用户名: 密码: 验证码:
大同矿区“三硬”煤层冲击地压发生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击地压是煤矿重大动力灾害之一。大同矿区顶、底板及煤层都坚硬,是我国典型的“三硬”煤层条件的矿区。目前冲击地压已成为困扰大同矿区安全、高效生产的瓶颈之一,而对于这种条件下冲击地压发生机理的研究却鲜见报道。本文在总结已有研究成果的基础之上,结合大同矿区的实际情况,开展了现场调研、冲击地压影响因素分析、冲击倾向性测定与研究、地应力测定与分析、数值模拟等相关工作,系统研究了“三硬”煤层条件下冲击地压发生的机理,为“三硬”煤层条件下冲击地压现象的控制与防治提供理论基础,并取得了以下主要成果与结论:
     (1)对大同矿区忻州窑矿、同家梁矿、煤峪口矿三矿的煤层及顶底板进行了物理力学性质测定和冲击倾向性判定,并对现行的冲击倾向性鉴定指标进行了研究,提出了新的冲击倾向性判定指数——剩余能量释放速度指数。
     (2)采用空心包体应变计的方法现场测量地应力,测定结果表明大同矿区水平构造应力较大,水平构造应力占主导地位,最大水平挤压应力方向基本上为SE—NW向,走向位于N-W和NN-W向,在324.9°-331.7°范围内变化;其最大水平主应力数值大小在12.05MPa-13.11 MPa范围内变化。四个测点的侧压系数在1.500-1.789范围内变化。
     (3)通过数值模拟可以看出构造应力对冲击地压的产生具有较大的影响:在构造应力作用下,煤岩体更容易形成应力集中,产生冲击地压;对于巷道而言,当主应力垂直于巷道轴向时,巷道煤壁附近容易形成较大的水平应力梯度,使得煤岩更容易产生冲击地压,因此在巷道开拓布置时应注意不要与最大水平主应力方向垂直布置。
     (4)大同矿区冲击地压除了具有冲击地压的一般特征(突发性、多样性、复杂性、破坏性)外,带有鲜明的大同特色,即三硬、冲击地压显现地点埋深较浅、下分层开采时巷道发生冲击大于上分层开采时等。
     (5)根据大同矿区冲击地压显现特征,将大同矿区冲击地压分为四种基本类型:两帮煤层冲击、底板冲击、两帮及底板冲击和小块状弹射。
     (6)研究了冲击地压的影响因素,主要包括自然地质条件和开采技术条件两大方面的因素,大同矿区所发生的冲击地压是受着两方面的因素影响造成的。
     (7)引起大同矿区采准巷道两帮冲击的主要原因是:采煤方法、煤体应力和支护强度及采动影响。
     (8)“三硬”条件下,随着采空区面积的不断扩大,在巷道周围的煤柱上形成很高的支承压力,造成对煤层的夹持作用,顶板的震动与反弹使煤壁与顶板之间形成离层。
     (9)建立数学力学模型与应用数值模拟,研究了煤壁整体推出型冲击地压发生机理。在巷帮一定深度存在或产生垂直裂隙的情况下,巷帮水平位移与水平载荷基本呈线性正比关系,顶底板与煤层分离时的水平位移大于未分离时的水平位移,并且前者比后者位移增长速度快。
     (10)用关键层理论分析了坚硬底板冲击现象,找出了其影响因素。通过数值模拟分析,认为随着巷道宽度的增加,水平拉应力最大值向底板深部发展,将引起底板中关键层突然断裂,最终导致冲击地压的发生。
     论文的创新点如下:
     (1)首次提出“三硬”冲击地压概念,阐明大同矿区的冲击地压特征,对“三硬”浅埋条件下发生的冲击地压进行了分类,研究了冲击地压的影响因素。
     (2)首次研究了煤壁整体推出型冲击地压发生机理,通过建立数学力学模型与数值模拟分析,找出了冲击发生的条件和规律。
     (3)首次用关键层理论分析了坚硬底板冲击现象,找出了其影响因素。通过数值模拟分析,找出了冲击发生的条件。
Rock burst is one of the major dynamic disasters of coal mine. Datong Coal Mining Area with the hard seam, the hard roof, and the hard bottom is a typical one under the condition of "three-hard" coal seam. At present rock burst is a key factor which restricts safe and efficient production in the area,but the research on the mechanism of rock burst occurring in this condition is hardly found. Based on the existing research results and combined with the actual situations of Datong Coal Mining Area, this thesis, through on-the-spot investigation, analysis of influence factors of rock burst, measurement and research on the bursting liability and ground stress, as well as numerical simulation, studies the mechanism of rock burst's occurrence under the condition of "three-hard" coal seam in a systematic manner, so as to provide theoretic bases for the control and prevention of rock burst occurring in the condition. The following main conclusions have been drawn:
     (1) By determination of physical and mechanical properties and judgment of bursting liability of coal, roof and floor of Xinzhou, Tongjialiang and Meiyukou Coal Mine in Datong Coal Mining Area, and research on current identification indicators of bursting liability, this thesis proposes new index of bursting liability, dump energy delivery speed index.
     (2) Ground stress is measured on site with the method of hollow inclusions strain gauge. The results of test show that the horizontal tectonic stress is comparatively large and dominant in Datong Coal Mining Area, and the direction of maximum horizontal compression stress is basically SE—NW, and its alignment is in between N-W and NN-W,and its maximum changes between 324.9°-331.7°. The lateral pressure coefficients of four measuring point change between 1.500-1.789.
     (3) Numerical simulation has discovered that tectonic stress has a great influence on rock burst. Under the action of tectonic stress, coal and rock will form stress concentration and cause rock burst more easily. As for the tunnel, when the direction of principal stress is perpendicular to axial of tunnel, the vicinage of coal wall will form larger horizontal stress gradient and cause rock burst easily. Therefore, it must be noted that the tunnel should not be perpendicular to the direction of maximum horizontal stress when it is arranged.
     (4) Rock burst in Datong Coal Mining Area has not only general characteristics of rock burst (suddenness, diversity, complexity, destructiveness), but also distinct characteristics of Datong, i.e. three-hard, shallow show site of rock burst, rock burst occurring in the next hierarchical tunnel greater than in the previous one etc.
     (5) According to the features of rock burst in Datong Coal Mining Area, rock burst in this area can be divided into four basic types, i.e. two coal walls burst, floor burst, two coal walls and floor burst, and small block ejection.
     (6) The thesis studies the influence factors of rock burst, which mainly includes two major factors, i.e. natural geological conditions and mining technology conditions. Rock burst occurring in Datong Coal Mining Area is affected by both factors.
     (7) The main reasons causing the two walls burst of tunnel in Datong Coal Mining Area includes mining method, stress of coal, support intensity and impact of mining.
     (8) Under the condition of "three hard", it is thought that with the expansion of the mined-out area, high pressure, which is imposed on the pillar around tunnel, will make clamping effect on coal seam. Vibration and rebound of the roof will cause separation between the wall and the roof.
     (9) The mathematical and mechanics model is established, numerical simulation is applied, and the rock burst mechanism of the overall removal of coal tunnel wall is studied in the thesis.Under the condition that vertical cracks exist or will appear in a certain depth of the tunnel walls, horizontal displacement of the tunnel walls is basically proportional to horizontal load, and horizontal displacement during the coal bed being separated from the roof and the floor is much more obvious than the horizontal displacement with no separation. Besides, the former grows much faster than the latter.
     (10) The phenomenon of hard floor burst is explained in the theory of Key Layer, and influence factors are finally found out. After analysis of numerical simulation, the thesis considers that with the increase of tunnel width, maximum horizontal tensile stress occurs in deeper position of the bottom, and it will cause sudden fracture of floor key layer, and eventually lead to the occurrence of rock burst.
     New points of the thesis are as follows:
     (1) For the first time, the thesis proposes the conception of rock burst of "three hard",and clarifies the features of rock burst in Datong Coal Mining Area. The rock burst with conditions of "three-hard"and shallow is classified,and the influence factors are studied.
     (2) For the first time, the rock burst mechanism of the overall removal of coal tunnel wall is studied. With the establishment of mathematical and mechanics model and analysis of numerical simulation, the conditions and the laws of rock burst are found.
     (3) For the first time, the phenomenon of hard floor burst is explained in the theory of Key Layer, and influence factors are found out. With the analysis of numerical simulation, the conditions of rock burst are found out.
引文
[1]赵本钧,滕学军.冲击地压及其防治[M].北京:煤炭工业出版社,1995:1-5.
    [2]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:294-304.
    [3]窦林名,何学秋.冲击地压防治理论与技术[M].徐州:中国矿业大学出版社,2001:1-15.
    [4]梁政国,张万斌.鸟瞰我国十年来冲击地压灾害的研究[J].阜新矿业学院学报,1990,(4):1-8.
    [5]Tan Jiong Kie. Rockburst, Case Record, Theory and Control[C]. Proceedings of the international symposium on engineering in complex rock formations,1986:33-37.
    [6]侯发亮,贾愚如.地下硐室中岩爆与围岩应力的关系[C].复杂岩石中建筑物国际学术研讨会论文集,1989.
    [7]祝捷,姜耀东,赵毅鑫等.改进的Lippmann煤层平动突出模型.煤炭学报,2007,(4):353-357.
    [8]Cook N G W. The Failure of Rock[J]. Int.J.Rock Mech.Min.Sci.,1965, (2):389-403.
    [9]Wawersik W K and Fairhurst C A. A study of brittle rock fracture in laboratory compression experiments[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1970, (7):561-575.
    [10]Hudson J A, Croush S L, Fairhurst C. Soft, stiff and servo — controlled testing machines:a review with reference to rock failure[J]. Eng. Geo.,1972, (6): 155-189.
    [11]Chen Z H. A double rock sample model for rockburst[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1997,34(6):991-1000.
    [12]Salamon M D G. Stability,instability and design pillar working [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1970, (7):613-631.
    [13]Brady B H G, Brown E T. Energy changes and stability in underground ming:design applications of boundary element methods[J]. Trans Instn. Min. Metall.,1981, 90:A61-68.
    [14]Denis, GillE, Michel Aubertin & Richard Simon. A Practical Engineering Approach to the Evaluation of Rockburst Potential[J]. Young(ed), Balkema Rockbursts and Seismicity in Mines,1993:63-68.
    [15]Cook N G W, Hoek E, Pretorius J P G, etal. Rock Mechanics applied to the study of rock bursts[J]. J. S. Afr. Inst. Min. Metall,1965,66:435-528.
    [16]佩图霍夫等著,段克信译.冲击地压和突出的力学计算方法[M],煤炭工业出版社,1994:73-103.
    [17]Huan gan zeng. Rock Burst and Energy Release Rate[C]. In Proceedings 6th international congress on Rock Mechanics:971-974.
    [18]张当俊,康天合,靳钟铭.不同采煤方法对冲击地压影响的研究用[J].太原理工大学学报,2006, (3):676-679.
    [19]李新元,马念杰,钟亚平等.坚硬顶板断裂过程中弹性能量积聚与释放的分布规律[J].岩石力学与工程学报.2007, supp(1):2786-2793.
    [20]孙振武,代进,杨春等.矿山井巷和采场冲击地压危险性的弹性能判据[J].煤炭学报,2007, (8):794-798.
    [21]周光文,刘文岗,姜耀东等.采场冲击地压的能量积聚释放特征分析[J].采矿与安全工程学报.2008,(1):74-77.
    [22]潘俊锋,连国明,齐庆新等.冲击危险性厚煤层综放开采冲击地压发生机理[J].煤炭科学技术.2007,(6):87-90.
    [23]武玉梁,秦跃平,刘宏波等.煤岩体冲击地压储能机理发生条件的研究[J].煤炭学报.2008,(4):472-475.
    [24]Bieniawski Z T, Denkhaus H G, Vogler U W. Failure of Fracture Rock[J]. Int. J.Rock Mech. Min. Sci.,1969, (6):323-341.
    [25]Bieniawski Z T. Mechanism of brittle fracture of rocks[J]. Part Ⅰ, Ⅱ and Ⅲ.Int. J. Rock Mech. Min. Sci.,1967,(6):395-430.
    [26]王淑坤,张万斌,赵国栋.用点载荷方法测定煤的动态破坏时间[J].煤炭开采,1993, (3):48-51.
    [27]王元汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,(5):493-501.
    [28]金立平,鲜学福.煤层冲击倾向性研究及模糊综合评判[J].重庆大学学报,1993,(6):114-119.
    [29]MT/T174-2000,MT/T866-2000,中华人民共和国煤炭行业标准[S].国家煤炭工业局,2000.
    [30]张万斌,王淑坤,滕学军.我国冲击地压研究与防治的进展[J].煤炭学报,1992,17(3):27-35.
    [31]姜耀东,赵毅鑫,何满潮等.冲击地压机制的细观实验研究[J].岩石力学与工程学报,2007,(5):901-907.
    [32]Kleczek & Zorychta A. Coal Bumps by Mining Tremor[J], Rockburst and Seismicity in Mines, Young (ed). Rotterdam,1993:87-89.
    [33]李玉生等.冲击地压机理探讨[J].煤炭学报,1984,(3):1-10.
    [34]李玉生.冲击地压机理及其初步应用[J].中国矿业学院学报,1985,(3):37-43.
    [35]CooK N G W. A Note on Rockbursts Cnosidered as A Problem of Stability[J]. South Afr. Inst. Min. and Metallurgy.,1965,65:437-446.
    [36]Salamon M D G and Wagner H. Role of Stabilizing Pillars in the Alleviation of Rockburst Hazard in Deep Mines[J]. Proc.4th Int.Congr.Rock Mech., Montreal,1979, (2):561-566.
    [37]Petuhov I M, Linkov A M. The theory of post-faliure deformations and the problem of stability in rock mechanics[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr. 1979, (1)6:57-76.
    [38]Petuhov I M, Linkov A M. The theory of rock burst and outburst[R]. Nedra, Moscow,1983(in Russian).
    [39]Petuhov I M, Linkov A M. Theoretical principles and fundamentals of rock burst prediction and control [C].5th Congress Int. Soc. Rock Mech. Melbourne. Rotterdam:A.A.Balkema,1983,2:D113-D120.
    [40]佩图霍夫.预防冲击地压的理论与实践[c].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987:627-630.
    [41]Zubelewicz O. C.and Mroz Z. Numerical Simulation of RockBurst Processes Treated as Problems of Dynamic Instability[J]. Rock Mech. Rock Eng.,1983,16:253-274.
    [42]Lippmann H. Mechanics of Bumps"in Coal Mines:A Discussion of Violent Deformations in the Sides of Roadways in Coal Seams[J]. Appl. Mech. Rev., 1987,40(8):1033-1043.
    [43]Lippmann H,张江,寇绍全.关于煤矿中“突出的理论”[J].力学进展,1990,20(4):452-467.
    [44]ppmann H.煤矿中突出的力学:关于煤层中通道两侧剧烈变形的讨论[J].力学进展,1989,19(2):100-113.
    [45]Lippmann H. Theory of the collapsed zone at the front of a coal seam and its effect on translatory rock bursting[J]. International Journal for Numerical and analytical Methods in Geomechanics,1991,15:317-331.
    [46]Lippmann H. Science between the words:A retrospective[J]. Appl. Mech. Rev.,1998,51(4):5-12.
    [47]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204.
    [48]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[J].煤炭学报,1991(4):48-53.
    [49]梁冰,章梦涛.采区冲击地压的数值预测[J].矿山压力与顶板管理,1995,(2): 12-15.
    [50]王来贵,潘一山等.矿井不连续面冲击地压发生过程分析[J].中国矿业,1996,5(3):61-65.
    [51]齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的实验研究[J].煤炭学报,1997,Vol,22(2):144-148.
    [52]李新元.围岩—煤体系统失稳破坏及冲击地压预测的探讨[J].中国矿业大学学报,2000,Vol.29(6):633-636.
    [53]Myer L R and Kemeny J M. Extensive cracking in porous rock under differential compressive stress[J]. Appl. Mech. Rev,1992,45(8):263-280.
    [54]Yoshida H and Horii H. A Micromechanics-based Model for Creep Behavior of Rock[J]. Appl. Mech. Rev.1992,45:294-303.
    [55]Nemat-Nasser S & Horri. Compression-induced Nonplanar Crack Extension with Application to Splitting, Exfoliation and Rockburst[J]. J. Geoemch. Rev.,1982,87: 6805-6821.
    [56]Mroz Z, Nawrocki P. Deformation and stability of an elasto-plastic softening pillar[J]. Rock Mechanics and Rock Engineering,1989,22:69-108.
    [57]Zorychta A, Kleczek Z, Cyrul T. Criteria of rock bursts for longwall ming[C]. Proceedings of the international symposium on engineering in complex rock formation. Beijing:Science Press.1986:655-658.
    [58]Vardoulakis I. Rock bursting as a surface instability phenomenon[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.1984,21(3):137-144.
    [59]Vardoulakis I, Muhlhaus. Technical Note:Local Rock Surface Instabilities[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.1988,25(3):159-170.
    [60]Vardoulakis I, Papamichos E. Surface instabilities in elastic anisotropic media with surface-parallel Griffith crack[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1991,28(2/3):163-173.
    [61]Papamichos E, Labuz J F, Vardoulakis I. A surface instability detection apparatus[J]. Rock Mechanics and Rock Engineering,1994,27(1):37-56.
    [62]Dyskin A V, Germanovich L N. Model of rockburst caused by cracks growing near free surface[J]. rockbursts and seismicity in mines, Young(ed) 1993, Balkma: 169-174.
    [63]Bazant Z P, Feng-Bao Lin, Lippmann H. Fracture Energy Release and Size Effect in Borehole Breakout[J]. International Journal for Numerical and analytical Methods in Geomechanics,1993,17:1-11.
    [64]Litwiniszyn J. The phenomenon of rock burst and resulting shock waves[J]. Min. Sci. Tech.,1984, (1):243-251.
    [65]Litwiniszyn J. Rarefaction shock waves,outbursts and consequential coal damage[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.1990,27:535-540.
    [66]Litwiniszyn J. Ramarks on the equations of state of outburst rocks regarded as a solid solution[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.1991,28:501-508.
    [67]潘一山,章梦涛,李国臻.稳定性动力准则的圆形洞室岩爆分析[J].岩土工程学报,1993,15(5):59-66.
    [68]张晓春等.三河尖煤矿冲击矿压发生机制分析[J].岩石力学与工程学报,1998(5):508-513.
    [69]张晓春等.冲击矿压的层裂板模型及试验研究[J].岩石力学与工程学报,1999(5):497-502.
    [70]张晓春,杨挺青,缪协兴.冲击矿压的模拟实验研究[J].岩土工程学报,1999,(1):66-70.
    [71]缪协兴等.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,3V61,28(2):113-117.
    [72]周瑞忠.岩爆发生的规律和断裂力学机理分析[J].岩土工程学报,1995,(6):111-117.
    [73]黄庆享等.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001(2):156-159.
    [74]尹祥础,尹灿.非线性系统失稳的前兆与地震预报[J].中国科学,1991(5):512-518.
    [75]宋治平,尹祥础,陈学忠.加卸载响应比理论的时空演变特征及其对地震三要素的预测意义[J].地震学报,1996,18(2):179-186.
    [76]李广平.岩体的压剪损伤机理及其在岩爆分析中的应用[J].岩土工程学报,1997,19(6):49-55.
    [77]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报,1997,16(2):140-147.
    [78]彭祝,王元汉,李廷芥.Griffith理论与岩爆的判别准则[J].岩石力学与工程学报,1996,15:491-495.
    [79]陆家佑.高等岩石力学[M].北京:水利电力出版社,1989:422-432.
    [80]李文,纪洪广,武玉梁.深井冲击地压发生机理分析及预测方法研究[J].中国矿业,2007, (7):105-107.
    [81]潘岳.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,20(1):43-48.
    [82]谭云亮.矿山岩层运动非线性动力学特征研究[D].博士论文,沈阳:东北大学,2002.
    [83]尹光志等.岩石微裂纹演化的分岔混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639.
    [84]潘一山,章梦涛.用突变理论分析冲击矿压发生的物理过程[J].阜新矿业学院学报,1992,11(1):12-18.
    [85]张玉祥,陆士良.矿井动力现象的突变机理及控制研究[J].岩土力学,1997,18(Supp.):88-92.
    [86]费鸿禄,徐小荷著.岩爆的动力失稳[M].上海:东方出版中心,1998:45-60.
    [87]Xu Zenghe, Xu Xiaohe. A cusp catastrophe, precursors pattern and evolution process of rockbust of coal pillar under a hard rock subject to elastic support[J]. Journal of coal science & engineering,1996,61 (1):24-31.
    [88]徐曾和,徐小荷,唐春安.坚硬顶板条件下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,(5):485-491.
    [89]傅鹤林,桑玉发.用突变理论预测地下采场发生冲击的可能性[J].金属矿山,1996,(1):19-21.
    [90]单晓云等.用突变理论预测岩爆的发生的可能性[J].矿山测量,2000,(4):36-37.
    [91]姜永东,鲜学福,尹光志.采掘工作面发生冲击地压的尖点突变模型研究[J].中国矿业,2007,(12):65-71.
    [92]Xie H P and Pariseau W G. Fractal Character and Mechanism of Rock Burst[J]. Int. J, Rock Mech. Min, Sci.&Geomech. Abstr,1993,30(4):343-350.
    [93]李廷介等.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报,2000,(1): 6-10.
    [94]秦四清等.岩石声发射在空间上的分形分布研究[J].应用声学.1992,11(4):101-107.
    [95]藤山邦久编著,冯夏庭译.声发射(AE)技术的应用[M].冶金工业出版社,1996.
    [96]Hirata T. Fractal structure of Spatial distribution earthquake-The-Two-pointcorrelation function[J]. Geophys.J.R.Astron.Soc., 1980,62:303-320.
    [97]李玉,黄梅等.冲击地压防治中的分数维[J].岩土力学,1994,(4):34-38.
    [98]李玉,黄梅等.冲击地压发生前微震活动时空变化的分形特征[J].北京科技大学学报,1995,(1):10-13.
    [99]谭云亮,杨永杰.煤矿顶板夫稳冒落分形预报的可能性研究[J].岩石力学与工程学报.1996,15(1):90-95.
    [100]谭云亮等.矿山压力混沌现象的预测分析[J].矿山压力与顶板管理.1997,(3/4):107-115.
    [101]冯夏庭等.智能岩石力学导论[J].岩石力学与工程学报.1999,(2):222-226.
    [102]朱令人等.地震分形[M].北京:地震出版社,2000:72-75.
    [103]齐庆新.层状煤岩体结构破坏的冲击矿压理论与实践研究[D].北京:煤炭科学研究总院北京开采所,1996.
    [104]齐庆新等.冲击地压的摩擦滑动失稳机理[[J].矿山压力与顶板管理,1995,(3):174-177.
    [105]熊祖强,贺怀建.冲击地压应力状态及卸压治理数值模拟[J].采矿与安全工程学报.2006,(4):489-493.
    [106]窦林名,陆菜平,牟宗龙等.组合煤岩冲击倾向性特性试验研究[J].采矿与安全工程学报.2006,(1):43-46.
    [107]公衍梅.基于损伤的冲击地压理论研究及应用[D].硕士论文,阜新:辽宁工程技术大学,2006.
    [108]赵洪波,茹忠亮.冲击地压预测的PSO-SVM模型[J].岩石力学与工程学报.2007,supp(1):3479-3483.
    [109]赵毅鑫,姜耀东,韩志茹.冲击倾向性煤体破坏过程声热效应的试验研究[J].岩石力学与工程学报.2007,(5):965-971.
    [110]王蓓,吴继忠.采矿地质因素评定冲击地压危险[J].矿山压力与顶板管理.2001,15(1):72-74.
    [111]赵本钧,滕学军.冲击地压及其防治[M].北京:煤炭工业出版社,1995,345-374.
    [112]Archibald J F, Calder P N, Moroz B, etal. Applications of Microseismic Monitoring to Stress and Rockburst Preuusor Assessrnent[J]. Minting Science and Technology,1988, (7):123-132.
    [113]Calder P N, Archibald J, Madsen D, etal. High Frequency Precursor Analysis Prior to A Rockburst[J]. Rockbursts and seimicity in mines. Fairhurst(ed), 1990:117-131.
    [114]王恩元,何学秋,刘贞堂.煤岩变形破裂的电磁辐射规律及其应用研究[J].中国安全科学学报,2000,10(2):35-39.
    [115]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究[J].地球物理学报,2000,46(1):131-137.
    [116]张绪言.大同矿区巷道冲击地压特征及冲击倾向性研究[D].硕士论文,太原:太原理工大学,2006.
    [117]蔡美峰.地应力测量原理和技术[M].北京:科学出版社,2000:31-37.
    [118]蔡美峰,乔兰,李长洪等.矿山地应力场测量及其在新城金矿采矿设计中的应用[M].北京:地震出版社.1996:13-22.
    [119]李长洪.西石门铁矿与新城金矿地应力场研究及其比较[D].北京:北京科技大学,1993.
    [120]王晋伟,郭景林等.大同煤业股份有限公司生产矿井地质报告[R].山西省煤炭地质公司,2003,11.
    [121]陈哲仁,李长义等.大同矿务局忻州窑矿矿井地质报告[R].忻州窑矿矿,1994,1.
    [122]王国新,刘存林等.大同煤矿集团有限责任公司同家梁煤矿生产矿井地质报告[R].大同煤矿集团有限责任公司同家梁煤矿和山西煤田地质勘探115队,2003,12.
    [123]杨双锁.回采巷道围岩控制理论及锚固结构支护原理[M].北京:煤炭工业出版社,2004:59-64.
    [124]王旭宏,康立勋,杨双锁.大同矿区“三硬”煤层巷道煤壁整体推出型冲击地压发生机理的研究[J].中国矿业,2009,18(7):96-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700