用户名: 密码: 验证码:
超临速磨矿理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,磨机的生产能力随磨机转速的增加而增加,但是当常规磨机转速达到或超过临界转速时,磨矿能力不但不随转速的进一步增加而增加,反而出现几乎不能磨矿的现象。如果能突破临界转速的限制,使磨机的生产能力在临界转速以上仍然随转速的增加继续增加,就能达到磨机小型化、生产能力大型化的发展目标。基于这个目的,昆明理工大学开发研制了新型的磨矿设备—超临速磨机并获得了国家发明专利权,专利号为ZL99127837.2。
     本文在查阅大量文献资料的基础上,设计制造了Φ500×300mm的超临速磨机样机。结合超临速磨机独特的磨矿特点,开展了超临速磨机样机参数试验研究、超临速磨机中钢球介质的运动学分析研究和超临速磨机样机磨矿动力学试验研究。
     超临速磨机样机磨矿参数试验研究结果表明:样机的适宜给矿量和磨矿浓度分别为7Kg和65%;当样机转速n=54r/min时,粗粒级含量较高,磨机内钢球介质处于泻落运动状态;当样机转速n=100r/min时,磨机内钢球介质已处于抛落运动状态,与n=54r/min相比,粗粒级含量相对较低,细粒级含量大幅度增加;当样机转速n=200r/min时,其磨矿速度在时间上与n=100r/min时相比提高了6倍多;超临速磨机样机细磨试验结果表明,超临速磨机的细磨作用非常显著。
     超临速磨机的运动学分析研究结果表明,钢球介质在一个运动循环周期内主要经历了三个运动阶段,即匀速圆周运动阶段、钢球介质在导向板表面无摩擦运动阶段和抛物线运动阶段。超临速磨机内钢球介质在抛物线运动阶段的轨迹方程和钢球介质抛落到磨机筒体上的冲击速度公式分别为:
     冲击速度分析计算结果表明:超临速磨机钢球介质抛落到磨机筒体的冲击速度与磨机转速和磨机半径均呈线性增加的关系。超临速磨机单位时间冲击次数
    
     昆明理工大学博土学位论文 摘 要
     K=一二匹L一与磨机半径无关,而与超临速磨机转速n成正比例关系,其比例
     15(2+3z)
     常数为一一一上一一一。
     15(2+3x)
     通过超临速磨机样机的磨矿动力学试验研究,求出了不同超临界转速和不同
     介质充填率条件下的磨矿动力学方程通式R(t)=100exp[…。+a;d勺t(“。n·’”“))卜
     由动力学方程可以求出任意时刻不同超临界转速和不同介质充填率待磨粒级的
     分布率R(t卜超临速磨机的磨矿动力学方程分析结果表明:门)随着超临速磨机
     转速的增大,其磨矿速度迅速增加,并且磨机转速越大,这一趋势越明显;u)
     随着超临速磨机介质充填率的增加,磨矿速度也会增大,尤其是在较小的磨矿介
     质充填率范围内,随着介质充填率的增加,磨矿速度增加的趋势更明显;0)随
     着磨矿时间的延长,磨矿速度减小,当磨矿时间较长时,这种趋势更加明显。
     大量的试验及分析研究结果表明,超临速磨机具有如下的磨矿特点:(1)单
     位容积磨机生产能力成倍提高;Q)磨机的装介率下降,介质尺寸也减小;u)
     超临速磨机既适用于粗磨,又适用于细磨。
As is well known, the productive capacity of the mill will be increased with the increment of the rotation speed. But the mill can hardly grind when the rotation speed of the mill reaches or exceeds the critical rotation speed. If the productive capacity of the mill increases continually with the increment of the rotation speed above the critical rotation speed, the developing objective that the small-scale mill has large-scale productive capacity is attained. In view of the objective, Kunming university of science and technology has developed a new kind of mill-the ultracritical rotation speed mill and obtained the invention patent right, and the patent number is ZL99127837.2.
    On the basis of consulting a vast amount of scientific data, the prototype of the ultracritical rotation speed mill is designed and made. Combining the distinctively grinding characteristic of the ultracritical rotation speed mill, this paper has made the experimental research of parameter of the prototype, the kinematics research of the ball mediums and the kinetics experimental research of the prototype.
    The results of the experimental research of parameter of the prototype show that the favorable ore weight and the favorable pulp density is 7Kg and 65%. When the rotation speed of the prototype is 54r/min, the content of the rough size is higher. When the rotation speed of the prototype is lOOr/min, the content of the rough size is lower than that of 54r/min and the content of the fine size is raised greatly. When the rotation speed of the prototype is 200r/min, the grinding velocity is 6 times as much as that of lOOr/min. The experimental results of fine grinding of the prototype indicate that the effect of fine grinding is very obvious.
    The results of the kinematics research of the ball mediums show that the ball mediums in the mill go mainly through three steps: uniform circumference motion, no friction motion on the surface of the guiding board and parabola motion. The parabola equation and the formula of the pounding velocity of the ball mediums are extracted:
    
    .The analyzing and calculating results of the pounding velocity show that the pounding velocity is linear with the mill
    
    
    
    
    radius and the rotation speed. The pounding frequency of the ball mediums at the unit
    time is also extracted K = . It has no concern with the mill radius, but it is
    concerned with the rotation speed of the mill by the direct proportion and the constant
    of the direct proportion is .
    
    By the kinetics experimental research of the prototype, the grinding kinetics equation under the circumstances of different ultracritical rotation speeds and
    mediums filling rate are extracted R(t) = 100exp[-(a0 +a,O(t"+t'ln(''))]. According to these equations, the scattering rate-/?(0 at the rational time and the size to be grinded under the circumstances of different ultracritical rotation speeds and mediums filling rate can also be extracted. The analyzing results of the kinetics equations show : (l)With the increment of the rotation speed, the grinding velocity will be increased greatly. The faster the rotation speed increases, the more obvious the trendency is. (2)With the increment of the medium filling rate, the grinding velocity will also be increased. And at the limit of the less mediums filling rate, the increment of the grinding velocity is much more obvious with the increment of the mediums filling rate. (3)With the lengthening of the grinding time, the grinding velocity will be decreased. When the grinding time is longer, the trend is more obvious.
    The results of a large number of experimental and analyzing research show that the ultracritical rotation speed mill has grinding characteristics as follows: (l)The productive capacity of the mill is raised in multiple at the unit volume. (2)The mediums filling rate of the mill is descended and the size of the mediums is smaller than that of the conventional mill. (3)The ultracritical rotation speed mill is suitable for not only rough grinding but also fine grinding.
引文
1 Mining Journal.1989, 17(2):127
    2 Aufbereitungs-Technik.1989 (3):113-121
    3 J.K.Necht and W. Ranze. Design Features of an 8000 KW SAG MILL. E&MJ. 1998(2):36-39
    4 J.克内克特等.8000KW半自磨机的设计特色.国外选矿技术快报.1998,22(11):1-3
    5 郭可宁.大直径球磨机的运行实践.有色金属.1989(1)
    6 C.A.Rowland. Diameter Factors Affecting Ball Mill Scale-up.Int.J.Miner. Process.1988,22(1-4):95-104
    7 罗义昌等.大直径球磨机的设计研究.国外金属矿选矿.1992(9)
    8 高明炜,E.福斯伯格.大型球磨机效率的研究.金属矿山.1989(10)
    9 杨松荣.大型球磨机选择计算的几点看法.有色矿山,1991(6)
    10 J.Hadaway, et al. Design Aspects of Large Ball Mill, Mining Magzine. 1999, 181 (4):230-236
    11 J.哈得威等.大型球磨机的设计思想.国外金属矿选矿.2000(4):6-10
    12 赵昱东,高效节能磨矿设备综述.矿山机械.1999(10)
    13 王东明等.高效节能锥形球磨机.矿山机械.1995(10):29-30
    14 R.乌斯纳姆.白色矿物的细磨技术与设备.国外金属矿选矿.1997(2):40-43
    15 L.K. Schǒnert. ClausthaI-ZeUerfeld. Aufbereitungs-Technik. 1991 (9):487-494
    16 杨忠高.磨矿设备的发展.矿山机械.1987(2):27-34
    17 K.R.Suttill. Mineral Processing Congress Highlights Innovative Technology. E&MJ. 1988,181(9):72-74
    18 俞良中.旋流态离心自磨机粉碎机理及主要参数设计研究,矿冶工程,1997(6):26-30
    19 俞良中.立轴锥盘离心磨机的开发与研究.有色金属(选矿部分).1997(2):24-33
    20 俞良中。立轴锥盘离心磨机主机设计.有色金属(选矿部分).1998(1):29-32
    21 侯潜修等.立式离心磨矿机的研究.矿山机械,1997(1):4-6
    22 张凯.选矿科技的发展规律—综合创新.冶金工业出版社.1998
    23 杨忠高.超细磨矿机及其在选矿生产中的应用.矿山技术.1990(1):32-36
    24 孙春宝等.Szego磨的工作原理及其特点,矿山机械.1998(7):18-20
    25 李瑞涛等.立式行星磨系统动力学分析,金属矿山,2000(9):37-38
    26 李瑞涛等.基于虚拟样机的立式行星磨仿真的研究.矿山机械.2001(1):25-26
    27 龚姚腾等.行星式球磨机机理及磨碎试验研究.南方冶金学院学报.1993(12):294-301
    28 张克仁等.TCMJ-1型超细球磨机的研制与应用.煤炭科学技术.1997(8):43-45
    29 陈世柱等.行星式高能球磨机工作原理研究.矿冶工程。1997(12):62-65
    30 《选矿手册》编辑委员会.《选矿手册》第二卷第二分册.冶金工业出版社.1993(10)
    
    
    31 顾玲,振动磨及其隔振设计.南方冶金学院学报.1993(9):214-219
    32 郑水林.超细粉碎原理、工艺设备及应用,中国建材工业出版社.1993(5)
    33 洛阳矿山机械研究所.日本最新超微粉碎机.1992:8-13
    34 王树林等.振动磨的发展与现状.矿山机械.1989(1):2-5
    35 陈炳辰.磨矿分级进展(上).金属矿山.1999(11):12-17
    36 皱声勇.G型振动磨机动力学分析.矿山机械.1989(8):30-32
    37 K.Schonert.Aufoeitungs-Technik. 1991,32(9):487-494
    38 K.E.Kurrer,et al.旋转腔振动磨机—传统管式振动磨机的进一步发展.Proceedings Of the Ⅹ Ⅵ IMPC,1988:221-230
    39 W. Beenken, E. Geck, K. E. Kurrer. The outer mechanics of the eccentric vibration mill, Perprints of the 8 th Symposium on Comminution. Vol. Ⅱ, 441-453,May 17-19,1994,Stockholm.
    40 E.戈克等.一种新型磨机—偏心振动磨在工业的应用.国外金属矿选矿.1999(1);2-5
    41 Proceedings of ⅩⅩ International Mineral Processing Congress,1997(2)
    42 张伟等.利用立式振动磨制备超细粉的研究.功能材料.1997,28(5):511-513
    43 王群力等.大型超细粉磨设备的开发研究.矿山机械.2001(7):25-26
    44 胡国明等.试验型机械冲击超细磨矿机的研制.矿山机械。1998(4):15-17
    45 R.Drōgemeier, K. Leschonski. Ultra fine grinding in an impact grinding machine and its limits of application. In: Ⅹ Ⅷ International Processing Congress,Sydney, Vol.1, pp:227-236
    46 R.Drōgemeier, K.Leschonski. Ultra fine grinding in a two stage rotor impact mill. Int.J.Miner. Process.1996, 44-45:485-495
    47 沈义俊等.高速冲击粉碎机的设计及试验.矿山机械.1992(1):24-26
    48 朱瀛波.卧式高速冲击式超细粉碎及分级设备实验研究.金属矿山.1999(2):23-27
    49 朱瀛波等.高速冲击式超细粉碎及分级设备的应用.有色金属(选矿部分).1998(2):27-29,6
    50 杨忠高.对细磨机和超细磨机的研究.矿山机械.1988(12):24-28
    51 吕盘根.气流粉碎机在国内外的发展,化工机械.1993(6):43-48
    52 杨宗志.超微气流粉碎.北京,化学工业出版社.1988
    53 曾凡等.矿物加工颗粒学.徐州:中国矿业大学出版社.1995(8)
    54 Sturtevant Mill Company. Air Classification Size Reduction Mixing. Blec. U.S.A. 1980
    55 Chemical Processing. 1966, 29(7):50-63
    56 Nippon pneumatic MFC. Co. Ltd. Super Sonic Jet Mill & DS Classifier
    57 Mining journal.1986,11(7):336-337
    58 Avon.射流磨机.Int.Min..1990(4):50
    59 郑水林等.非金属矿加工技术与设备.北京:中国建材工业出版社.1998(6)
    60 郭秀平等.流化床式气流磨粉碎石英的试验研究.国外金属矿选矿.2001(3);41-45
    
    
    61 杨华明等.超细粉碎技术的进展.金属矿山,1998(9);20-27
    62 N.Stehr.Recent Developments in Stirred Ball Milling. Int. J.Miner. Process. 1988,22(1-4):431-444
    63 A Szegvari. Processing of tungsten carbide powder with the circulation attritor.MPR, 1986,(12):877-881
    64 Ming-Wei Gao, et al. A study on the effect of parameters in stirred ball milling. Int. J.Miner. Process. 1993, 37(1/2):45-59
    65 赵昱东.搅拌型磨矿机应用与发展.矿山机械.2001(1):18-20
    66 汪廷煌.塔式磨矿机及其在希尔顿选矿厂的应用研究.有色金属(选矿部分)1992(6):21-25
    67 张国旺.立式螺旋搅拌球磨机在工业中的应用.金属矿山.1998(9)
    68 S.H.Dayton, Fine Crushing and Grinding, E&MJ, 1987,(2):26-30
    69 L.M.Sheppard, Trends in milling equipment, Ceramic Bulletin, 1991, 70(5): 803-808
    70 Avon. Efficient New Wet Grinding Mill. Mining Magzine. 1991(1):42-43
    71 李征宇.干法超细搅拌球磨机的结构形式特点及应用.中国粉体技术.2000(8)
    72 杨华明等.搅拌磨在超细粉制备中的应用.矿产综合利用.1997(1):33-36
    73 Proceeding of ⅩⅩ International Mineral Processing Congress, 1997, (2):79-90
    74 新型卧式胶体磨研制成功.化工装备技术.1998(1):5
    75 谢应龙.国内外磨矿分级技术的新进展.四川有色金属,1994(1):27-36
    76 郑德雪.ABC流程中自磨机的应用研究.有色金属(选矿部分)
    77 C.A.Rowland, New Developments in the Selection of Communution Circuits, E&MJ, 1987,188(2):34-38
    78 L.Bradford, et al, The Development of the Proposed Milling Circuit for the Nkomati Main Concentrator Plant, Minerals Engineering, 1998,11 (12): 1103-1117
    79 杨松荣.多碎少磨理论及其生产实践.有色金属(选矿部分).1995(3),9-12
    80 冯国俊.多碎少磨,增产降耗.有色金属(选矿部分).1996(4):22-26,21
    81 陈鼎玖.选矿自动化进展.国外金属矿选矿.1988(11);49-55,35
    82 Mine & Qurry. 1986,5,21-22
    83 Y.Vincent等,磨矿回路最佳化,国外选矿技术快报,1988(8):20-21
    84 P.C.Kampur, A Cascade-Cataract Charge Flow Model for Power Draft of Tumbling Mills,Int.J.Miner. Process.1992, 36(1/2):9-29
    85 柳镐镇等.滚磨机中球运动的数值仿真.资源素材.1992,108(7):39-45
    86 A.Montini,磨机内矿浆流变性的测量,SAIMM.1988,88(6):199-206
    87 吴志敏等.球磨机料位在线检测新方法.新技术新工艺.1996(3):22-23
    88 吴彦春等.离心自磨机自适应系统的研究.矿山机械.1997(1):1—2
    89 Yang-Guang Du, R.Del Villar, J. Thibault, Neural net-based sofisensor for dynamic particle size estimation in grinding circuits.Int.J.Miner.Processing. 1997, 52:121-135
    90 R.G.Del Villar, et al, Development of a softsensor for particle size estimation. Minerals Engineering. 1996, 9(1): 55-72
    
    
    91 J. Kolacz, Control of the mill charges behavior in dry tumbling mills. Minerals Engineering.1999, 12(1):51-64
    92 J.科拉茨.磨矿回路中球磨机载荷的测定系统.国外选矿快报.1998,15(8):9-11
    93 J.Kolacz, Measuremnet System of the Milling Charge in Grinding Ball Mill Circuits,Minerals Engineering.1997,10(12):1329-1338
    94 C.Fernandes, A.E.C Peres, Optimisation of the grinding circuit at Arafertil, Brazil. Minerals Engineering.1999, 12(8): 969-984
    95 马利民等.CM高速冲击超细粉磨系统的PLC控制设计.矿山机械.2000(7)
    96 焦李成.神经网络的应用与实现,西安:西安电子科技大学出版社.1993
    97 罗跃纲.振动球磨机工艺参数优化设计,矿山机械,2001(4):23-24
    98 谢瑚.S9000集散系统在磨矿分级自控系统中的应用.金属矿山.2001(3):42-44
    99 曾华林,一种新型的磨矿分级控制系统.矿山机械.2001(4):26-27
    100 N.弗里曼.通过过程控制达到磨矿的最高产量—Honeywell高性能控制方案.国外金属矿山,2001(3):46-51
    101 W. van Dyk, W. Stange. Optimum control of the Leeudoorn Semi-autogenous milling circuit. CIM Bulletin. 2000,93(9):106-111
    102 W.汪戴克等.利乌多尔金矿半自磨回路的最佳化控制.国外金属矿山.2001(4):43-48
    103 刘厚乾.模糊控制在磨矿分级自动控制中的应用.金属矿山.2001(8):31-32
    104 M.Mettoul, J.F. Large, P. Guigon, High velocity impact on a target-an experimental study.Int.J. Miner.Processing. 1996, 44-45:77-91
    105 M.H.Moys,I.Smit, W. Stange, The measurement of forces exerted by the load on a liner in a ball mill, as a function of load volume and mill speed. Int. J. Miner. Processing. 1996,44-45:383-393
    106 H.Dong, M.H.Moys, A technique to measure velocities of a ball moving in a tumbling mill and its applications. Minerals Engineering. 2001,14(8): 841-850
    107 R.C.Crida, et al. An Approach to Rock Size Measurement Based on a Model of the Human visual System, Minerals Engineering.1997, 10(10): 1085-1093
    108 K.R.P. Petersen, et al. Analysis of Ore Particles Based on Textural Pattern recognition, Minerals Engineering.1998, 11 (10):959-977
    109 Proceedings of ⅩⅪ International Mineral Processing Congress, C3, 39-44
    110 Fitzgibbon K.E.and Veasey T J. Thermally Assisted Liberation-A Review, Minerals Processing,1990(12)
    111 L.M.塔瓦列斯,R.R.金,热力辅助破碎的微观研究。国外金属矿选矿.1997(6)
    112 The Journal of The South African Institute of Mining And Metallurgy,2000,5/6:197
    113 W. Vorster, et al. The Effect of Microwave Radiation upon the Processing of Neves Corvo Copper Ore, Int. J.Miner. Process. 2001,63(1):29-44
    
    
    114 H. Schubert. Aufbereitungs-Technik.1998, (3):115-120
    115 Heinrich.助磨剂及添加物对磨矿过程的影响.Aufbereitungs-Technik.1998,29(3):115-120
    116 刘春明等,助磨剂的试验研究.化工矿山技术.1998(3)
    117 吴明珠等.助磨剂作用机理的研究.有色金属.1989(4)
    118 马少健等.磨矿优化研究述评.矿山机械,2000(4)
    119 Difen Lu, et al. Advanced Powder Technology. 1992, 3(1):31-37
    120 丁浩等.磨矿条件对湿式细磨重质碳酸钙的影响.化工矿物与加工.1999(2)
    121 J.科拉茨.助磨剂对细磨的影响.国外金属矿选矿.1999(1)
    122 温健康.流变学理论在高岭土助磨作用机理研究中的应用.中国矿业.1998(4)
    123 Proceeding of ⅩⅩ International Mineral Processing congress, 1997, (2):251-260
    124 赵敏等.粉碎理论与粉碎设备发展评述,矿冶.2001(6);36-41,30
    125 文书明,超临速磨机专利申请说明书
    126 杜正春等.磨机临界转速再讨论.矿山机械.1999(1)
    127 段希样等.球磨机介质工作理论与实践.北京:冶金工业出版社,1999(8)
    128 郝桐生.理论力学.北京:高等教育出版社.1993(12)
    129 陈二云等,球磨机理论转速的研究.湖南冶金,1995(1):9-12
    130 张建华.球磨机中磨球的工作状况及受力分析.淮南矿业学院学报.1998,18(2):48-51
    131 31:15-19
    132 戴少生,矿山机械,1987,No.5,26-31
    133 李启衡.碎矿与磨矿.北京:冶金工业出版社
    134 陈丙辰,磨矿原理.北京:冶金工业出版社.1989(11)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700