用户名: 密码: 验证码:
潮湿环境下砖石类文物风化机理与保护方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对潮湿地区露天环境下砖石质文物的保护进行了研究,潮湿环境下砖石质文物的保护一直是国内外公认的技术难题。本文的研究对象都为潮湿环境下露天不可移动砖石质文物。构成砖石类文物的质地种类繁多,有砂岩、砾岩、石灰岩、大理石、汉白玉、板岩、页岩、凝灰岩、安山岩、花岗岩、伟晶岩、流纹岩、玄武岩等,而且所处自然环境复杂多变,决定了砖石质文物的保护方法也要因地制宜,如露天的与室内的环境不同,保护的方法应不全相同;潮湿温暖的环境与干燥寒冷的环境相差悬殊的情况,相应的保护方法及选用的防护材料就不能一样;处于海边多盐潮湿空气下的文物,保护工作就要首先去除内部的盐分;墓葬内的砖石类文物建筑还要考虑通风、阻止毛细水、凝结水的侵蚀及避免干湿度的急剧变化,防止霉变等,同一质地的文物如果分别处于潮湿温暖地区与干旱寒冷差异悬殊的地区则病害状况也不尽相同,砖石内文物保护一定要考虑到环境的差异性,不能是一个模式和配方,需因地制宜,采用相应的保护方法、材料和工艺。
     本文试图从分析研究潮湿地区砖石质文物风化现状及病害机理的角度出发,以《中国文物古迹保护准则》为原则,按照《中华人民共和国文物保护法》(2002)、《中国人民共和国文物保护法实施条例》(2003)、《文物保护工程管理办法》(2003)的有关要求;采用地质学、岩土工程学、岩石学、环境学等相关学科的理论和方法,应用先进的科学仪器,以文物保护的新理念作指导,对高句丽石质文物、西安城墙砖石文物、麟游慈善寺风化石刻、大足石刻、澳门郑家大屋等五处砖石类文物的保存现状、赋存环境、砖石质类型和特点、病害机理及特征进行了全面的调查、分析,重点在于对潮湿环境下的砖石质文物的风化病害的现状调查,并分别分析探讨了五处砖石文物的风化机理。从潮湿环境的气象特征的诸因素中,水包括地下水、地面水、雨水加之温暖潮湿的环境是引起砖石类文物风化等损害的最主要因素,各种病害都是水的参与而产生或加剧,由此依据ASTM标准(American Society for Testing and Materials系美国材料与试验协会的英文缩写)选取了几种防水加固材料对现场收集的样品进行保护材料的室内老化试验和文物现场保护试验,并提出针对生物微生物的生长而相应采取的生物防治对策,首先针对潮湿环境的特殊气候特征而研发了一种复合防腐防霉杀菌剂并通过抑菌圈实验证实了其有效的防治效果,对于潮湿环境的砖石类文物的保护治理总结出可行性保护研究思路。
     首次提出针对典型潮湿环境下砖石类文物的可行性保护研究思路,对于易受自然因素风化的典型潮湿地区的砖石类文物的保护,提出一种合理可行性的保护方法,迄今为止,各国学者都是以单一对象的砖石类文物保护为研究目标,而未有人将保护方法归类总结,我们试图寻找可适用于潮湿环境下砖石类文物的可行性保护研究方法。
     本文通过文献和实际调查相结合的方法,研究内容包括文物价值调查、文物环境调查、病害分析、保护材料选择以及遗址保护的综合手段设计。主要选用的分析仪器是荷兰Philip-FEI公司的quanta2000环境电子扫描电镜、日本理学株式会社D/Max-RA型X射线分析仪,对砖石类样品进行分析,结合以往的研究成果,揭示砖石类文物产生病害的微观及宏观原因,探讨病害产生的机理。
     本文的研究对象砖石质文物都属于不可移动文物遗存,一般体积较大,还都处于户外露天环境下,不能或不宜整体移动,不能像其他馆藏文物一样可以收藏于馆内并轻易移动。但是我们仍然可以通过采取一定的预防性保护方法如制定控制文物保存区域周边的污染物排放、有害气体排放、地面水监管以及游客人数控制、灾害规划等,并加强日常定期的保护工作给予砖石类文物一定的预防性保护措施。
     用化学材料加固保护易碎、断裂、塌落的岩石类文物已有一百多年的历史了,罗马时期就用化学材料来保护石雕。根据国内外砖石质文物化学保护的经验,并根据砖石质文物保护的需要进行筛选,选择了若干常用的加固与防水材料,这些保护材料主要为有机硅和丙烯酸树脂,通过室内试验以多种指标(颜色变化、接触角、吸水率、耐水、耐冻融、耐盐、耐酸等)对加固和防水材料进行了初步保护效果检测,给潮湿环境下砖石质文物保护工程的规划和制定提供一定的实验数据支持。国内外现阶段对于砖石质文物加固封护材料效果的检测一般都是采用非文物样品进行老化实验,而对非文物样品封护加固的实验结果并不能直接引入对于真实文物样品的保护中,而本文首次大量引用5处不同环境不同岩性的砖石质文物样品开展大量的检测试验,通过对砂岩、花岗岩、砖质等真实文物的加固封护保护研究,全面系统的通过对孔隙度、毛细吸水率、外观颜色、裂缝等参数的测定来检测冻融、冷热循环、酸碱腐蚀、可溶盐侵蚀等老化实验对加固封护保护材料的耐候性等方面的影响,从微观及宏观角度了解不同加固封护材料对砖石类文物的保护效果,对所选材料如有机硅等对潮湿地区砖石质文物保护的可行性和效果进行研究。
     现场应用研究:将实验筛选出的加固封护材料应用于国家级砖石质文物的现场保护研究,主要应用于宝鸡麟游慈善寺、高句丽遗存、西安城墙等文物的保护研究中,其中选取部分通过吸水量、颜色、结壳、润湿角变化等参数来评估保护效果。
     选取的五处露天砖石质文物所处的环境具有高湿度、降雨量大等特点,给各种生物体生长繁衍提供了适宜的条件,由此造成的破坏作用不可忽视,这些生命体主要有菌类及低等植物如苔藓、藻类、地衣等,它们常以共生复合体的形式存在,不仅在砖石质文物表面形成各种色斑,严重影响文物原貌,而且还会使砖石质文物发生严重的生物风化,本文试图了解潮湿地区的砖石质文物的病害机理和风化机理,通过对其表面产生生物风化的生物样品进行采集、分离、鉴定后从中选取部分,照顾种群类别,并考虑代谢产物可能有害的菌种,选取了15种菌类,通过科学的配比配制了一种高效、低毒的复合防腐防霉杀菌剂,采用了生物防治实验中最常用的方法——抑菌圈,验证了复合防腐防霉杀菌剂的杀菌抑菌效果,并提出了对砖石文物生物风化的的防治保护方法。
     展望:潮湿环境下砖石类文物保护仍然是文物保护领域的难点,该部分的研究还需进一步的完善,未来的工作重点包括以下两个方面:1、对潮湿地区砖石类文物风化保护材料的性能进行更为深入的研究。2、通过更多的实验数据调查,对本文所选取的五处潮湿环境的砖石质文物的现场实验区域的保护效果进行考证。
Due to complicated environment factors ,these brick and stone cultural heritage, which are widely distributed in the nature including sandstone, conglomerate, limestone, marble, white marble, slate, shale, tuff, andesite, granite, basalt, ,are subject to serious degradation .take moist and arid environment for example, we should adjust conservation treatments and materials. when it comes to the stone cultural heritage by the sea, first of all we should remove the water-soluble salts .when it comes to the stone cultural heritage inside the tombs ,we should take drafty and restraints of capillary water and condensation water, avoiding the sudden changes of humidity and biodeterioration.we should adjust measures to local conditions and take the differences of environment into granted while exerting appropriate materials and skills to conserve these stone cultural heritages.
     From the viewpoint of rescue protection according to the law of the people’s Repubic of china on the protection of cultural relics (2002)and Principles for the Conservation of Heritage Sites in china (2004),field investigation and geotechnical tests are conducted for the present conservation condition, architectural techniques ,the lodging environment. In this study different efflorescence of historic stones (physical weathering, chemical weathering and biological weathering) and the efflorescence mechanism of the stone cultural heritage in moisture circumstances were measured ,we choose Gaogouli’s Stone cultural heritage、Xi’an city wall、linyou’s carved stone、DaZu’carved stone、Macao’stone cultural heritage as the inspection targets. ,and some results were concluded, Water ,including underground water、surface water、rainfall and moist environment are the key element which generate serious degradation .
     The investigation of a lot of parameters about treated sandstone, brick with several water repellent and consolidant materials has been carried out , mainly according to ASTM standard and the combination of international methods together with general technological. The protection mechanism was analyzed on the understanding of these results. Finally we analyse the feasibility of these materials in the reinforcing of true cultural object protect. And due to the serious biodeterioration in moisture circumstances, and we put forward the prevention and cure for the biological degradation of Stone cultural heritage in these moisture circumstances.
     When confronted with decaying stonework, we always aim at individual conservation target and never summarizing in category the experience for these brick and stone cultural heritage in moisture circumstances. This paper discusses necessity, feasibility, and basic methods of the conservation of typical brick and stone cultural heritage in moisture circumstances .
     Although these stonework and brickwork are outside in moisture circumstances, we still can do something to the environment , which embrace a very wide range of topics legislation to protect individual stonework, pollution control, traffic control, control of ground water, visitor management and disaster planning.
     One hundred years ago we have found some materials to penetrate the decayed stone , with evidence for Roman use of pastes applied to recently sculpted stone, which binding it together and securing it onto the sound stone beneath. Organic silicon, which was widely used in stone conservation, was selected as surface protectant . Some common stone were used as protected objects, such as sandstone, tuff, dolomite, marble and granite. A series of artificial weathering experiments, which included single or cooperative effect of major ruinous factors-dry-wet cycle, salt crystallization, freezing and heating were simulated and researched.
     Based on investigation and the actual survey work, The research includes value assessment, environmental influence factors, causes of deterioration, choice of chemical treatments by means of X-ray diffraction, scanning electron microscope and other testing methods , the results help us to draw all kinds of mechanism of degradation formation ,such as porosity ,capillary absorption and penetration coefficient ,water uptake, warming-cooling cycles, the influence of salts crystallization, acid and base, and UV aging and so on, in order to better understand the protection effects and utilization possibility of two fluorinated polymers.
     And due to the serious biodeterioration in moisture circumstances ,many organisms contribute to the deterioration of stone and brick such as colorful lichens, mildew and creepers, we choose one composite fungicide which can prevent the growth of microorganisms from the site were identified, And also, we conduct the experiment of Zones of inhibition and put forward the Preventive and remedial methods for Stone cultural heritage in these moisture circumstances. The conservation of typical brick and stone cultural heritage in moisture circumstances is the difficult point , we should make a deeper research into the conservation materials, select most appropriate material from a wider range of choices; and we should move forward a single step into the trial results.
引文
[1]torre,M.d.l.Assessing the values of Cultural heritage[M].Los Angeles: The Getty Conservation Institure,2002.
    [2]Avrami ,E,R.Mason,and M.d.l.Torre.Values and Heritage Conservation[M].Los Angeles: The Getty Conservation Institure,2000.
    [3]张承志.保藏学原理[M].北京:北京科学技术出版社,1999.
    [4]郭宏.论“不改变原状原则”的本质意义—兼论文物保护科学的文理交叉性[J].文物保护与考古科学,2003,16(1):60-64
    [5]中国文物保护科学和技术跨世纪之路.中国文化遗产,2004.3:p8-11.
    [6]王蕙贞.文物保护学[M].北京:文物出版社,2009:14-15.
    [7]Giusti, Annamaria. Reversibility in the restoration of stone artfacts: reals possibilities and objective limits In Reversbility :does it exist?[M] London: British Museum,1991.
    [8]周双林.土遗址防风化保护概况[J].中原文物,2003(6):78-83.
    [9]田中琢.文物保护的思想[J].考古与文物,1995(2):86-90.
    [10]潘路.国外文物科技保护的思潮与发展[J].中国文化遗产,2004(3):146-149.
    [11]Andreas Arnold .Determination of minernal salts from mouments[J]. Studies in conservation 1984,29:129-138
    [12]Moropoulpou A et al.Salt and humidity impact on porous stone masonries in marine environment In: Materials issues in art and archaeology IVPanela B.et al [J]. Pittsburgh : Materials Research Society,1995,893-906
    [13]Zezza Fulvio, Garcia Pascua , Nuria. Rising damp and soluble salts in the weathering process of biocalcarenites [J].Preservation and restoration of cultural heritage,1996,161-174.
    [14]Andreas Arnod , Konvad Zehnder. Salt weathering on monuments , InⅪ~ⅩⅣcentury arab ramparts(Granada ,Spain)[J], Materials and structures ,1999, 32(215):45-51.
    [15]Alessandrini,Giovanna,et al,Partialy fluorinated acrylic copolymers as coatings for calcareous stone materials[J].Tradition and innovation :advances in conservation, IIC,2000:1-6
    [16]Ciardelli F ,Aglietto M ,Castelvetro V ,et al. Structurally modulated fluoropolymers for conservation of monumental stones: synthesis ,stability and applications [A]. In: Choi, Suckwon ed. New millennium international forum on conservation of cultural property , Kongiu ,Korea[M]. Kongiu :Institute of conservation Science for Cultural Heritage, 2000.166-181.
    [17]陈岱.我国近代最早的文物保护法[J].人民政坛,1996(04).
    [18]张可,詹长法.桑诺克材料在石质文物保护修复中的应用[J].文物科技研究(第二辑),2004:131-135.
    [19]彭程等.硅丙乳液共聚涂料对石质文物保护的应用研究[J].上海涂料,2006,( 11):12-15.
    [20]栾晓霞等.改性水性环氧树脂乳液对石质文物的保护效果[J].北京化工大学材料科学与工程学院,2008,29(8):451-453.
    [21]邵高峰.环保型石质文物防风化剂的制备及性能研究[D].北京:北京化工大学材料物理与化学学院,2007.
    [22]洪坤等.仿生无机材料在石质文物保护中的应用[J].材料科学与工程学报,2002, 6(24):948-950
    [23]张秉坚等.草酸钙生物矿化膜的形成机理和化学仿制——一种新型石质文物表面防护材料的开发研究[J].矿物学报,2001,3 (21)
    [24]L.aires Barros,.The decay of stonework: mechanism, methodlogy of study[J]. Weathering and air pollution ,1991:111-118
    [25]和玲.含氟聚合物及其对文物的保护研究[D].西安:西北工业大学材料学院,2002.
    [26]stone conservation ,an overview of current research [M].The getty conservation institute, 2002.
    [27]汪东云,刘东燕,张赞勋.摩岩石刻文物保护防风化研究现状及深化方向[J].重庆建筑大学学报,1997(2):106-112.
    [28]陆春海.防文物风化的材料设计与适用性研究[D].成都:成都理工大学,2009:2.
    [1]全国人民代表大会,中华人民共和国文物保护法[M].北京:中国民主法制出版社,2002.
    [2]陆寿麟.文物保护与科学技术.中国科协首届学术年会[C].北京:[中国科学技术出版社],1999.
    [3]Clifford Price,Stone conservation:an overview of current research [M], California :The Getty Conservation,1996.
    [4]Striegel M F,Guin E B,Hallett K, Air pollution coating and cultural resource[J]. Progress in Organic Coatings ,2003(48):281-288.
    [5]黄克忠.石质文物的化学保护方法[J].文物科技研究,2004(1): 16-23.
    [6] Garrido J M, The portal of the monastery of santa maria de Ripoll [J], Monumentum, 1967 (1):79-98.
    [7]Scott G G, Process as applied to rapidly decayed stone in westminster abbey [J], The Builder (London) ,1981(19):105.
    [8]周宗华.用于文物保护的高分子材料[J].高分子通报.1991(1):23-25.
    [9]Selwitz C. Epoxy resins in stone conservation[M].Los Angeles: Getty Conservation Institute, 1992:7.
    [10]James R C, Stone consolidating materials :a status report[J], Department of Commerce,1980:5.
    [11]Price C A. Stone Conservation, An Overview of Current Research[M]. Los Angeles:Getty Conservation Institute,1996:13~24.
    [12]H.韦伯尔.有机硅在建筑保护中的应用.德国瓦克公司技术讲座[R], 1998.
    [13] Adiletta J G. Hydrophobic oleophobic fluropolymer compositions , US patent 5981614[P]. 1999-11-9.
    [14]韩冬梅,郭广生,石志敏.化学加固材料在石质文物保护中的应用[J].文物保护与考古科学,1999(11):41-43.
    [15]刘强.基于生物矿化的石质文物仿生保护[D].杭州:浙江大学,2007.
    [16]Peter M. Breathing New Life into Statues of Wells[J].New Sci.1997,76:754-756.
    [17]齐迎萍.化学材料在石质文物保护中的应用[J].文物保护与考古科学. 2008,20(4): 64-69.
    [18]和玲.含氟聚合物及其对文物的保护研究[D].西安:西北工业大学化学工程系,2002: 12.
    [19]Lewin SZ,Baer NS .Rationale of the Barium Hydroxide-Urea Treatment of Decayed Stone [J].Studies in Conservation .1974,19(1):24-35
    [20]Lewin C H,Choi S W,Suh M. Natural deterioration and conservation treatment of the granite standing Buddha of Daejosa temple, Republic of Korea[J].Geotech Geol Eng, 2003,21(1):63-77.
    [21]陆春海.防文物风化的材料设计与适用性研究[D].成都:成都理工大学,2009 :4.
    [22]郭宏,黄槐武.文物保护中的“水害”问题[J].文物保护与考古科学,2002(1):56-62.
    [23]周双林.土遗址防风化保护概况[J].中原文物,2003(6):78-83.
    [24]Helmut Weber. Conservation and Restoration of Natural Stone in Europe [J]. Bulletin of the Association for Preservation Technology, Vol.17,No.2, Masonry(1985):15-17.
    [25]韩涛.有机硅在石质文物保护中的研究进展[J].涂料工业, 2010,40 (6):74.
    [26]胡一红,刘树林.高分子材料si-97在砖质文物保护方面的应用研究[J].文物保护与考古科学,2009,21(3):
    [27]NS系列保护剂在文物保护上的应用研究[A].河南维纳科技有限公司.砖石类文物保护技术研讨会论文集[C],2004.
    [28]朱正柱,邱建辉,段宏瑜,曹育红.改性氟树脂石质文物封护材料的研究[J].石材,2007(5):39-43.
    [29] Steve J.M.Bryan B.S,Laurence E.F. Macromolecules.1996.29:8211
    [30]邓海球.氟树脂涂料在中国究竟如何发展[J].涂料工业,2000,7:28.
    [31]Banthia Aijit K, Gupta A P .Role of acrylic resin in the conservation of deteriorated Khondalite [J]. Am Chem Soc,Polym Preps. DivPolym Chem ,2000,4(1):227-278.
    [32]Bandini,F,Danti C.A.Elena,et al, Selection of consolidants for use on the tower of Belem International journal for restoration of buildings and monuments.1998.4(6):653-666.
    [33]和玲.艺术品保护品中的高分子化合物[M].北京:化学工业出版社,2003年.
    [34]Biscontin G, Maravelaki P V, Zendri E ,et al.Investigation into the interaction between aqueous and organic solvent protection and building materials In:Conservation of stone and other materials Thiel, Marie-Jos(ed),Paris,France.E&F. N.Spon,1993,689-696
    [35]石利峰.承德鹦鹉岩石质文物的保护与研究.中国文物科学研究,2010(01):64-71.
    [36]王丽琴,党高潮等.加固材料在石质文物保护中应用的研究进展[J].材料科学与工程学报,2004,22(5):778-782.
    [37]甄广全.WD-10在石质文物表面封护中的应用[J].化工新型材料.2001: 48-50
    [38]Grissom C A,CHAROLA A E, BOULTON A,et al. Evaluation over time of an ehyl silicate consolidant applied to ancient time plaster[J], Studies in Conservation, 1999,44:113-120.
    [39]甲基三甲氧基硅烷对砂岩石刻风化性能的实验室研究[J].文物保护与考古科学,2008,20(4):10-15.
    [40]Rodrigues J D, Grossi A. Indicators and ratings for the compatibility assessment of conservation actions[J].Journal of Cultural Heritage,2007,8(1):32-43.
    [41]Mansch,R,et al, Microbial colonsisation of silicone treated mortar at Schloss Weissenstein in Pommersfelden ,Germany,in International conference on microbiology and conservation of microbes and art: The role of microbial communities in the degradation and protection of cultural heritage, T.d.Galileo and M.D.Specola, Editors.1999:Florence, Italy.200- 205
    [42]Erharde,D.,Removal of silicone adhesives.Journal of American Institute of Conservation,1983.22(2):100.
    [43]charola,A.E,A.Tucci,and R.J.Koestler , on the reversibility of treatments with acrylic/silicone resin mixtures.Journal of the American Institute for Conservation,1986.25(2):83-92.
    [44]environmental protection of stone monuments of Bhubaneswar [J].Indian J Envir Prot 2001,21(5):420-424.
    [45]Karatasiosa I, Theoulakisb P,Kalagric A,et al. Evaluation of consolidation treatments of marly limestones used in archaeological monuments [J].Construction and Building Materials, 2009,23(8):2803-2812.
    [46]郭广生,韩冬梅,王志华等.有机硅加固材料的合成及应用[J].北京化工大学学报,2000,27(1):98-100.
    [47]廖原,齐暑华,王东红等.XD-9露天石质文物保护剂[J].西北大学学报(自然科学版)2007,37(3):411-414.
    [48]刘景龙.龙门石窟保护[M].北京:中国科学技术出版社,1993.137,44, 79,54
    [49]沈治国.砖石古塔的力学性能及鉴定与加固方法的研究[D].西安:西安建筑科技大学硕士论文,2008.
    [50]盛发和.石质文物的化学封护.全国第一次实验室考古学术讨论会论文集[C].南宁:1988.
    [51]Chiari, G,Chemical Surface Treatments and Capping Technique of Earthen Structures: a Long-term Evaluation. In:6th International Conference on the conservation of Earthen Architecture ,Las Crues,New Mexico, U.S.A,1990,Oct,14-16:267-273
    [52]王蕙贞.文物保护学[M].北京:文物出版社,2009:14-15.
    [53] Malagodi M.et.al.Effects of combined application of biocide and protectives and marble.9th International congress on deterioration and conservation of stone. Istituto Veneto peri Beni Cultural.225-234.
    [54]richardson 1976,control of moss,lichen and algae on stone.In Conservation of stone 1:Proceedings of the International Symposium, Bologna,June 19-21,1975,ed.R.Rossi-Manaresi,225-31.Bologna:Centro per la Conservazione delle sculture all’aperto.
    [55]Hale,M.E.1980.Control of biological growths on Mayan archaeological ruins in Guatemala and Honduras. In National Geographic Research Reports [R].1975 Projects,305-21.Washington,D.C.:National Geographic Society.
    [56]Rakesh Kumar,Anuradha V.Kumar. Biodeterioration of Stone in Tropical Environments: An Overview[M].The Getty Conservation Institute, 1999:41-45
    [57]Ranalli G ,et al. The use of microorganisms for the removal of sulphates on artistic stoneworks[J]. International Biodeterioration, 1997,40(2):255.
    [58]Atlas R M,Chowdhury A N,Ranalli G.Microbial calcification of gypsum-rock and sulfated marble[M].Studies in Conservation,1988,33:149.
    [59]Heselmeyer K,Fischer U,Krumbein W E,et al.Application of Desulfovibrio vulgaris for the bioconservation of rock gypsum crusts into calcite[J].Bioforum,1991,1(2):89.
    [60]Ranalli G,et al. The use of microorganisums for the removal of sulphates on artistic stoneworks[J]. International Biodeterioration,1997, 40(2):255.
    [61]Ranalli G,et al. Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes[J], J Appl Microbiology,2005,98:73.
    [62]李沛豪,屈文俊.生物修复加固石质文物研究进展[J].材料导报,2008,22(2):73-92.
    [63]张秉坚,尹海燕,陈德余等.一种生物无机材料——石质古迹上天然草酸钙保护膜的研究[J].无机材料学报,2001,16(4):750-756.
    [64]Garty J, Kunin P,Delarea ,et al. Calciumoxalate and sulphate containing structures on the thallial surface of the lichen Ramalina lacera: response to polluted air and simulated acid rain [J].Plant Cell Environ,2002,25(12):1591-1604.
    [65]Arocena J M,Hall k. Calcium phosphate coatings on the Yalour Islands , Antarctica: formation and geomorphic implications [J].Plant Cell Environ,2002,25(12):1591-1604.
    [66]Tiano P.Stone reinforcement by calcite crystal precipitation induced by organic matrix macromolecules [J].Stud Conserv,1995,40:171 -176
    [67]Piero T.Biomediated calcite precipitation for monumental stonereinforcement [C].Plenary Sessions,1999:48-51.
    [68]Perito B ,Mastromei G Conservation of monumental stones by bacteriao biominerallization [J]. Microbiol Today,2003,30:113. Saiz-Imenez C.Bio-deterioration: An overview of the state-of-the-art and assessment of future directions.www.arcchip.cz/w08/w08.saiz_jimenez pdf.
    [69]Saleh A. Saleh,FatmaM.Helmi,Monir M.Kamal ,Abdel-Fattah E.El-banna. Study and Consolidation of Sandstone: Temple of Karnak, Luxor,Egupt[J]. Studies in Conservation, Vol.37,No.2(1995):93-104
    [70]Tadateru: Laboratory evaluation of the mixture of silane and organic resin as consolidant of granularly decay stone[C].ICOM committee for conservation,8th Triennial meeting,Sydeny ,Australia,6-11, September, 1987.
    [71]Clifton, J.R.,Godette,M..Performance tests for stone consolidants [C]. K.L.Gauri,J.A.Gwinn.4th Internation Congress Deterrioration and Preser -vation of Stone Objects . Louisville,Ky, 1982:101- 108.
    [72]诺尔.硅珙化学与工艺学[M].化工出版社,1978.
    [73]王铺先唐华东.硅聚合物涂料的合成[J].精细化工,1997:34-56.
    [74]杜作栋.有机硅化学[M].高等教育出版社,1990.
    [75]晨光化工研究院有机硅编写组.有机硅单体及聚合物[M].化工出版社,1986.
    [76] JohnA Sturst. Conservation of Building and Decorative stone [M]. 1998:143-165.
    [77]王春雷.“亚沟石刻像”的科技保护方式[J].黑龙江农垦师专学报,2003(3):7-8.
    [78]华林,谭莉莉.西南少数民族石刻历史档案保护技术研究[J].广西民族研究,2005(3):193-195.
    [79]苑胜龙.泰山经石峪刻经的文物价值与科学保护[J].中国文物科学研究,2006,(2):71-72.
    [80]付永山,安秋凤,黄良仙等.有机硅改性丙烯酸酯乳液的制备及表征[J].基础研究,2007,21(6):318-320.
    [81]冯见艳,高富堂,刘敏等.有机硅改性丙烯酸酯的合成[J].基础研究,2007,21(4):193-197.
    [82]曹玉廷,王国建,李榕生.功能性丙烯酸/MBAM体系共聚产物的研制[J].宁波大学学报,2004(17):185-187.
    [83]刘景龙.龙门石窟保护[M].中国科学技术出版社,1993.
    [84]王蕙贞.文物保护材料学[M].西北大学出版社,1995:70-74.
    [85]王蕙贞,宋迪生.防腐防霉杀菌剂概论[M].西安:陕西科学技术出版社,1995,第一版:299-300.
    [86]周双林,潘小伦.非水分散体加固剂固结砂土能力的研究[J].文物保护与考古科学,2004,16(1):54.
    [87]侯建华,胡云林:石材清洗、防护、粘接与深加工[M].北京:化学工业出版社,2006年第一版:294
    [1]傅佳欣.王陵及贵族墓葬:从积石冢到封土壁画墓的演绎[J].中国文化遗产,2004(2):33.
    [2]耿铁华.高句丽文化遗产的保护与传承[J].通化师范学院学报,2007(3):1-5.
    [3]王成兴,尹慧道主编.文物保护技术[M].合肥:安徽大学出版社,2005:163.
    [4]刘成禹,何满潮.古王陵变形破坏机理及稳定性研究-以国家重点文物高句丽太王陵为例[J].水文地质工程地质,2007(5):25.
    [5]王蕙贞.文物保护学[M].北京:文物出版社,2009.
    [6]苑静虎,丰晓军.云冈石窟风化研究平[J].文物世界,2004(5):74.
    [7]宋迪生,王蕙贞.文物与化学[M].成都:四川教育出版社,1992:180.
    [8]惠任.中国古建琉璃构件“粉状锈”之病变初探[J].文物保护与考古科学,2007(2):17-18.
    [9]田大方,崔莉,郭跃坤.高句丽王城世界文化遗产保护策略研究[J].中国科技信息,2005(2):211.
    [10]王记龙主编.大学物理(下册)[M].北京:科学出版社,2002:181.
    [1]李实,屈建军.敦煌莫高窟气候环境特征.敦煌保护文集石窟保护篇(上) [C].兰州:甘肃民族出版社,1993.
    [2]大足石刻申报世界遗产文本.国家文物局.1998.6.
    [3]惠任.中国古建琉璃构件“粉状锈”之病变初探[J].文物保护与考古科学,2007(2):17-18.
    [4]汪东云,张赞勋等.大足县酸雨形成分布特征及其对石刻造像的破坏作用[J].水文地质工程地质,1995(3):9-15.
    [5]王金华.大足千手观音造像保存状况及病害专题研究[J].花果荟萃,1998: 70-80.
    [6]重庆大足石刻保护工程[J].中国文化遗产,2004(3):93.
    [7]童登金.大足石刻的保护与展望[J].文物保护与考古科学.2003(3):57-60.
    [1]惠任.中国古建琉璃构件“粉状锈”之病变初探[J].文物保护与考古科学,2007(2):17-18.
    [2]韩亚芬.西安市酸雨及化学成分时间变化分析[J].陕西师范大学学报,2006(4):109-113.
    [3]杨善龙.敦煌莫高窟崖体中水盐分布现状初步研究[D].甘肃:兰州大学土木工程学院,2009.
    [4]何法明,刘世昌,白崇庆等.盐类矿物鉴定工作方法手册[M].北京:化学工业出版社,1988:326-328.
    [5]Klenz Larsen P.Desalination of a painted brick vault in Kirkerup Church[A].In: Proceedings of ICOM-CC 12th Triennial Meeting Lyon 29,1999,vol II:473-477.
    [6]赵镇魁.浅谈砖瓦制品的泛霜[J].中国搪瓷,2001, 3(22):36-38.
    [7]郭瑞亮,李志国.对页岩砖泛霜相关问题的讨论[J].建筑工程,2008:35.
    [8]于平陵,张晓梅.西安城墙东门箭楼砖坯墙体风化因素研究报告[J].文物保护与考古科学,1994,2(6):7-15
    [9]白莉,王中良.西安地区大气降水化学组成特征与物源分析[J].地球与环境,2008,4(36):289-297
    [10]赵卫虎.砖墙及其所用建筑材料的泛霜试验与探讨[J].四川建筑科学研究,1985,4
    [11]高江平,杨荣尚.含氯化钠硫酸盐渍土在单向降温时水分和盐分迁移规律的研究[J].西安公路交通大学学报,1997,17(3)22-25
    [12]费学良,李斌.硫酸盐渍土压实特性及盐胀机理研究[J].中国公路学报,1995,8(1):44-49
    [13]和玲.含氟聚合物及其对文物的保护研究[D].西安:西北工业大学材料学院,2002.
    [14]王蕙贞.文物保护材料学[M].西安:西北大学出版社,1995.
    [15]胡一红,刘树林.高分子材料Si-97在砖质文物保护方面的应用研究[J],文物保护与考古科学,2009 ,21(3):33-40.
    [16]王蕙贞.文物保护学[M].北京:文物出版社,2009.
    [17]Heiman J L.The preservation of sydyen sandstone by chemical impregnation[M]. Exp Building station.Tech Rep 496:22. Chatswood,NSW. 1981
    [18]王帅.西黄寺石质文物表层劣化特征分析及机理研究[D].北京:中国地质大学地质工程,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700