用户名: 密码: 验证码:
福建马坑铁矿床地质与地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马坑铁(钼)矿床是闽西南地区一个重要的大型多金属矿床,为华南地区最大的铁矿床。马坑铁矿主矿体为大型似层状隐伏矿体,赋存于莒舟-大洋花岗岩体外接触带黄龙组(C2h)灰岩和林地组(C1l)碎屑岩层间构造破碎带中,矽卡岩与矿体密切共生,分带明显。矿床的形成经历了矽卡岩阶段、退化蚀变阶段、石英硫化物-碳酸岩阶段,其中退化蚀变阶段为主成矿期。
     利用LA-ICP-MS方法测得大洋花岗岩的锆石U-Pb年龄为127Ma和128Ma,用SH_RIMP锆石U-Pb方法测得其年龄为132.6±1.3Ma,利用LA-ICP-MS方法测得莒舟花岗岩的锆石U-Pb年龄为125Ma、126Ma、129Ma、130Ma和130Ma,大洋和莒舟岩体都形成于早白垩世岩石圈伸展的背景下。利用LA-ICP-MS方法测得辉绿岩的锆石U-Pb年龄为303Ma和64Ma,表明闽西南晚石炭世和早古新世发生地壳拉张(裂谷)事件。
     大洋-莒舟花岗岩具高硅、富碱、贫钙镁和高分异指数等特点,属弱过铝或准铝质花岗岩;岩石稀土元素含量较高,配分模式呈轻稀土富集并缓向右倾斜,呈明显铕负异常的“V”型展布;微量元素具有Rb、U、Th、La等元素强烈富集而Ba、Sr、P、Ti等元素相对亏损的特点;岩石地球化学和同位素组成特征表明大洋-莒舟花岗岩属于高分异壳源型花岗岩,主要来源于元古代地壳物质,有EMⅡ型富集地幔组分的参与。
     马坑矽卡岩阶段矿物组合主要为辉石、石榴子石和钙蔷薇辉石,退化蚀变阶段的矿物组合为角闪石、绿帘石、绿泥石、石英等。电子探针分析结果表明:单斜辉石以透辉石和钙铁辉石为主,仅存在少量锰钙辉石,似辉石以钙蔷薇辉石和蔷薇辉石为主;石榴子石以钙铁榴石为主,伴生少量钙铝榴石;角闪石属于钙角闪石。
     石榴子石、辉石和磁铁矿矿石的稀土分配模式具有相似性,多为轻稀土富集,正铕异常,基本无铈异常,表明其成矿环境为氧化环境,暗示它们之间存在成因联系。矿体附近大理岩和退化蚀变岩稀土元素特征出现规律性变化,表明它们与岩浆热液的交代作用有关,碎屑岩和褪色辉绿岩提供了部分铁质。
     包裹体类型主要有气体包裹体、液体包裹体、含子矿物三相包裹体和少量含CO2包裹体,其中以液体包裹体为主。气体组成均以CO_2、H_2O、N_2、O_2为主,其次为CH_4、C_2H_4、C_2H_6和少量C2H_2,液相成分中阳离子以Na~+、K~+和Mg~(2+)为主,其次为Ca~(2+)和少量Li~+,阴离子以SO_4~(2-)、F~-、Cl~-为主,还含有少量Br-、NO3-。矽卡岩、退化蚀变、石英硫化物阶段均一温度分别为460~600℃、260~540℃、160~400℃;盐度为(6%~24%,32%~44%)、(4%~16%,36%~44%)、0%~4%。H_、O、C、S同位素研究表明矽卡岩期成矿流体主要是岩浆水,晚期石英硫化物阶段混有不同程度大气降水;成矿物质来自深部或地幔,但也受到围岩等因素的影响;矿化主要形成于相对较氧化的条件下。
     利用Re-Os同位素方法测得矿石中辉钼矿年龄为(133.0±0.8)Ma,表明马坑铁矿床形成于早白垩世,与莒舟-大洋花岗岩体的侵位年龄一致,表明为同一构造-岩浆-流体活动的产物。马坑铁矿的成矿与太平洋板块俯冲引起弧后岩石圈伸展有关,是中国东部燕山期第三次大规模成矿作用的开端。岩浆热液的相分离及其与大气降水的混合作用和减压沸腾作用是马坑铁(钼)矿形成的主要原因。
The Makeng Fe-Mo deposit in the polymetallic belt of southwestern FujianProvince is the largest iron deposit in South China. It is a large magnetite deposithosted in the interlayer fractures of Huanglong Formation(C2h)carbonates and LindiFormation(C1l)clastic rocks at the exo-contact zone of the Juzhou-Dayang granite.Skarn has genetic relationship with ore fromation. Zonation can be found almostanywhere, and occurs on scales from kilometers to micrometers. The formation ofMakeng iron deposit can be calssified into skarn stage, retrograde stage, and quartzsulfide and carbonate stage, among which the retrograde stage was the mainmineralization stage.
     Zircon LA-ICP-MS U-Pb dating indicates that the Dayang granite, the Juzhougranite and diabase in the Makeng deposit were formed at (127±1Ma and 128±1Ma),(125M±1a, 126±1Ma, 129±1Ma, 130±1Ma and 130±1Ma) and (303±2Ma and64±1Ma), respectively; The SHRIMP ziron U-Pb age of Dayang granite is 133±1Ma.Lithospheric thinning related to paleo-Pacific plate (subduction) is a likelyresponsible geodynamic background for Juzhou-Dayang granites’formation. Crackor rift valley is a likely responsible geodynamic background for Late Carboniferousand early Paleocene diabases.
     According to its geochemical compostion such as high silicon and alkali, lowcalcium and magnesium, and high differentiation index, the Juzhu-Dayang granitecan be identified as weak peraluminous-metaluminous granite; The rocks have highand remarkably varying REE, and their distribution patterns show LREE enrichmentwith gentle right oblique deviation, and a“V”model characterized by significantnegative Eu anomaly; The trace elements compositions are strongly enriched in Rb,U, Th and La and considerably depleted in Ba, Sr, P and Ti; Petrogeochemical andisotopic characteristics indicate that the Juzhu-Dayang granite is crust-derived, andhas experienced high differentiated evolution. The magma sources of theDayang-Juzhou granites were mainly derived from Proterozoic crustal materials, butalso involved some proportion of EMII components.
     Skarn mineral assemblages consist of pyroxene, garnet and bustamite, andretrograde minerals comprise chlorite, epidote, amphibole, quartz. Electronmicroprobe analyses show that the pyroxenes are mainly diopside and hedenbergite,with minor johannsenite, whereas associated pyroxenoids are bustamite andrhodonite. The garnet is dominated by andradite, with minor grossular. Theamphibole in the Makeng iron deposit belongs to calcic amphiboles.
     Garnet, pyroxene and magnetite have similar chondrite-normalized REEdistribution patterns with light REE(LREE) enrichment, moderate Eu positiveanomaly and absent Ce anomaly, indicating that they were formed under theoxidation environment, and there was genetic relation between ore formation andskarns. The REE geochemistry of marble and alterated rocks varied regularly, andthat alteration is featured by metasomatism and magmatic hydrothermal solution,and its ore-forming materials might come from surrounding strata and diabase partly.
     Fluid inclusion studies show that the inclusion types of Makeng deposit are complex, mainly with vapor- and liquid-rich, daughter mineral-bearing and CO_2-richfluid inclusions, among which the liquid-rich type is predominant. Gas compositionof fluid inclusions mostly includes CO_2, H_2O, N_2and O_2, with minor CH_4, C_2H_4,C_2H_6and a small amount of C_2H_2. Cations of liquid composition are dominant withNa~+, K~+, Mg~(2+), followed by Ca~(2+)and a small amount of Li+. Anions are mainlyconsist of SO_4~(2-), F~-, Cl~-, with minor Br-and NO3-. Homogenization temperatures ofthree group fluid inclusions from early to late stage are 460~600℃, 260~540℃,160~400℃, respectively. Salinities are (6~24 wt.%, 32~44 wt.%), (4~16%,36~44%), (0~4% ) , respectively.
     H, O, C and S isotopic geochemistry shows that the ore-forming fluids of theskarn stage were mainly derived from magmatic water, whereas the fluids of thequartz-sulfide stage mixed with the meteric water with variable proportions. Themetallogenic material was mainly derived from mantle or a deep-seated place, butother factors, such as country rocks, contributed as well. The characteristics ofskarnminera and REE indicate that they mainly formed under oxidizd conditions.
     Re-Os isotopic dating of the molybdenites symbiosis with magnetites obtainedmodel ages of 133.0±0.8Ma.The main mineralization stage was of the EarlyCretaceous, which was consistent with the emplacing age of the host rockJuzhou-Dayang granitic intrusion. These features indicated that they were results ofthe same magma-structure-fluid activity. The mineralogenetic epoch of MakengFe-Mo deposit may be related to the lithospheric extension event of the back arc ofthe southeastern margin of Eurasian continent caused by the Pacific plate subduction.Phase separation of magmatic water, fluid mixing with meteoric water, and buckboiling may be the main causes of mineralization.
引文
[1] Anders E and Grevess N. Abundances of the elements: Meteoritic and solar. Geochimicaet Cosmochimica Acta, 1989, 53(1): 197~214
    [2] Anderson T. Correlation of common lead in U-Pb analyses that do not report204Pb.Chemical Geology, 2002, 192: 59~79
    [3] Baker, T. and Lang, J.R. Reconciling fluid inclusions, fluid processes and fluid source inskarns: An example from the Bismark skarn deposit, Mexico: Mineralium Deposita, 2003,38: 474~495
    [4] Baker, T., Van Achterberg, E., Ryan, C.G., and Lang, J.R..Composition and evolution ofore fluids in a magmatic-hydrothermal skarn deposit: Geology, 32: 117~120
    [5] Barnes HL. Geochemistry of hydrothermal ore deposit. 3rded. New York: John Wiley &Sons,1997
    [6] Blyuman BA. Isotope characteristics of crustal and mantle heterogeneities withapplication to their timing and depth of formation. Geochemistry International, 2001,39(5): 505~510
    [7] Bodnar RJ. Revised equation and table for the freezing point depression of H2O-NaClsolutions. Geochimica et Cosmochimica Acta, 1993, 57: 683~684
    [8] Bodnar RJ. Synthetic fluid inclusions. XII. Experimental determination of the liquidusand isochores for a 40 wt.% H2O-NaCl solution. Geochimica et Cosmochimica Acta,1994, 58: 1053~1063
    [9] Bottinga Y and Javoy M. Oxygen isotope partitioning among the minerals in igneous andmetamorphic rocks. Reviews of Geophysics and Space Physics, 1975, 23: 401~418
    [10] Brown PE, Hagemann SG. McFlincor and its application to fluids in Archean golddeposits. Geochirm Cosmochim Acta, 1995, 50: 847~852
    [11] Chang, Z., and Meinert, L..Vermicular textures of quartz phenocrysts, endoskarn, andimplications for late stage evolution of granitic magma:Chemical Geology, 2004, 210:149~171
    [12] Chappell BW and White AJR. Two constrasting granite types. Pacific Geology, 1974, 8:173~174
    [13] Clayton RN, O'Neil JR, Mayeda TK. Oxygen Isotope Exchange between Quartz andWater. Journal of Geophysical Research, 1972, 77(17): 3057~3067
    [14] Compston W, Williams L S, Kirschvink J L, et al. Zircon U-Pb ages of early Cambriantime-scale. Journal of the Geological Society (London), 1992, 149: 171~184
    [15] Du AD, Shu Q, Sun DZ. Preparation and Certification of Re–Os Dating ReferenceMaterials: Molybdenite HLP and JDC. Geostandard Newslett, 2004, 28: 41~52
    [16] Einaudi M T, Meinert L D and Newberry R J . Skarn deposits. Economic Geology, 1981,75: 317~391
    [17] Einaudi MT and Burt DM.Introduction-terminology, classification and composition ofskarn deposit. Economic Geology, 1982, 77: 745~754
    [18] Einaudi MT. General features and origin of skarns associated with porphyry copperplutons, Southwestern North America. In: Titley, S. R. (Eds.), Advances in the Geologyof Porphyry Copper Deposits. The University of Arizona Press, Southwestern NorthAmerica, Tucson, 1982
    [19] Friedman I and O’Neil JR. Complication of stable isotope fractionation factors ofgeochemical interest in data of geochemistry. In: Fleicher M, ed. Geological professionalpaper. U. S. Geological Survey, 1977, 6thed: 440
    [20] Fulignati, P., Kamenetsky, V. S., Marianelli, P., Sbrana, A., and Mernagh, T.P. Meltinclusion record of immiscibility between silicate, hydrosaline,and carbonate melts:Applications to skarn genesis at Mount Vesuvius: Geology, 2001, 29: 1043~1046.
    [21] Fulignati, P., Marianelli, P., Santacroce, R., and Sbrana, A. The skarn shell of the 1944Vesuvius magma chamber: Genesis and P-T-X conditions from melt and fluid inclusiondata: European Journal of Mineralogy, 2000, 12: 1025~1039
    [22] Goldfarb R J, Hart C, Davis G and Geoves D. East Asian gold: Deciphering the anomalyof Phanerozoic gold in Precambrian cratons. Economic Geology, 2007, 102(3): 341~345
    [23] Hart SR. A large scale isotope anomaly in the Sourthern Hemisphere mantle. Nature,1984, 309: 753~757
    [24] Haynes, F.M, and Kesler, S.E. Compositions and sources of mineralizing fluid for chimneyand manto limestone~replacement ores in Mexico.Economic Geology, 1988, 83: 1985~1992
    [25] Heich CY. Geology of the iron deposits in the Lower Yangtze region. Geol. Mem. A.,1985, 13: 44~59
    [26] Hoefs J. Stable isotope geochemistry. 4rd ed. Berlin: Spring Verlag, 1997
    [27] Hong DW, Xie X and Zhang JS. Isotope geochemistry of granitoids in South China andtheir metallogeny. Resource Geology, 1998, 48(4): 251~263
    [28] J. L. Graf. Rare earth elements as hydrothermal tracers during the formation of massivesulfide deposits in volcanic rocks. Economic Geology, 1977, 77(4): 527~548
    [29] Jahn BM, Wu FY, Capdevila R, Wang YX et al. Highly evolved juvenile granites withtetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing'an (Khingan)Mountain in NE China. Abstract of IGCP420 and Workshop in Ulaanbaator, in G.Bardach and B. M. Jahn (eds.), Géosciences Rennes, Hors Série, 1999, 2: 43~46
    [30] Kwak, T.A.P. Hydrothermal alteration in carbonate-replacement deposits. GeologicalAssociation of Canada Short Course Notes, 1994, 11: 381~402.
    [31] Kwak, T.A.P. Mass balance relationships and skarn-forming processes at the King Islandscheelite deposit, King Island, Tasmania, Australia:American Journal of Science, 1978,278: 943~968
    [32] Kwak, T.A.P. Fluid inclusions in skarns (carbonate replacement deposits): Journal ofMetamorphic Geology, 1986, 4: 363~384
    [33] Kwak, T.A.P. W-Sn skarn deposits and related metamorphic skarns and granitoids:Developments in Economic Geology, 1987, 24: 451
    [34] Kyser KT. Stable isotope variations in the mantle. In: Valley JW, Taylor HP, O’Neil JR(eds.). Stable isotopes in high temperature geological processes, Reviews in Mineralogy16. Washington: Mineral. Soc. Am, 1986: 141~164
    [35] Leake BE, Woolley AR and Arps CES. Nomenclature of amphiboles: report of thesubcommittee on amphiboles of the International Mineralogical Association, Commissionon New Mineral and Mineral Names. American Mineralogist, 1997, 82: 1019~1037
    [36] Lentz, D. Carbonatite genesis: A re-examination of the role of intrusion-relatedpneumatolytic skarn processes in limestone melting: Geology, 1999, 27: 335~338
    [37] Liu JH. On the Genetic Mineralogy of Pyroxenes from the Makeng Iron Ore~Deposit inFujian Province. Geology of Fujian, 1993, 4: 134~136
    [38] Liu YS, Gao S, Hu Z,et al.. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopesand trace elements in zircons of mantle xenoliths. Journal of Petrology, 2010, 51: 537~571
    [39] Lottermoser, BG. Rare-earth elements and hydrothermal ore formation processes. OreGeology Reviews, 1992, 7: 25~41
    [40] Ludwig KR. User’s Manual for Isoplot/Ex. Version 3.00: A geochronological toolkit forMicrosoft Excal. Berkeley: Berkeley Geochronology Center Special Publication, 2003
    [41] Ludwig KR.Isoplot/Ex, version 3.0: a geochronological toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley, CA, 2004
    [42] Mao JW, Pirajno F., Nigel Cook N. Mesozoic metallogeny in East China andcorresponding geodynamic settings-An introduction to the special issue. Ore GeologyReviews, 2011,43: 1~7
    [43] Mao JW, Wang YT, Lehmann B, et al. Molybdenite Re-Os and Albite40Ar/39Ar Datingof Cu–Au–Mo and Magnetite Porphyry Systems in the Yangtze River Valley andMetallogenic Implications. Ore Geology Review, 2006, 29: 307~324
    [44] Mao JW, Xie GQ, Bierlein F, et al. Tectonic Implications from Re–Os Dating ofMesozoic Molybdenum Deposits in the East Qinling–Dabie Orogenic Belt. Geochimica etCosmochimica Acta, 2008, 72(18): 4607~4626
    [45] Mao JW, Zhang Z, and Du AD. Re-Os Isotopic Dating of Molybdenites in the XiaoliugouW(Mo) Deposit in the Northern Qulian Mountains and its Geological Significance.Geochim. Cosmochim. Acta, 1999, 63: 1815~1818
    [46] Mao JW and Li HY. Geology and metallogeny of the Shizhuyuan skarn~greisen deposit,Hunan Province, China. International Geology Review,1996, 38: 1020~1039.
    [47] Mao JW, G. Guy, L. Raimbault and H. Shimazaki. Manganese skarn in the Shizhuyuanpolymetallic deposit, Hunan, China. Resource Geology, 1996, 46: 1~11.
    [48] Mao JW, Wang YT, Lehmann B, et al. Molybdenite Re-Os and albite40Ar/39Ar dating ofCu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenicimplications. Ore Geology Reviews, 2006, 29: 307~324
    [49] Mao JW, Xie GQ, Bierlein F, et al. Tectonic implications from Re-Os dating of Mesozoicmolybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica etCosmochimica Acta, 2008, 72: 4607~4626
    [50] Mao JW, Xie GQ, Guo CL, et al. Spatial-Temporal Distribution of Mesozoic OreDeposits in South China and Their Metallogenic Settings. Geological Journal of ChinaUniversities, 2008, 14: 510~526
    [51] Mao JW, Xie GQ, Pirajno F, et al. 2010. Late Jurassic-Early Cretaceous granitoidmagmatism in Eastern Qinling, central-eastern China:SHRIMP zircon U-Pb ages andtectonic implications. Australian Journal of Earth Sciences, 2010, 57: 51~78
    [52] McDonough WF and Sun SS. The composition of the Earth. Chemical Geology, 1995,120: 223~253
    [53] Meinert LD, Dipple GM and Nicolescu S. World skarn deposits. Economic Geology,100thAnniversary Volume, 2005: 299~236
    [54] Meinert LD, Hefton KK, Mayes D, et al. Geology, zonation and fluid evolution of the BigGossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya. Economic Geology, 1997, 92:509~534
    [55] Meinert LD, Lentz DR, Newberry RJ. Special issue devoted to skarn deposits. EconomicGeology, 2000, 95(6): 1183~1184
    [56] Meinert LD. A review of skarn that contain gold. In: Lentz DR. eds. Mineralizedintrusion-related skarn systems. Quebec. Short Course Series, 1998, 26: 359~414
    [57] Meinert, L.D. 1997. Application of skarn deposit zonation models to mineralexploration[J]. Explore. Mining Geology, 1997, 6(2): 185~208
    [58] Miguel Gaspar, Charles Knaack, Lawrence. Meinert,et al. REE in skarn systems: ALA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica etCosmochimica Acta, 2008, 72: 185~205
    [59] Nakano T, Yoshino T, Shimazaki H and Shimizu M. Pyroxene composition as anindicator in the classification of skarn deposits. Economic Geology, 1994, 89: 1567~1580
    [60] O’Neil JR, Clayton RN and Mayeda TK. Oxygen isotope fractionation in divalent metalcarbonates. J. Chem. Phys., 1969, 51: 5547~5558
    [61] Philip R Whitney, James F Olmsted. Rare earth element metasomatism in hydrothermalsystems: The Willsboro-Lewis wollastonite ores, New York, USA Geochimica etCosmochimica Acta, 1998, 62(17) : 29~65.
    [62] Pons JM, Franchini M, Meinert L, et al.Iron Skarns of the Vegas Peladas District,Mendoza, Argentina. Economic Geology, 2009,104(2): 157~184
    [63] Rollinson HR.Using geochemical data: Evaluation, presentation, interpretation. NewYork: Longman Scientific and Technical Limited, 1993
    [64] Sakai H, Des Maeais DJ, Ueda A et al. Concentrations and isotope ratios of carbon,nitrogen, and sulfur in ocean~floor basalts. Geochim. Cosmochim. Acta, 1984, 48:2433~2442
    [65] Sangster, D.F. The contact metasomatic magnetite deposits of southwestern BritishColumbia: Geological Survey of Canada Bulletin, 1969, 172: 79
    [66] Selby D and Creaser RA. Macroscale NTIMS and Microscale LA–MC–ICP–MS Re–OsIsotopic Analysis of Molybdenite: Testing Spatial Restrictions for Reliable Re–Os AgeDeterminations and Implications for the Decoupling of Re and Os within Molybdenite.Geochimica et Cosmochimica Acta, 2004, 68(19): 3897~3908
    [67] Sheppard, SMF. Characterization and isotopic variations in natural waters. Reviews inMineralogy, 1986, 16: 165~183
    [68] Shirey SB and Walker RJ. Carius Tube Dgestion for Low–blank Rhenium–OsmiumAnalysis. Anal. Chem., 1995, 67: 2136~2141
    [69] Smoliar MI, Walker RJ and Morgan JW. Re–Os ages of Group IIA, IIIA, IVA, and IVBIron Meteorites. Science, 1996, 271: 1099~1102
    [70] Sokolov, G.A., and Grigorev, V.M.. Deposits of iron, in Smirnov, V.I.,ed., Ore deposits ofthe USSR: London, Pittman, 1977, 1: 7~113.
    [71] Stein HJ, Markey RJ, Morgan JW, et al. Highly Precise and Accurate Re–Os Ages forMolybdenite from the East Qinling Molybdenum Belt, Shanxi Province, China. Econ.Geol., 1997, 92: 827~835
    [72] Taylor HP.The application of oxygen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposit. Econ. Geol., 1974, 69: 843~883
    [73] Taylor, B.E., and O’Neil, J.R.. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarnsand associated metamorphic and igneous rocks, Osgood Mountains, Nevada: Contributionsto Mineralogy and Petrology, 1977, 63:1~49
    [74] U.S. Geological Survey, Mineral Commodity Summaries, January 2010[EB/OL]. http://minerals.usgs.gov/minerals/pubs/mcs/2010/Mcs-2010-feore.pdf,2010-05-01
    [75] Whalen JB, Currie KL and Chappell BW. A-type granites: Geochemical characteristics,discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95:407~419
    [76] Whitney P R, Olmsted J F. 1998. Rare earth element metasomatism in hydrothermalsystems: The Willsboro-Lewis wollastonite ores, New York, USA. Geochim CosmochimActa, 1998, 62(17): 2965~2977
    [77] Wilkinson. A review of fluid inclusion constraints on mineralization in the Irish ore fieldand implications for the genesis of sediment-hosted Zn-Pb deposits. Economic Geology,2010, 105: 417~422
    [78] Wright JB. A simple alkalinity ratio and its application to questitions of non-orogenicgranite genesis. Geological Magazine, 1969, 106: 307~384
    [79] Xie GQ, Mao JW, Hu RZ, et al. K-Ar dating,geochemical and Sr~Nd~Pb isotopicsystematics of Paleocene mafic rocks in Central Jiangxi, SE China:Evidence forlithosphere replacement. Geochemical Journal, 2006, 40: 485~500
    [80] Xie GQ, Mao JW, Hu RZ, Li RL, Cao JJ. Discussion on Some Problems of Mesozoic andCenozoic Geodynamics of Southeast China. Geological Review, 2005, (6): 613~620
    [81] Xie GQ, Mao JW, Li RL,et al. Re-Os molybdenite and Ar-Ar phlogopite dating ofCu-Fe-Au-Mo (W) deposits in southeastern Hubei, China. Mineralogy and Petrology,2007, 90: 249~270
    [82] Xie GQ, Mao JW, Li RL,et al.. Re-Os molybdenite and Ar-Ar phlogopite dating ofCu-Fe-Au-Mo (W) deposits in southeastern Hubei, China. Mineralogy and Petrology,2007, 90: 249~270
    [83] Xu G and Lin X. Geology and geochemistry of the Changlongshan skarn iron deposit,Anhui province, China. Ore Geology Reviews, 2000, 16: 91~106
    [84] Xue CJ, Zeng R, Liu SW, et al. Geologic, fluid inclusion and isotopic characteristics ofthe Jinding Zn-Pb deposit, western Yunnan, South China: A review. Ore GeologyReviews, 2007, 31: 337~359
    [85] Zaw K and Singoyi B. Formation of Magnetite-Scheelite Skarn Mineralization atKara,Northwestern Tasmania: Evidence from Mineral Chemistry and Stable Isotopes.Economic Geology, 2000, 95: 1215~1230
    [86] Zhai YS, Xiong YL, Yao SZ, et al. Metallogeny of Copper and Iron Deposits in theEastern Yangtze Carton, East-Central China. Ore Geology Review, 1996, 11: 229~248
    [87] Zhao YM and Li DX. Pb-Zn-Ag-bearing manganoan Skarns of China. Acta GeologicaSinica, 2004, 78(2): 524~528
    [88] Zheng YF. Calculation of oxygen isotope fractionation in hydroxyl~bearing silicate:Earth and Planetary Science Letters, 1993, 120: 247~263
    [89] Zhou XM, Sun T, Shen WZ, et al. Petrogenesis of Mesozoic granitoids and volcanicrocks in South China: A response to tectonic evolution. Episodes, 2006, 29: 26~33
    [90] Zindler A and Hart SR. Chemical Geodynamics. Annual Reviews of Earth and PlanetarySciences, 1986, 14: 493~571
    [91]毕献武,胡瑞忠,彭建堂,等.黄铁矿微量元素地球化学特征及其对成矿流体性质的指示.矿物岩石地球化学通报,2004,23(1):1~4
    [92]常印佛,刘湘培,吴昌言.长江中下游地区铜铁成矿带.北京:地质出版社,1999
    [93]陈甲斌.金融危机背景下中国铁矿资源的思考.矿业研究与开发,2010,(01):107~110
    [94]陈江峰,郭新生,汤加富,等. 1999.中国东南地壳增长与Nd同位素模式年龄.南京大学学报(自然科学版),1999,(06):7~16
    [95]陈骏.柿竹园矽卡岩型钨锡钼铋矿床主要造岩矿物中REE的分布特征及成岩意义.地球化学,1994,(S1):84~92
    [96]陈述荣,谢家亨,许超南,等.福建龙岩马坑铁矿床成因探讨.地球化学,1985,(4):350~357
    [97]陈述荣,谢家亨,许超南,等.马坑铁矿区火山岩与铁矿原始铁质来源关系的初步探讨.地质科技情报,1982,(S1):69~72.
    [98]陈越升.对福建马坑铁矿床控矿构造特征的新认识.金属矿山,2010,(2):95~99
    [99]陈越升.马坑铁矿开发过程中对矿床成因的新认识.金属矿山,2002,317(11):50~59
    [100]陈毓川,朱裕生.中国矿床成矿模式.北京:地质出版社,1993
    [101]地科院情报所.国外八个富铁矿区勘查或扩大的历史.北京:地质出版社,1977
    [102]地矿所第三铁矿队.闽西南某些燕山期花岗岩的岩石特征及其与铁矿成矿关系的探讨.内部报告,1978
    [103]丁振举,刘丛强,姚书振,等.东沟坝多金属矿床矿质来源的稀土元素地球化学限制.吉林大学学报(地球科学版),2003,(04):437~442
    [104]丁振举,刘丛强,姚书振,等.海底热液沉积物稀土元素组成及其意义.地质科技情报,2000a,(01):27~30+34
    [105]丁振举,刘丛强,姚书振,等.海底热液系统高温流体的稀土元素组成及其控制因素.地球科学进展,2000b,15(3):307~312
    [106]董方浏,莫宣学,喻学惠,等.云南永平卓潘新生代碱性杂岩体的元素地球化学和Nd-Sr-Pb同位素特征及地质意义.岩石学报,2007,(5):986~994
    [107]董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报,2007,81(11):1449~1461
    [108]杜安道,屈文俊,王登红,等.辉钼矿亚晶粒范围内Re和187Os的失耦现象.矿床地质,2007,26(5):572~580
    [109]丰成友,佘宏全,张德全等.闽粤赣邻接区主要金属矿床成矿规律及找矿评价.北京:地质出版社,2009
    [110]福建省地质八队.福建龙岩马坑铁矿矿床地质特征及其成因探讨.福建地质,1982(1):2~31+94~106.
    [111]福建省地质矿产勘查开发局.福建省矿床成矿系列、成矿规律、成矿模式和成矿预测(研究报告).福州:内部报告,2002
    [112]高庚,徐兆文,杨小男,等.安徽铜陵白芒山辉石闪长岩体的成因: Sr-Nd-Pb-O同位素制约.南京大学学报(自然科学),2006,42(3):269~279
    [113]葛朝华,韩发,邹天人,等.马坑铁矿火山沉积成因探讨.中国地质科学院院报,1981,(00):47~69
    [114]葛朝华,韩发.马坑铁矿床稀土元素地球化学研究.矿床地质,1984,3(1):1~10
    [115]顾雪祥,刘丽,董树义,等.山东沂南金铜铁矿床中的液态不混溶作用与成矿:流体包裹体和氢氧同位素证据.矿床地质,2010,29(1):43~57
    [116]桂林冶金地质研究所.世界铁矿概况.北京:地质出版社,1976
    [117]郭吉保,钱雅倩,黄耀生.安庆矽卡岩矿床的氧同位素交换动力学.火山地质与矿产,2000,(01):23~29
    [118]潘廓祥,林永生.从马坑式铁矿科研成果看某些测试资料在应用中的多解性.福建地质,1982,(01):80-88
    [120]国土资源部门户网站http://www.mlr.gov.cn/,2010,1-15
    [121]韩发,葛朝华.福建马坑铁矿床海相火山热液-沉积成因-地质地球化学特征.中国地质科学院矿床地质研究所所刊,1983,7(2):1~118
    [122]韩发,葛朝华.马坑铁矿-一个海相火山热液-沉积型矿床.中国科学(B辑化学生物学农学医学地学),1983,(05):438~446
    [123]韩发,葛朝华,谭惠静,等.闽南马坑等地钙蔷薇辉石及锰三斜辉石.地质论评,1980,(03):208~216
    [124]洪大卫,陈学正,李纯杰,等.福建龙岩莒舟-大洋花岗岩体造岩矿物的标型特征和形成条件.地质学报,1980,54(1):52~69
    [125]洪大卫,王式洸,韩宝福,等.碱性花岗岩的构造环境分类及其鉴别标志.中国科学B辑,1995,25(4):418~428
    [126]侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,2009,28(4):481~492
    [127]胡圣标,何丽娟,汪集旸.中国大陆地区大地热流数据汇编(第三版).地球物理学报,2001,(05):611~626
    [128]华仁民,陈培荣,张文兰,等.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,2005,11(3):291~304
    [129]华仁民,毛景文.试论中国东部中生代成矿大爆发.矿床地质,1999,18(4):300~307
    [130]黄有德,李绥远.中国东部地区矽卡岩型铁矿成矿控制和富集条件.冶金工业部地质研究所学报,1983,3:126~139
    [131]贾润幸,方维萱,赫英,等.个旧超大型锡多金属矿稀土元素地球化学特征.中国稀土学报,2005,(2):228~234
    [132]姜益丰.马坑铁矿中矿段矿床成因浅析.矿业快报,2007,(07):69~71+77
    [133]蒋少涌,赵葵东,姜耀辉,等.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论.高校地质学报,2008,14(4):496~509
    [134]李超,屈文俊,杜安道.大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究.矿床地质,2009,28(5):707~712
    [135]李厚民,王瑞江,肖克炎,等.我国铁矿找矿潜力分析.矿物学报,2009a,(S1):537~538
    [136]李厚民,叶会寿,王登红,等.豫西熊耳山寨凹钼矿床辉钼矿铼–锇年龄及其地质意义[J].矿床地质,2009b,28(2):133~142
    [137]李厚民,王瑞江,肖克炎,等.立足国内保障国家铁矿资源需求的可行性分析.地质通报,2010,(01):1~7
    [138]李厚民,王瑞江,肖克炎,等.中国超贫磁铁矿资源的特征、利用现状及勘查开发建议-以河北和辽宁的超贫磁铁矿资源为例.地质通报,2009c,(01):85~90
    [139]李良林,周汉文,陈植华,等.福建太姥山地区花岗岩岩石地球化学特征及其地质意义.岩石矿物学杂志,2011,30(4):593~609
    [140]李龙,郑永飞,周建波.中国大陆地壳铅同位素演化的动力学模型.岩石学报,2001,17(1):61~68
    [141]李荫清,陈伟十.马坑矿床流体包裹体研究及成矿作用探讨.中国地质科学院矿床地质研究所所刊,1982,(3):91~101
    [142]李四光.地质力学概论.北京:科学出版社,1973
    [143]梁士奎,秦元喜,薛虎.闽西南马坑式铁矿的区域地质背景及控矿构造的力学分析.中国地质科学院南京地质矿产研究所所刊,1982,(02):15~29
    [144]梁婷,王登红,屈文俊,等.广西大厂锡多金属矿床方解石的REE地球化学特征.岩石学报,2007,(10):2493~2503
    [145]梁祥济,曲国林.福建马坑铁矿床形成温度和压力实验的初步研究.中国地质科学院院报,1982,(4):83~94
    [146]梁祥济,王福生.层控交代型矽卡岩金矿床形成机理的实验研究.黄金地质,2000,(4):1~13
    [147]梁祥济,缪婉萍,张桂兰,等.福建马坑矽卡岩分带的模拟实验.长春地质学院学报,1981,(02):11~25.
    [148]梁祥济,曲国林.福建马坑铁矿床形成的温度和压力实验的初步研究,中国地质科学院文集(1981).北京:地质出版社,1983
    [149]林朝霞.马坑铁矿地质特征及找矿方向探讨.矿业快报,2008,(10):84~86.
    [150]林新多,许国建.岩浆成因矽卡岩的某些特征及形成机制初探.现代地质,1989,(03):351~358
    [151]凌其聪,刘丛强.层控矽卡岩及有关矿床形成过程的稀土元素行为-以安徽冬瓜山矿床为例.岩石学报,2003,(1):192~200
    [152]刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报,1987,(04):345~352
    [153]刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999
    [154]刘斌.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用.地质论评,2001,(06):617~622
    [155]刘锋,杨富全,李延河,等.新疆阿勒泰市阿巴宫铁矿磷灰石微量和稀土元素特征及矿床成因探讨.矿床地质,2009,(03):251~264.
    [156]刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,2004,(01):1~10
    [157]刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,1997,(04):448~456
    [158]刘劲鸿.福建马坑铁矿辉石的成因矿物学研究.福建地质,1993,4: 134~136
    [159]刘劲鸿.福建马坑铁矿中角闪石的谱学特征及成因意义.矿物岩石,1988,(01):18~28
    [160]刘军,靳淑韵.中国铁矿资源的现状与对策.中国矿业,2009,(12):12~19
    [161]刘武刚,陈友智.马坑铁矿中矿段地质特征及成因认识.有色金属(矿山部分),2006,(02):14~16
    [162]刘裕庆,宋鹤斌(原矿床所同位素组).闽西南-粤东九个铁矿床硫同位素组成的研究及成因探讨.矿产资源研究所内部资料,1978
    [163]刘占魁,王烨.我国铁矿石资源可持续发展战略的探.中国矿业,2010,(01):43~45
    [164]卢华复,贾东,郭令智,等.闽台微大陆的组成与碰撞史.北京:冶金工业出版社,1993
    [165]卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社,2004
    [166]罗铭玖,张辅民,董群英,等.中国钼矿床.郑州:河南科学技术出版社,1991
    [167]骆华宝,王永基,胡达骧,等.我国铁矿资源状况.地质论评,2009,55(6):885~891
    [168]骆金锭,鄢庆南.闽西南马坑式铁矿主矿体的层位和时代.地质科学,1980,(04):331~339
    [169]马芳,蒋少涌,姜耀辉,等.宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究.岩石学报,2006,(10):2581~2589
    [170]马建明,刘树臣,崔荣国.国内外铁矿石供需形势.中国金属通报,2008,32(2):30~31
    [171]马建明,吴初国.我国未利用铁矿的资源形势分析.国土资源情报,2009,4:10~13
    [172]毛建仁,陈荣,李寄隅,等.闽西南地区晚中生代花岗质岩石的同位素年代学、地球化学及其构造演化.岩石学报,2006,22(06):1723~1734
    [173]毛建仁,胡青,许乃政,等.闽西南地区早中生代汤泉岩体同位素年代学、地球化学特征及其构造意义.地质学报,2003,(3):386
    [174]毛建仁,陶奎元,李寄嵎,等.闽西南晚中生代四方岩体同位素年代学、地球化学及其构造意义.岩石学报,2002,(04):449~458
    [175]毛建仁,陶奎元,谢芳贵,等.闽西南地区成岩成矿作用与构造环境.岩石矿物学杂志,2001,(3):329~336
    [176]毛建仁,许乃政,胡青,等.福建省上杭-大田地区中生代成岩成矿作用与构造环境演化.岩石学报,2004,20(2):285~296
    [177]毛建仁,许乃政,胡青,等.闽西南地区中生代花岗闪长质岩石的同位素年代学、地球化学及其构造演化.吉林大学学报:地球科学版,2004,34(1):12~20
    [178]毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,2002,(02):121~128
    [179]毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区.矿床地质,1999,18(4):291~299
    [180]毛景文,李红艳,王平安.湖南柿竹园钨多金属矿床中的锰质矽卡岩.矿床地质,1994,13(1):38~48
    [181]毛景文,邵拥军,谢桂青,等.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,2009a,28(2):109~119
    [182]毛景文,谢桂青,程彦博.华南地区中生代主要金属矿床模型.地质论评,2009b,55(3):346~354
    [183]毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报,2007,23(10):2329~2338
    [184]毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,2008,14:510~526.
    [185]毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,2004,11(1):45~55
    [186]毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,2005,21(1):169~188
    [187]毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,2011,(05):636~658
    [188]毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区.矿床地质,1999,18(4):291~299
    [189]毛景文,李红艳,宋学信,等.湖南柿竹园钨锡钼铋多金属矿床地质和地球化学.北京:地质出版社,1998
    [190]毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨.矿床地质,2000,19(4):289~296
    [191]毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,2004,11(1):45~55
    [192]毛景文.桂北BT锡矿稀土元素特征及其与成矿的关系.河北地质学院学报,1987,10(3):273~287
    [193]聂凤军,张万益,杜安道,等.内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义.地球学报,2007,28(4):315~323
    [194]欧阳自远.中国的矽卡岩型矿床.地质科学,1958,(2):2~8
    [195]潘廓祥,林永生.从马坑式铁矿科研成果看某些测试资料在应用中的多解性.福建地质,1982,(01):80~88
    [196]裴荣富,王永磊,王浩琳.南岭钨锡多金属矿床成矿系列与构造岩浆侵位接触构造动力成矿专属.中国地质,2009,36(3):483~489
    [197]邱检生,肖娥,胡建,等.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报,2008,24(11):2468~2484
    [198]邱瑞龙.贵池铜山铜矿矽卡岩稀土元素地球化学.地质学报,1987,61(1):91~100
    [199]沈承衍,王守伦,陈森煌.世界黑色金属矿产资源.北京:地质出版社,1995
    [200]沈渭洲,朱金初,刘昌实,等.华南基底变质岩的Sm-Nd同位素及其对花岗岩类物质来源的制约.岩石学报,1993,(02):115~124
    [201]世界铁矿石分布状况与发展趋势.中国矿业网,http://www.chinamining.com.cn/news,2010
    [202]舒良树,周新民,邓平,等.南岭构造带的基本地质特征.地质论评,2006,52(2):251~265
    [203]束学福.安庆矽卡岩型铁铜矿床地质地球化学特征及其铁质来源研究.矿物岩石地球化学通报,2004,23(3):219~224
    [204]宋彪,张玉海,万渝生,简平.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,2002,48(增刊):26~30
    [205]苏慧敏,谢桂青,孙嘉,等.江西铜坑嶂钼矿和红山铜矿含矿斑岩锆石U-Pb定年及其地质意义.岩石学报,2010,26(3): 819~829
    [206]陶建华.福建省推覆构造的形成与演化,中国大陆构造论文集.武汉:中国地质出版,1992
    [207]陶建华.福建推覆构造研究与找矿突破.福建地质,2008,27(2):105~124
    [208]陶奎元,毛建仁,刑光福,等.中国东部燕山期火山-岩浆大爆发.矿床地质,1999,18(4):316~322
    [209]田世洪,丁悌平,侯增谦,等.安徽铜陵小铜官山铜矿床稀土元素和稳定同位素地球化学研究.中国地质,2005,(04):80~89
    [210]涂光炽.矿床地球化学.北京:地质出版社,1997
    [211]王彬,舒良树,杨振宇.赣闽粤地区早、中侏罗世构造地层研究.地层学杂志,2006,30(1):42~49
    [212]王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化.地学前缘,2003,10:209~220
    [213]王登红,陈郑辉,陈毓川,等.我国重要矿产地成岩成矿年代学研究新数据.地质学报,2010,84(7):1~11
    [214]王东坡,尚浚,蔡维智,等.福建马坑式铁矿沉积形成作用的古地理及古构造特征.长春地质学院学报,1982,(3):43~58
    [215]王莉娟,王京彬,王玉往,等.内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学.岩石学报,2002,(4):575~584
    [216]王培宗,陈耀安,曹宝庭,等.福建省地壳-上地幔结构及深部构造背景的研究.福建地质,1993,(02):79~158
    [217]王长明,张寿庭,邓军,等.内蒙古黄岗梁锡铁多金属矿床层状矽卡岩的喷流沉积成因.岩石矿物学杂志,2007,(05):409~417
    [218]王中刚,于学元,赵振华. REE稀土元素地球化学.北京,科学出版社,1989
    [219]文臣,王文斌,季绍新,等.从矿石结构构造看马坑式铁矿的成因.中国地质科学院南京地质矿产研究所所刊,1982,(02):52~63.
    [220]吴凎国,张达,陈柏林,等.中国东南大陆中生代构造域的转换及其与成矿的关系-以闽西南地区为例.地质科学-中国地质大学学报,2000,25(4):390~396
    [221]吴言昌.论岩浆矽卡岩——一种新类型矽卡岩.安徽地质,1992,(01):12~26+81
    [222]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49(16):1589~1604
    [223]肖成东,刘学武.东蒙地区矽卡岩石榴子石稀土元素地球化学及其成因.中国地质,2002,(3):311~316
    [224]谢承祥,李厚民,王瑞江,等.中国已查明的铁矿资源的结构特征.地质通报,2009,(01):80~84
    [225]谢承祥,李厚民,王瑞江,等.中国查明铁矿资源储量的数量、分布及保障程度分析.地球学报,2009,(03):387~394
    [226]谢桂青,毛景文,胡瑞忠,等.中国东南部中-新生代地球动力学背景若干问题的探讨.地质论评,2005,(6):613~620
    [227]谢桂青,毛景文,李瑞玲,等.鄂东南地区大型矽卡岩型铁矿床金云母40Ar-39Ar同位素年龄及其构造背景初探.岩石学报,2008,24(8):1917~1927
    [228]谢桂青,赵海杰,赵财胜,等.鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义.矿床地质,2009,28(3):227~239
    [229]谢家亨,许超南,郑颍灿,等.福建省龙岩市马坑铁矿床地质特征及成矿地质条件.福建省地质矿产局闽西地质大队,内部报告,1986
    [230]徐林刚,毛景文,杨富全,等. 2007a.新疆富蕴县蒙库铁矿地质、地球化学特征.岩石学报,23(10):2653~2664
    [231]徐林刚,毛景文,杨富全,等.新疆蒙库铁矿床矽卡岩矿物学特征及其意义.矿床地质,2007b,26(4):455~463
    [232]徐夕生,谢昕.中国东南部晚中生代-新生代玄武岩与壳幔作用.高校地质学报,2005,11(3):318~334
    [233]徐晓春,赵丽丽,谢巧勤,等.铜陵狮子山矿田金矿床和铜矿床矿石稀土元素地球化学.高校地质学报,2009,(1):35~47.
    [234]许靖华,孙枢,李继亮.华南板块的旋转运动.科学通报,1992,8:724~726
    [235]许乃政,毛建仁,叶海敏,等.福建省永定县大排铅锌矿床成矿地质特征及找矿新进展.地质与勘探,2008,44(4):20~23
    [236]薛虎,梁士奎.福建马坑铁矿床的构造研究.中国地质科学院南京地质研究所所刊,1982,3(2):30~49
    [237]闫峻,陈江峰,喻钢,等.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,2003,9(2):195~206
    [238]杨丹,徐文艺,崔艳合,等.二维气相色谱法测定流体包裹体中气相成分.岩矿测试,2007,26(6):451~454
    [239]杨富全,毛景文,柴凤梅,等.新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用.矿床地质,2008,27(6):659~680
    [240]杨富全,毛景文,徐林刚,等.新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示.岩石学报,2007,(10):2443~2456
    [241]杨光树,温汉捷,胡瑞忠,等.安庆矽卡岩型铁铜矿床流体包裹体研究.地球化学,2008,(1):27~36
    [242]杨志.我国东部地区矽卡岩铁矿的成岩成矿时代.地质与勘探,1983,7:26~31
    [243]姚培慧.中国铁矿志.北京:冶金工业出版社,1993
    [244]阴江宁,肖克炎,邹伟,等.中国铁矿床品位-吨位模型.矿床地质,2008,27(6):782~790
    [245]余金杰,毛景文.宁芜玢岩铁矿磷灰石的稀土元素特征.矿床地质,2002,(01):65~73
    [246]袁峰,周涛发,刘晓东,等.安徽安庆铜矿床稀土元素地球化学研究.中国稀土学报,2002,(3):199~202
    [247]张承帅.福建马坑铁钼多金属矿床地质特征研究.矿床地质,2010,29(增刊):123~124
    [248]张承帅,李莉,李厚民.世界铁资源利用现状述评.资源与产业,2011,3:34-43
    [249]张承帅,苏慧敏,于淼,等.福建龙岩大洋-莒舟花岗岩锆石U-Pb年龄和Sr-Nd-Pb同位素特征及其地质意义. 2012,28(1):225-242
    [250]张达.闽西南地区构造演化与锡多金属区域成矿作用:[博士学位论文].北京:中国地质科学院,1999
    [251]张东阳.西天山晚古生代成矿斑岩的岩石成因和成矿地质背景研究[M].北京:中国地质大学(北京),2011
    [252]张乾,潘家永.接触交代矽卡岩型多金属矿床铅源新认识.地质论评,1994,40(1):330~339
    [253]张志欣,杨富全,柴凤梅,等.新疆阿尔泰乌吐布拉克铁矿床稀土元素地球化学研究.矿床地质,2010,30(01):83~101.
    [254]赵斌,Barton MD.接触交代矽卡岩型矿床中石榴子石和辉石成分特点及其与矿化的关系.矿物学报,1987,7(1):1~8
    [255]赵斌,李统锦,李昭平.矽卡岩形成的物理化学条件实验研究.地球化学,1983,3:256~267
    [256]赵斌,李院生,赵劲松.岩浆成因矽卡岩的包裹体证据.地球化学,1995,(02):198~200+202
    [257]赵斌,赵劲松,张重泽,等.岩浆成因矽卡岩的实验证据.科学通报,1993,38(21):1986~1989
    [258]赵斌,赵松,刘海臣.长江中下游若干Cu (Au), Cu-Fe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学.地球化学,1999,28(2):113~125
    [259]赵斌.中国主要矽卡岩及矽卡岩型矿床.北京:科学出版社,1989
    [260]赵海杰,毛景文,向君峰,等.湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征.岩石学报,2010,26(3):768~784
    [261]赵建安.中国利用周边国家铁矿资源的潜力与对策.资源科学,2009,31(10):1640~1646
    [262]赵劲松,邱学林,赵斌,等.大冶-武山矿化矽卡岩的稀土元素地球化学研究.地球化学,2007,(4):400~412
    [263]赵劲松,赵斌,李兆麟.大冶铁矿床矽卡岩矿物中熔融包裹体的发现及其地质地球化学意义.地球化学,2000,5:500~503
    [264]赵希林,毛建仁,陈荣,等.闽西南地区才溪岩体锆石SHRIMP定年及其地球化学特征.岩石矿物学杂志,2007b,26(3): 223~231
    [265]赵希林,毛建仁,陈荣. 2008.闽西南地区紫金山岩体锆石SHRIMP定年及其地质意义.中国地质,35(4):590~597.
    [266]赵希林,毛建仁,叶海敏,等.福建省上杭地区晚中生代花岗质岩体黑云母的地球化学特征及成因意义.矿物岩石地球化学通报,2009,28(2):162~168
    [267]赵希林,毛建仁,陈荣.闽西南地区才溪岩体锆石SHRIMP定年及其地球化学特征.岩石矿物学杂志,2007a,26(3):223~231
    [268]赵希林,毛建仁,陈荣.闽西南地区紫金山岩体锆石SHRIMP定年及其地质意义.中国地质,2008,35(4):590~597.
    [269]赵希林,毛建仁.福建省上杭地区晚中生代花岗质岩体黑云母的地球化学特征及成因意义.矿物岩石地球化学通报,2009,28(2):162~168
    [270]赵希林,毛建仁.闽西南地区燕山晚期花岗岩黑云母特征及成因意义.资源调查与环境,2010,(01):12~18.
    [271]赵希林.福建省上杭地区中生代花岗岩体的年代学-岩石学-地球化学特征及其地质意义:[硕士学位论文].北京:中国地质科学院,2007b
    [272]赵一鸣,李大新.中国矽卡岩矿床中的角闪石.矿床地质,2003,(4):345~359
    [273]赵一鸣,谭惠静,许振南,等.闽西南地区马坑式钙矽卡岩型铁矿床.中国地质科学院矿床地质研究所所刊,1983,(1):1~141
    [274]赵一鸣,谭惠静,许振南,等.闽西南地区马坑式层控钙矽卡岩型铁矿床的生成地质条件,交代矿化特征和找矿方向.北京:地质出版社,1980a
    [275]赵一鸣,谭惠静,袁润广,等.含氯角闪石在闽西南矽卡岩铁矿床中的发现及其地质意义.地质论评,1980b,26(4):300~306
    [276]赵一鸣,张轶男,林文蔚.我国矽卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系.矿床地质,1997,(4):318~329
    [277]赵一鸣,李大新.中国矽卡岩矿床中的角闪石.矿床地质,2003,22(4):345~358
    [278]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床.北京:地质出版社,2012
    [279]赵一鸣,林文蔚,毕承思,等.中国含金矽卡岩矿床的分布和主要地质特征.矿床地质,1997,16(3):193~203
    [280]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床.北京:地质出版社,1990
    [281]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床基本地质特征.中国地质科学院院报,1986,14:59~67
    [282]赵一鸣,谭惠静,孙静华.福建马坑、阳山铁矿床的矽卡岩分带特征及其与矿化分带的关系.岩矿测试,1982,(01):11~22
    [283]赵一鸣,王大畏,张德全,等.内蒙古东南部铜多金属成矿地质条件及找矿模式.北京:地震出版社,1994
    [284]赵一鸣,吴良士,白鸽,等.中国主要金属矿床成矿规律.北京:地质出版社,2004
    [285]赵一鸣,张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价.北京:地震出版社,1997
    [286]赵一鸣,张轶男,毕承思,等.安微淮北三铺地区镁矽卡岩金(铜、铁)矿床生成地质环境、分带和流体演化.矿床地质,1990,18(1):1~10
    [287]赵一鸣.环太平洋地区的矽卡岩矿床.矿床地质,1991,10(1):41~51
    [288]赵一鸣.矽卡岩矿床研究的某些重要新进展.矿床地质,2002,21(2)1:13~120+136
    [289]赵永鑫.长江中下游地区接触带铁矿床形成机理.武汉:中国地质大学出版社,1992
    [290]赵振华.微量元素地球化学.北京:科学出版社,1997
    [291]郑建民.冀南邯邢地区夕卡岩铁矿成矿流体及成矿机制:[博士学位论文].北京:中国地质大学(北京),2007
    [292]郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000
    [293]中国地质科学院矿产资源研究所.中国东部区域物探队地质构造矿产预测研究报告.北京:内部报告,1994
    [294]中国科学院华南富铁科学研究队.海南岛地质与石碌铁矿地球化学.北京:科学出版社, 1986
    [295]中国铁合金在线,http://news.cnfol.com/061009/101,1705,2312970,00.shtml
    [296]周新民.对华南花岗岩研究的若干思考.高校地质学报,2003,9(4):556~565
    [297]周振华,吕林素,杨永军,等.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约.岩石学报,2010,26(12):3521~3537
    [298]周振华,王挨顺,李涛.内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究.矿床地质,2011,(05):867~889
    [299]朱履熹,朱家珍,薛金有,等.福建马坑铁矿成矿作用的初步探讨.上海地质,1982,(02):21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700