, T.Telford(Eds.),Proceedings of the International Conference on Modem Concrete Materials: Binders, Additions and Adimixers, 1999,p261-274.
    (27) I.Odler. Cements containing calcium sulfoaluminate. In: A.Bentur, S.Mindess(Eds.), Special Inorganic cements, E and FN Sport, London and New York,2000,p69-87.
    (28) J.Pera, J.Ambroise. New application of calcium sulfoaluminate cement. Cement and Concrete Research, 2004, 34(4):671-676.
    (29) 宋旭辉,杨树新,等.阿利特-硫铝酸盐水泥的试生产.水泥,2003,(2):33-35.
    (30) I.V. Kravehenko, etal. Alite-sulphoaluminate clinker and its cement. Cement(Russian), 1978, (8):7-10.
    (31) T.V. Kuzcovaetal. Manufacture and study of modified Alite-sulphoaluminate clinker. Cement(Russian),1978, (5-6): 39-43.
    (32) N.H. Christensen, V. Johansen. The effect of fluxes in cement minerals. Cement and Concret Research, 1979, 9(1):24-28.
    (33) W.A. Klemn, K.J. Holub, J. Skalny. The effect of fluxes and mineralizers in liwering cement kiln temperature. Progress Report 3,Martin Marietta Corp,Maryland, 1978.
    (34) 李艳君,张宁,张西臣,等.CaF_2对C_3S和C_4A_3(?)矿物形成及共存的影响.山东建材学院学报,2001,15(2):105-107.
    (35) 刘晓存,李艳君.ZnO和CaF_2对C_3S和C_4A_3(?)矿物形成的影响.建筑材料学报,2003,6(3):9-12.
    (36) 刘晓存,李艳君,孙祥作.P_2O_5对阿利特-硫铝酸盐水泥熟料矿物形成及性能的影响.水泥,1996,(12):10-13.
    (37) 李艳君,刘晓存,曾贤成.Fe_2O_3对阿利特-硫铝酸盐水泥熟料矿物形成影响的研究.水泥,2000,(3):5-7.
    (38) Xiaocun Liu, Yanjun Li, Ning Zhang. Influence of MgO on the formation of Ca_3SiO_5 and 3CaO·3Al_2O_3·CaSO_4 minerals in alite-sulphoaluminate cement. Cement and Concrete Research, 2002,32(7):1125-1129.
    (39) 李艳君,刘晓存,张启龙.SO_3对阿利特-硫铝酸盐水泥熟料中 C_3S,C_4A_3(?)矿物形成影响的研究.山东建材学院学报,2000,14(1):1-3.
    (40) Y.B.Pliego-Cuervo, EEGlasser. The role of sulphates in cement clinkering: subsolution phase relations in the system CaO-Al_2O_3-SiO_2-SO_3. Cement and Concrete Research, 1979, 9(1):51-56.
    (41) Satoshi Uda, Etsuro Asakura, etal. Influnence of SO_3 on the phase relationship in the system CaO-SiO_2-Al_2O_3-Fe_2O_3. J.Am.Ceram.Soc., 1998, 81 (3):725-729.
    (42) 李艳君,李永怀,张宁,刘晓存.碱对阿利特-硫铝酸盐水泥熟料矿物形成及水泥性能的影响.水泥,2001,(4):4-6.
    (43) Vagn Johansen, N.H.Christensen, etal. Rate of formation of C3S in the system CaO-SiO_2-Al_2O_3-Fe_2O_3-MgO with addition of CaF_2. Cement and Concrete Research, 1979,9(1): 1-6.
    (44) 刘晓存,李艳君.阿利特-硫铝酸盐水泥与硅酸盐水泥复合性能的研究.水泥,1998,(2):10-12.
    (45) 王复生,杨海艳,汤仕发.复合硫铝酸盐水泥的实验研究.山东建材,1997,(6):4-6.
    (46) 李艳君,刘晓存.石膏对阿利特-硫铝酸盐水泥性能的影响.水泥,1994,(8):1-4.
    (47) 李艳君,刘晓存.石灰石对阿利特-硫铝酸盐水泥性能的影响.硅酸盐通报,1994,13(4):64-68.
    (48) 刘晓存,李艳君,邱一平.矿渣阿利特-硫铝酸盐水泥性能的研究.水泥,1997,(12):2-5.
    (49) 刘晓存,李艳君.粉煤灰配料烧制阿利特.硫铝酸盐水泥的生产实践.水泥,2001,(5):34-35.
    (50) 刘晓存,李艳君.粉煤灰配料制备阿利特.硫铝酸盐水泥.水泥·石灰,1993,(3):2-7.
    (51) H.G.Smoiczyk.矿渣的结构和矿物鉴定.第七届国际水泥化学会议论文集.北京:中国建筑工业出版社,1985,p239-253.
    (52) M.Daimon.矿渣水泥水化机理和动力学.第七届国际水泥化学会议论文集.北京:中国建筑工业出版社,1985,p254-262.
    (53) 蔡丰礼.利用高铝煤矸石和盐石膏低温烧制阿利特.硫铝酸盐水泥熟料的研究.水泥,2001,(6):4-8.
    (54) 蔡丰礼.阿利特-硫铝酸盐自应力水泥的试验研究.水泥,2002,(2):11-13.
    (55) 刘晓存,张健茂.添加剂对C_3S和C_4A_3(?)矿物形成及共存的影响.济南大学学报,2002,16(1):14-18
    (56) I.Teoreanu. Type 3 (CaO·Al_2O_3)·Mx(SO_4)_y compounds arid compatibility relations in CaO-CaO·Al_2O_3·M_x(SO_4)_y systems. Il Cemento, 1986, 83(1):39-43.
    (57) 冯修吉,廖广林,李郑辉.新型含钡硫铝酸盐水泥的研究.第四届全国水泥化学会议论文,北京,1988,p136-139.
    (58) 廖广林,李郑辉.含钡硫铝酸盐水泥的研究.武汉工业大学学报,1992,14(2):37-41.
    (59) 阎培渝.3CaO·3Al_2O_3·SrSO_4浆体结构与强度的关系.武汉工业大学学报,1994,16(1):19-22.
    (60) 程新.3CA·SrSO_4的结构与特性和计算量子化学在一些水泥矿物研究中的应用. 武汉:武汉工业大学,1994.
    (61) Feng Xiuji, Cheng xin. The structure and quantum chemistry studies of 3 CaO·3Al_2O_3·SrSO_4. Cement and Concrete Research, 1996, 26(6):955-962.
    (62) P.Yan. Hydration of Sr- and Ba-bearing sulphoaluminates in the presence of sulphates. Advances in Cement Research, 1993, (5):65-69.
    (63) P.Yan. Investigation on the hydration of Sr-and Ba-bearing sulphoaluminate. 9th International Congress on the Chemistry of Cement. India, 1992,p411-417.
    (64) 滕冰,程新,黄佶,等.硫铝酸钡钙晶体的合成及其结构和形态.人工晶体学报,1999,28(2):193-197.
    (65) 常钧,刘福田,芦令超,等.利用含钡废渣烧制硫铝酸盐水泥的研究.硅酸盐通报,1999,(3):43-47.
    (66) Cheng Xin, Chang Jun, Lu Lingchao, et al.The systhesis and hydration of some minerals in system (Ca,Ba,Zn)O-Al_2O_3-(Ca, Sr)SO_4. 4th BISCC (Vol.1), Beijing 1998, p283-285.
    (67) 常钧.新型含钡水泥的研究.武汉:武汉工业大学,1998.
    (68) Cheng Xin, Chang Jun, Lu Lingchao, et al. Study of Ba-bearing sulphoaluminate minerals and cement. Cement and Concrete Research, 2000, 30(1): 77-81.
    (69) Cheng Xin, Yu Jinghua. Formation and bond performance of some ettringites by aquantum chemistry methods. Cement and Concrete Research, 1997, 27(7): 1085-1092.
    (70) 常钧,芦令超.硫铝酸钡钙水泥矿物的研究.硅酸盐学报,1999,27(6):644-650.
    (71) 程新,刘福田,宋廷寿,等.新水泥矿物硫铝酸钡钙的合成与水化.第七届全国水泥化学学术会议论文,1996,南京,p417-421.
    (72) 常钧,芦令超,刘福田,等.微量元素对硫铝酸钡钙的合成及特性的影响.硅酸盐通报,1997年增刊:408-412.
    (73) Chang Jun, Cheng Xin, Lu Lingchao, et al. Study of Ba-bearing calicium sulphoaluminate minerals and cement, Cement and Concrete Research, 2000, 30(1), 77-81.
    (74) Cheng Xin, Chang Jun, Lu Lingchao, et al. Study of Ba and Sr bearing calcium sulphoaluminate cement. 14th Internation Conference on Building Materials, Weimar, Germany, 2000, p513-518.
    (75) Cheng Xin, Chang Jun, Lu Lingchao, et al. Study on Ba-bearing suiphoaluminate cement mineral. Cement and Concrete Research, 2000, 30(1):77-81.
    (76) Cheng Xin, Chang Jun, Lu Lingchao, et al. Influence of fluorite on the Ba-bearing sulphoaluminate cement. Cement and Concrete Research, 2001, 31 (3): 213-216.
    (77) 董广驰.我国含钡硫铝酸盐水泥研究及产品达到国际领先水平.中国建材,2001,33(11):36.
    (78) Cheng Xin, Chang Jun, Lu Lingchao. Study of longtime hydration of Ba-bearing sulphoaluminate cement. 5th ISCC,Vol. 1, Shanghai, 2002,p216-219.
    (79) Chang Jun, Cheng Xin, Lu Lingchao. Research on using barium industry residue to fire Portland cement. 5thISCC ,Vol.2,Shanghai, 2002,p786-790.
    (80) Cheng Xin, Chang Jun, Lu Lingchan, et al. Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum. Cement and Concrete Research, 2004, 34(11):2009-2013
    (81) 常钧,芦令超.含钡硫铝酸盐水泥混凝土界面结构与性能研究.硅酸盐通报,2004,23(5):90-93
    (82) 常钧,芦令超.高硅酸二钙含钡硫铝酸盐水泥研究.硅酸盐通报,2005,4(1):94-96
    (83) 程新,常钧,芦令超,等.含钡硫铝酸盐水泥的研制鉴定资料.济南大学,2001.
    (84) 叶正茂,常钧,黄世峰,等.硫铝酸盐水泥基防渗堵漏材料的研究.中国硅酸盐学术年会水泥基材料论文集.北京,2003,p607-613.
    (85) 程新,芦令超,王来国,等.高胶凝性阿利特.硫铝酸钡钙矿相体系的研究.硅酸盐学报,2004,32(3):321-326.
    (86) 芦令超,常钧,沈业青,等.阿利特-硫铝酸钡钙水泥材料制备技术的研究.硅酸盐通报,2004,23(5):16-19.
    (87) 芦令超,常钧,等.硫铝酸盐与硅酸盐矿物合成高性能水泥.硅酸盐学报,2005,33(1):57-62.
    (88) 芦令超,沈业青,于丽波,等.C_(2.75)B_(1.25)A_3(?)-C_2S-C_2F矿相体系组成结构与性能的研究.见:陈益民,许仲梓.高性能水泥基础研究,北京:中国纺织出版社,2004.p74-80.
    (89) 常钧,芦令超,黄世峰,等.高硅酸三钙含钡硫铝酸盐水泥研究.见:陈益民,许仲梓.高性能水泥基础研究,北京:中国纺织出版社,2004.p118-123.
    (90) 王来国,芦令超,程新.硅酸盐与硫铝酸盐矿物复合水泥材料的研究进展.济南大学学报(自然科学版),2004,18(1):24-27.
    (91) Cheng Xin, Chang Jun, Lu Lingchao, etc. Study of Ba-bearing sulphoaluminate minerals and cement. Cement and Concrete Research. 2000,30(1): 77-81.
    (92) 陆佩文.硅酸盐物理化学.武汉理工大学出版社,2002,p242-252.
    (93) 浙江大学等,硅酸盐物理化学.北京:中国建材工业出版社,1980,p338.
    (94) 郑少华,姜奉华.试验设计与数据处理.北京:中国建筑工业出版社 2004,p67-161.
    (95) 印永嘉,奚正楷,李大珍.物理化学简明教程.高等教育出版社,1990,p465-476.
    (96) Dun Chen, Xiuji Feng, Shizhong Long.The structure and influence of ferric oxide on the properties of 3CaO·3Al_2O_3·BaSO_4. Thermochimica Acta, 1992,198:313-328.
    (97) 赵三银.3CaO·3Al_2O_3·BaSO_4矿物固溶ZnO的探讨.济南大学学报(自然科学版)2002,16(1):26-27.
    (98) 龙世宗,廖广林,赵三银.含钡硫铝酸钙矿物烧成若干问题的研究.中国建材科技,1996,5(3):11-16.
    (99) 张文生,欧阳世翕,陈益民.CaO-Al_2O_3-BaSO_4系统物相形成及其动力学初探.硅酸盐学报,2001,29(4):305-308.
    (100) B.N.巴布什金等著,蒲心诚等译.硅酸盐热力学.北京:中国建筑工业出版社.1983.
    (101) C.H.Chen. A method of estimation of standard free energry of formation of silicate minerals at 298.15 K. Am. J. Sci., 1975,275:801-817.
    (102) J.O.Nriagu. Thermoche mical approximation for clay minerals. Am. Mineral, 1975, 60:834-839.
    (103) Y.Tardy, R.M.Garrels. A method of estimating the Gibbs energies of formation of layer silicates. Geochim Cosmo Chim. Acta, 1974,38:1101-1116.
    (104) I.K.Karpov, S.A.Kashik. Computer calculation of standard isobaric-isothermal potentials of silicates by multiple regression from a crystalloche mical classification. Geochem. lnternat, 1968,5(4) :706-713.
    (105) 温元凯,邵俊,陈德炜.含氧酸盐矿物生成自由能的计算.地质科学,1978,4:348-357.
    (106) 温元凯,邵俊,王三山,等.含氧酸盐及矿物生成热的简单计算法.金属学报,1979,15(3):98-108.
    (107) 李小斌,李永芳,刘祥民,等.复杂硅酸盐矿物Gibbs自由能和焓的一种近似计算法.硅酸盐学报,2001,29(3):232-237.
    (108) I.Barin. Thermochemical Data of Pure Substances. Weinheim:VCH Verlags Gesellschaft, 1993,p 19-2099.
    (109) I.K.Barin, etal. Thermochemieal properties of inorganic substances Ⅱ. Heidelberg: springer-werlag,p 1991.
    (110) 叶大伦.实用无机物热力学数据手册(第二版).北京:冶金工业出版社,2001.
    (111) 陆佩文.无机材料科学基础.武汉:武汉工业大学出版社,1996.
    (112) 梁英教,车荫昌.无机物热力学手册.沈阳:东北大学出版社,1993.
    (113) H.F.W. Taylor. Cement chemistry. London:Thomas Telford, 1997,p50-22.
    (114) PETER C.Hewlett. LEA'S Chemistry of cement and concrete. London: Arnold, 1988, p124-125.
    (115) 叶青,刘宝元,薛君玕.含氟和硫的硅酸三钙固溶体的结晶化学研究.硅酸盐学报,1989,17(2):97-104.
    (116) 芦令超,常钧,沈业青,等.阿利特-硫铝酸钡钙水泥材料合成与力学性能的研究.硅酸盐学报(In submit).
    (117) 吴兆琦,汪瑞芬.水泥的结构和性能.北京:中国建筑工业出版社,1999:99-100.
    (118) 林宗寿,刘顺妮.水泥熟料中阿利特的热稳定性研究.武汉工业大学学报,1994,16(3):23-26.
    (119) 杨东生,编.水泥工艺实验.北京:中国建筑工业出版社,1986,p107-110.
    (120) M.Mouret, A.Bascoul, G.Escadeillas. Study of the degree of hydration of concrete by means of image analysis and chemically bound water. Adv. Cem. Bas. Mat. 1997,6:109-115.
    (121) P.Dabic(?)a, R.Krstulovic(?)a, D.RusIic(?)b. A new approach in mathematical modeling of cement hydration development. Cement and Concrete Research , 2000, 30:1017-1021.
    (122) L.Lam, Y.L.Wong, C.S.Poon, Degree of hydration and gel/space ratio of high volume fly ash/cement systems. Cement and Concrete Research ,2000,30:747-756.
    (123) 张驰,周永进.多孔材料的性能与孔结构.重庆师范学院学报(自然科学版),1998,(15):54-62.
    (124) I.Older, etal. Investigations on the relationship between porosity structure and strength of hydrated Portland cement pastes: ⅱ. Effects of pore structure and degree of hydration. Cement and Concrete Research, 1986,16(1): 87-96.
    (125) 吴中伟,廉慧珍,著.高性能混凝土,北京,中国铁道出版社,1999,p36-61.
    (126) 周永进,李有光,等.硅酸盐水化产物的热分析曲线及其特征.重庆建筑大学学报,1999,21(1):69-72.
    (127) 席耀忠.Fe_2O_3-Al_2O_3钙矾石型固溶体系列.硅酸盐通报,1996,15(6):16-20.
    (128) 郭剑飞.混凝土孔结构与强度关系模型研究.浙江大学硕士学位论文,2004.
    (129) T.C. Powers. Physical properties of cement paste. Proceedings of the 4th International symposium on the chemistry of cement ,Washington, 1960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700