用户名: 密码: 验证码:
矿业废弃地植物对重金属的积累及其机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复(phytoremediation)是指利用植物清除土壤和水体中的污染物或降低污染物的毒性,使被污染环境得到恢复的一种技术。植物采矿(phytomining)是指利用超量积累植物从富含金属的土壤中提取金属并通过焚烧获得“生物矿砂”进一步提炼金属的技术。超量积累植物是指能超量吸收并积累重金属的植物。超量积累植物是植物修复和植物采矿的基础。本研究的主要目的是筛选出具有重金属耐性或超积累特性的植物,并研究其耐性或超积累机理,为重金属污染土壤和水体的植物修复提供理想的植物材料和可靠的理论依据。
     为了全面了解湖南湘西矿区土壤的重金属污染程度及污染区的植被组成和植物对重金属的积累特性,并筛选出理想植物修复材料,我们采用样方法于2003年秋、冬两次在湘西矿区进行调查采样。共调查4个地点,采集土壤样品20份,植物样品363份,植物样品分别属于125种、42科、102属。结果表明,植物叶片(或地上部)镉、铅、锌和铜的平均含量分别为19、81、637和8 mg kg~(-1)。镉含量最高的是半边莲(Lobelia chinensis)地上部,达到287 mg kg~(-1),其次为龙葵(Solanum nigrum)、满天星(Hydddrocotyle sibthorpioides)和美洲商陆(Phytolacca americana)叶片的镉含量分别达到99、75和71 mg kg~(-1)。在调查区内,一些重金属含量较高的优势和次优势植物如美洲商陆、马兰(Kalimeris indice)、龙葵等可以用于重金属污染土壤的植物提取;一些重金属含量较低的优势和次优势植物如白茅(Imperata cylindrical)、五节芒(Miscanthus floridulus)等因为有发达的根系可以用于污染土壤的植物固定。
     为了进一步证实半边莲、龙葵和美洲商陆对镉的积累能力,我们于2004年7-10月再次在湘西地区重金属污染严重的矿业废弃地,对这三种植物和相应的土壤样品进行了全面调查和元素分析,共采集美洲商陆、龙葵、半边莲样品数量分别为43、26、11份,相应的土壤样品65份。分析结果表明,美洲商陆叶、龙葵叶和半边莲地上部镉的平均含量分别为55.2、36.9和141 mg kg~(-1)。所有样品中镉含量最高的是大田湾D17号美洲商陆叶的样品,镉含量达到402 mg kg~(-1)。三种植物叶或地上部镉含量与土壤中镉含量呈显著正相关。美洲商陆、龙葵、半边莲植株中镉的平均富积系数分别为1.19、2.63、1.63。室内溶液培养的结果显示,美洲商陆叶、龙葵叶及半边莲地上部镉含量最高分别达到了1150 mg kg~(-1)、1110 mg kg~(-1)、414 mg kg~(-1)。野外采集和室内水培结果都表明美洲商陆、龙葵和半边莲是三种新的镉超量积累植物。相比而言,三种植物中美洲商陆生物量大、镉含量高、耐性也强,而且对锌、锰、铅、铜也有很强的耐性和积累能力,更重要的是美洲商陆具有肉质化的宿根,能进行营养繁殖,种植一季可收获多茬,可能更适合于重金属复合污染土壤的植物修复。
     对野外34个样点的美洲商陆根、茎和叶及相应土壤样品锰含量进行分析,发现美洲商陆对锰也有很强的耐性和积累能力。34个不同采样点的美洲商陆叶片锰的平均含量为2020 mg kg~(-1),其中大田湾Ⅱ样区的D26号美洲商陆样品叶片中的锰含量最高,为13400 mg kg~(-1)。相关性分析的结果表明,美洲商陆叶片中锰含量与相应土壤中总锰的含量在对数范围内呈显著正相关。此外,美洲商陆叶片对锰的平均积累因子为0.58,变化范围为0.60-3.90。水培试验结果也表明,在锰浓度为10 mM的营养液中生长15天的美洲商陆幼苗其叶片中锰含量可达到11600 mg kg~(-1)。再生苗水培试验也表明,在锰浓度为5mM的营养液中培养90天的美洲商陆,其叶片锰含量也可达11600mg kg~(-1),而且刈割后培育出的再生苗在锰浓度同样为5mM的处理液中生长24天,其叶片中锰含量还高达9700 mg kg~(-1),该处理的三生苗叶片中的锰含量仍然高达10200 mg kg~(-1)。这些结果说明,美洲商陆也是一种锰的超量积累植物。由于美洲商陆同时具有镉和锰超积累特性,并能进行营养繁殖再生新植株,因此在植物修复实践中具有重要的应用价值,并且也是一种研究植物对镉和锰吸收及积累机理的好材料。
     为了探讨美洲商陆对镉的吸收方式,我们采用水培法,比较了吉首和怀化两美洲商陆种群对镉处理的响应。同时还采用不同浓度的外源ABA和代谢抑制剂NaN_3分别与50μM镉对两种群美洲商陆进行复合处理,并分析了植物根、茎、叶的干重及镉含量。结果表明,镉处理15天显著抑制吉首和怀化两种群的生长,并且相同浓度镉处理下,两种群根、叶的干重没有显著差异,吉首种群根的镉含量显著低于怀化种群,而叶的镉含量显著高于怀化种群。外源ABA和NaN_3的加入,显著抑制了美洲商陆对镉的吸收,暗示美洲商陆对镉的吸收可能包含了被动吸收和主动吸收两个过程。
     为了弄清美洲商陆吸收和积累镉、锰之间的关系,以及镉/锰交互处理对美洲商陆生长和镉、锰吸收的影响,对野外美洲商陆叶片中元素含量进行相关性分析。结果表明,Cd含量跟Zn和Cu的含量成显著正相关,而跟Mg成显著负相关;Mn含量与Mg、Ni含量成显著正相关而与Ca成显著负相关。采用水培法,进行镉/锰交互处理,分析了美洲商陆生长及镉、锰的含量。结果表明锰能缓解镉对美洲商陆生长的抑制,缓解镉对叶绿素a的破坏,降低美洲商陆对镉的吸收和积累。这说明Cd、Mn和Mg在美洲商陆中可能共用了某些吸收或运输系统。
     美洲商陆叶片中镉、锰含量与硫含量在对数范围内成显著正相关,这说明美洲商陆叶片中可能存在某种含硫化合物参与了镉、锰的螯合解毒。采用水培法分别进行镉、锰处理,分析了美洲商陆根、叶中游离氨基酸的含量,但没有显著变化。随镉处理浓度增加,美洲商陆根和叶中非蛋白巯基和蛋白巯基含量都显著增加,而还原型谷胱甘肽和氧化型谷胱甘肽含量显著减少。此外,随锰处理浓度增加美洲商陆中根、叶中游离氨基酸含量没有显著变化,蛋白巯基逐渐减少,非蛋白巯基和GSH含量逐渐增加。推测镉、锰在美洲商陆中的解毒可能与某种含巯基的化合物有关,并且二者的解毒机制是有差异的。
     此外,我们在吉首市峒河下游污染河段发现了以龙须眼子菜(Potamogeton pectinatus)和竹叶眼子菜(Potamogeton malaianus)为优势植物的沉水植物群落。2004年夏季,分别在10个不同样点采集了该两种植物、河床底泥和水的样品并进行了元素含量分析。结果表明,调查区内河水和底泥的重金属含量均超过了国家环保总局规定的土壤和水的生态质量标准。植物中重金属含量与河水和底泥中重金属含量变化趋势一样,从上游至下游有增加的趋势。两种植物相比,龙须眼子菜叶中镉、锰的平均含量高于竹叶眼子菜,而铜、铅和锰的含量没有显著差异。除铅以外,植物中重金属的含量与水中的重金属含量呈显著相关,而与底泥则没有显著的相关性。室内浸提实验结果表明,龙须眼子菜对镉、铅、铜、锌和锰的平均转移效率分别达到84%、90%、91%、77%和84%。龙须眼子菜具有很强的转移水中重金属的能力,可以作为水体重金属污染的生物监测器,也可直接用于污染水源的植物修复。
     为了进一步评价龙须眼子菜在水污染控制与治理中的应用价值,我们采用室内浸提的方法研究了龙须眼子菜对镉、铅吸附的一般特征。结果表明,龙须眼子菜对镉、铅的吸附速率很快,大约20分钟就能达到吸附平衡,并且对镉、铅的最大吸附量分别达到32368、24776 mg kg~(-1)。龙须眼子菜对镉、铅吸附的时间动力学特征符合假二次方程,吸附的浓度动力学特征符合Langmuir方程。不同温度、不同pH值对龙须眼子菜吸附镉、铅离子的影响结果表明,与5℃、10℃、30℃处理相比,20℃时龙须眼子菜对镉、铅的吸附能力最强。在pH值3-7范围内,龙须眼子菜对镉的吸附随pH值升高而减少,对铅的吸附随pH值升高而增加。在0.5-10 g/L的盐度范围内,随着盐度的增加龙须眼子菜对镉吸附减少,但对铅的吸附却增加。由于龙须眼子菜对温度、酸碱度、盐度适应范围也很广,因此适宜用于各种复杂的污染水体的植物修复。
Recently, there is considerable interest in developing cost—effective,environmentally friendly and plant-based technologies for the remediation of soils andwaters contaminated with heavy metals. This technology is termed phytoremediation.The technique of phytomining involves the use of hyperaccumulator plants to growand concentrate a metal. Subsequently, the crop is harvested and the metal exteracted.Hyperaccumulator plants were originally defined by Brooks et al. as taxa containing>1000 mg kg~(-1)(ppm) Ni in their dry biomass. The extreme level of metal tolerance invascular plants is hyperaccumulation. Hyperaccumulators are defined as higher plantspecies whose shoots contain>100 mg kg~(-1) Cd,>1000 mg kg~(-1)Ni, Pb and Cu, or>10 000 mg kg~(-1)Zn and Mn when grown in metal-rich soils. Tolerance and metalaccumulation are two essential characteristics required for phytoremediation andphytomining. Hyperaccumulator is the most ideal plant used for phytoremediation andphytomining. So the present investigation aims to identify plant species that have anability to successfully grow and reproduce in adversely impacted mining environment,and to asses their metal accumulation capacities, and then to study the mechanisms ofmetal accumulation in plants. This information would be helpful in determining ifthose plant species are suitable for ecosystem recovery on mining areas andphytoremediation of metal-contaninated soils and water.
     To investigate the plant species composition and their ability to accumulateheavy metals at mining area in Xiangxi area, Southern China, we sampled plants andsoil samples twice at four contaminated sites in the Xiangxi area respectively in 2003autumn and winter. The concentrations of Cd, Pb, Zn and Cu in more than 363samples of 125 plant species and 20 soil samples were analyzed in the present study.The average concentrations of Cd, Pb, Zn and Cu in the plants were 19, 81,637 and 8mg kg~(-1), respectively. The highest concentration of Cd in above-ground plant tissueswas found to be 287 mg kg~(-1)in the leaves of Lobelia chinensis Lour. at the Datianwansite, followed by Solamim nigrum L., Hydddrocotyle sibthorpioides and Phytolaccaamericana with 99, 75 and 71 mg kg~(-1) Cd in the leaves. They might be potential Cdhyperaccumulators. At the three contaminated sites, some dominant and relative dominant species with high accumulation potential of metals, such as Kalimeris indice(L.) Sch.-Bip. and Solanum nigrum L., might be suitable for use in thephytoextraction of contaminated soils. The dominant and relative dominant specieswith low accumulation of metals and dense fibrous root systems, such as lmperatacylindrical (L.) Beauv. var. major C. E. and Miscanthus floridulus (Labill.) Warb.,might be suitable for stabilizing such metal contaminated sites.
     To validate Cd accumulation capacities of the three plants, Lobelia chinensisLour., Solanum nigrum L. and Phytolacca americana L., in the present study, theconcentrations of Cd in the three plant species, and the corresponding soil samplesfrom the mining and smelting contamination sites in the Xiangxi area of HunanProvince, China were further studied. The results showed that the averageconcentrations of Cd were 55.2, 36.9 and 141 mg kg~(-1)in P. americana leaf,, S. nigrumleaf and L. chinensis shoot, respectively. The highest Cd concentration of 402 mg kg~(-1)was found in the leaves of P. americana. Significant relationships were observedbetween the concentrations of Cd in the aerial tissues of the three plants and those ofcorresponding soils on a logarithmic scale. The average bioaccumulation factors ofCd in P americana (31 samples), S. nigrum (22 samples) and L. chinensis (10samples) were 1.19, 2.96 and 1.63, respectively. Hydroponic experiments were alsoconducted to investigate the Cd uptake ability and mechanism of the three plants insolutions. The maximum Cd concentration in the aerial tissues of P. americana, S.nigrum and L. chinensis were 1150, 1110 and 414 mg kg~(-1) under the laboratoryhydroponic conditions, respectively. The results suggested that P. americana, L.chinensis and S. nigrum may be considered to be Cd hyperaccumulators. Among thethree plant species under study, P. americana might be a suitable candidate for use inthe phytoremediation of metal contaminated soils due to its fast growth rate, highaboveground biomass, and elevated adaptability to a wide range of soil Cdconcentrations.
     The concentrations of Mn in P. americana and the corresponding soil samplesfrom the mining and smelting contamination sites in the same sites were furtherstudied. The results showed that the average concentration of Mn was 2020 mg kg~(-1)inP. americana leaf. The highest Mn concentration of 13400 mg kg~(-1)was found in theDatianwanⅡsite. Significant relationships were observed between the concentrationsof Mn in the aerial tissues of the plant species and those of corresponding soils on alogarithmic scale. The bioaccumulation factors of Mn in P. americana averaged 0.58, and ranged from 0.60-3.90. Hydroponic experiments were also conducted toinvestigate the Mn uptake ability and mechanism in solutions. The maximum Mnconcentration in the leaf of P americana was 11600 mg kg~(-1)in the 10000μM Mntreatment for 15 days. The results of regeneration seedling experiment showed thatMn concentration in the leaf P. americana was also up to 11600 mg kg~(-1)in the 5000μM Mn treatment for 90 days, besides the regeneration seedling of P americana alsocontained high concentration Mn in the leaf up to 9700 mg kg~(-1)in the 5000μM Mntreatment for 24 days after first harvested. These results suggested that P americanamay be considered to be a manangese hyperaccumulator. As a manangese andcadmium hyperaccumulator, P. americana with high biomass may have a greatpotential for future use in phytoremediation of heavy metals compound contaminatedsoil and studies on the mechanisms of rhizosphere interaction, uptake, transport andsequestration of Cd and Mn.
     To understand Cd adsorption manner by P americana, hydroponics experimentwas conducted. The growth and Cd bioaccumulation were compared between two Pamericana populations respectively from Huaihua and Jishou. The growth wasremarkably inhibited and Cd contents in leaf and root were significantly increasedwith the Cd concentration increasing in the nutrition solution. No significantdifference in the growth between the Huaihua and Jishou P americana populations,but Cd content in the root of Huaihua population was markedly higher than thepopulation of Jishou. Extrinsic ABA and metabolic inhibitor NaN_3 drastically reducedthe extent of Cd bioaccumulation in the leaf of two P. americana populations. ABAcan induce stomata closure and reduce the stomata transpirations. Besides, NaN_3 isthe inhibitor of the H~+-ATPase in the plasma membrane and vacuole membrane.Therefore, these results suggested that Cd adsorption manner by P americanainvolved passive and active adsorption two processes.
     We examined the relationships between the concentrations of Cd and Mn andother transition metal in leaves of forty P americana samples from the field surveys.The concentrations of Cd significantly positively related with the concentrations of Znand Cu, but remarkably negatively correlated with the concentrations of Mg. On theother hand, marked positive relationships were found between the contents of Mn andthe contents of Mg and Ni, but significantly negative relationship between thecontents of Mn and Ca. Under hydroponics condition, the effect of the interactionbetween Cd and Mn on the growth and the concentrations of Cd and Mn were studied.
     The results showed that Cd toxicity to P. americana was weakened and Cdconcentrations in leaf, stem and root all decreased due to addition of Mn. Theconcentrations of Mn in leaf, root and stem decreased slightly due to the competitionof between Cd and Mn. These results suggested that Cd~(2+), Mn~(2+) and Mg~(2+)may beabsorbed and transported via common pathway.
     We examined the relationships between the concentrations of Cd and Mn andsulfate in leaves of forty P. americana samples from the field surveys. Theconcentrations of Cd and Mn significantly positively correlated with theconcentrations of sulfate. The result indicated that Cd and Mn detoxification involvedin chelation of Cd and Mn in the cytosol by some thiol compounds. We furtherinvestigated the effect of Cd on the amino acid, glutathione and protein andnon-protein thiol contents of leaf and root in P americana under hydroponicscondition. The data showed that no significant deference was found after Cd and Mntreatment in the contents of amino acid in leaves and roots. But the contents of proteinand non-protein thiol markedly increased and the contents of GSH and GSSG in leafand root observably decreased with the Cd concentration increasing in the nutritionsolution. GSH is the precursor for the enzymatic synthesis of phytochelatins (PC).Besides, the protein thiol in leaf of P. americna slightly decreased, non-protein andglutathione increased with the Mn concentrations in the solutions. All the resultssuggested that the phytochelatins was the potential ligands with Cd in leaf of P.americana, and the detoxification mechanisms were different between Cd and Mn.
     In addition, we also investigated in Donghe River in Jishou City located innorthwest Hunan Province, China and found the submerged plant community with thedominant species Potamogeton pectinatus and Potamogeton malaianus. In the study,heavy metal concentrations in the leaves of aquatic plants P. pectinatus and P.malaianus and the corresponding water and sediment samples from the Donghe Riverwere studied. Results showed that the elevated levels of metals were found in thesediments, especially Cd, Mn and Pb in comparison with the ecotox threshold valuesof soil and water developed by the Chian. Environmental Protection Agency. Thehighest concentrations of Cd, Pb, Cu, Zn and Mn in the leaves of P. pectinatus were596, 318, 62.4, 6590 and 16000 mg kg~(-1)(DW), respectively. Significant relationshipswere observed between the concentrations of Zn, Cu and Mn in the leaves of bothaquatic plants and those in water. Laboratory experiments were also conducted toinvestigate the abilities of P. pectinatus to remove heavy metals from contaminated water. The average removal efficiencies were 84%, 90%, 91%, 77%and 84%for Cd,Cu, Pb, Zn and Mn, respectively, within the 5 h treatment. The results showed that P.pectinatus had high capability of removing heavy metals directly from water.
     To further estimate the application worth of P pectinatus in the water pollutioncontrol and treatment, biosorption of metals by P. pectinatus in the laboratoryexperiment was carried out to investigate Cd and Pb adsorption properties and theeffects of water temperature, pH value and salinity on Cd and Pb adsorption of Ppectinatus. Results were compared with other materials. Data obtained from the intialadsorption studies indicated that P. pectinatus was capable of removing Cd and Pbfrom solution. The metal biosorption was fast and equilibrium was attained within 20min. Overall adsorption processes of Cd and Pb with the increasing time were all bestdescribed by pseudo second-order kinetics. Data obtained from further batchadsorption with the metal concentration increasing studies conformed well to theLangmuir Model. Maximum adsorption capacities of Cd and Pb onto P. pectinatuswere 32368, 24776 mg kg~(-1). The metal concentrations in the leaf of P. pectinatus werehighest at the 20~C compared to 5, 10 and 30℃. Other condition parameter notchanging, the concentration of Cd in leaf of P. pectinatus decreased but theconcentration of Pb increased with the pH value from 3 to 7 and salinity from 0.5 g/Lto 10 g/L increasing. P pectinatus more often has a high biomass and tolerates verywide ranges of temperature, pH value and salinity. Therefore, P. pectinatus can beused as a biological indicator while determining aquatic environmental pressures andused for phytoremediation of multiple metals contaminated water.
引文
1.陈怀满,郑春荣,周东美,沈振国.2002.土壤中化学物质的行为与环境质量.北京:科学出版社.
    2.陈同斌和韦朝阳.2002.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报.22(5):777-778.
    3.陈志良,仇荣亮,张景书,万云兵.2001.重金属污染土壤的修复技术.工程与技术.(4):17-19.
    4.段昌群和昝瑞光.1995.环境污染对生物进化的影响及环境生物学研究的新领域.见:候秉政(主编),中国青年学者论环境.北京:中国环境科学出版社.767—770.
    5.韩阳,李雪梅,朱延朱.2005.环境污染与植物功能.化学工业出版社.
    6.黄玉山.1998.紫羊茅根中铜结合肽的分离和纯化.应用与环境生物学报.4(4):335-339.
    7.江行玉和赵可夫.2001.植物重金属伤害及其抗性机理.应用与生态环境学报.7 (1):92-99.
    8.郎明林,张玉秀,柴团耀.2003.植物重金属超富积机理研究进展.西北植物学报.23(11):2021-2030.
    9.郎铁柱和钟定胜.2005.环境保护与可持续发展.天津:天津大学出版社.pp.103.
    10.李合生.2000.植物生理生化实验原理与技术.北京:高等教育出版社.192-194.
    11.李文学和陈同斌.2003.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报,14(4):627—631.
    12.李洪文.2004.野生作物商陆高产栽培技术.云南农业.4:9
    13.刘威和束文圣.2003.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物.科学通报48(19):2046—2049.
    14.龙新宪.2002.东南景天(Sedum alfredii Hance)对锌的耐性和超积累机制研究.浙江大学博士学位论文.
    15.沈振国和刘友良.超积累重金属植物研究进展.植物生理学通讯.1998,34(2):133—139.
    16.孙书存和包维楷.2004.山地生态系统恢复重建与生态经济分析.恢复生态学.北京:化学工业出版社.
    17.唐世荣.2001.超积累植物在时空、科属内的分布特点及寻找方法.农村生态环境. 17(4):56—60.
    18.韦朝阳和陈同斌.2001.重金属超富集植物及植物修复技术研究进展.生态学报.21(7):1996-1203.
    19.曲仲湘,吴玉树,王焕校,姜汉侨,唐廷贵.1980.《植物生态学》.北京:中国高等教育出版社.
    20.王忠.2000.《植物生理学》.北京:中国高等教育出版社.
    21.薛生国和陈英旭.2003.中国首次发现的锰超量积累植物——商陆.生态学报.23(5):935—937.
    22.余艳华,王文全,郑春霞,程路明,周疆明.2006.土壤中Pb~(2+)、Ca~(2+)、Cd~(2+)对苜宿种子发芽和生长的影响.新疆农业大学学报.29(2):58-61.
    23.赵其国.2004.土地资源 大地母亲——必须高度重视我国土地资源的保护、建设与可持续利用问题.土壤.36(4):337-339.
    24.章熙谷和翟玉顺.1990.农业生态系统中外来物种引进的初步探讨.北京:农业出版社.
    25.张宪政.1992.作物生理研究法.北京:农业出版社.
    26.张云荪和王焕校.1986.种子中镉的积累及蚕豆质量的影响.环境科学学报.6,2:199.
    27.张玉秀,柴团耀.1999.植物耐重金属机理研究进展.植物学报.41(5):453—457.
    28.中国土壤学会编.2000.土壤农业化学分析方法.北京:中国农业科技出版社.
    29. Ajmal, M., Rao, A.K.R., Rais, A., Jameel, A. 2000. Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni (Ⅱ) from eleetroplating wastewater. J. Haz. Mater. B 79: 117-131.
    30. Al-Asheh S, Duvnjak, Z. 1997. Adsorption of metal ions by moss. Adv Environ Res 1(2):1997.
    31. Alex, G.L., David, J.E. 2001. Eukaryotic zinc transporters and their regulation, Bio. Metals, 14: 251-207.
    32. Alloway, B.J. 1995. Heavy metals in soil (2nd ed). Blackie Academic and Professional. London, 1995.
    33. Alscher, R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants. Plant Physiol. 77: 457-464.
    34. Anderson, C.W.N, Brooks, R.R., Chiarucci, A., LaCoste, C.J., Leblanc, M., Robinson, B.H., Simcock,R., Stewart, R.B. 1999. Phytomining for nickel, thallium and gold. J. Geoch. Explor. 67: 407-415.
    35. Arnesano, F., Banci, L., Bertini I., Ciofi-Baffoni S., Molteni E., Huffman D.L., O'Halloran T.V. 2002. Metallochaperones and metal-transporting ATPase: a comparative analysis of sequences and structures. Genome Research. 12: 255-271.
    36. Assuncao, A.G.L. 2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell Environ. 24: 217-226.
    37. Axelsen, K.B., Palmgren, M.G. 2001. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 126: 696-706.
    38. Axtell, N.R., Sternberg, S.P.K., Claussen, K. 2003. Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 89: 41-48.
    39. Baker, A.J.M. 1981. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 3: 643-654.
    40. Baker, A.J.M. 1987. Metal tolerance. New Phytol. 106: 93-111.
    41. Baker, A. J. M., Brooks, R.R. 1983. Studies on copper and cobalt tolerance in three closey related taxa with in the genus Silence L. (Caryophyllaceae) from Zaire[J]. Plant Soil. 73: 377-385.
    42. Baker, A.J.M., Brooks, R.R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery. 1: 81-126.
    43. Baker, A.J.M., McGrath, S.P., Sidoli, C. M. D. 1994. The possibility of in situ heavymetal decontamination of polluted soils using crop s of metal-accumulating plants. Resour. Conserv. Recycl. 11: 41~49.
    44. Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Phytoremediation of Contaminated Soil and Water. Terry, N., Banuelos, G., Eds.; Lewis Publishers, Boca Raton, FL, USA; p.85-107.
    45. Baldantoni, D., Alfani, A., Tommasi, P.D., Bartoli, G., De Santo, A.V., 2004. Assessment of macron and microelement accumulation capability of two aquatic plants. Environ. Pollut. 130: 149-156.
    46. Bartsevich, V.V., Pakrasi, H.B. 1995. Molecular identification of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process, EMBO Journal 14: 1845-1853.
    47. Beard, S.J., Hashim, R., Membrillo-Hemandez, J., Hughes, M.N., Poole, R.K. 1997. Zinc (Ⅱ) tolerance in Escherichia coli K-12: evidence that the ZNTA gene (o732) encodes a cation transport ATPase. Molec. Microbio. 25: 883-891.
    48. Beckett, R. P., Brown, D.H., 1984. The control of cadmium uptake in the lichens genus Peltigera. J. Exp. Bot. 35 (9): 77-87.
    49. Belouchi, A., Cellier, M., Kwan, T., Saini, H.S., Leroux, G., Gros, P. 1995. The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologues expressed in the root system of plants. Plant Mol. Bio. 29: 1181-1196.
    50. Belouchi, A., Kwan, T., Gros, P. 1997. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane protenins possibly implicated in the tranporter of metal ions. Plant Molec. Bio. 33: 1085-1092.
    51. Bert, V., Bonnin, I., Saumitou-Laprade, P., de Laguerie, P., Petit, D. 2002. Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol. 155: 47-57.
    52. Bert, V., Macnair, M.R., de Laguerie, P., Saumitou-Laprade, P., Petit, D. 2000. Zinc tolerance and accumulation in metallicolous and non metallicolous populations of Arabidopsis halleri (Brassicaceae). New Physiol. 146: 225-233.
    53. Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., Verbruggen, N. 2003. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant soil. 249: 9-18.
    54. Berthelsen, B.O., Steinnes E., Solberg, W. 1995. Heavy metal concentration in plants in relation to atmospheric heavy metal deposition [J]. J. Environ. Qual. 24: 1018-1026.
    55. Bishnoi, N.R., Sheoran, I.S., Randhir, S. 1993. Influence of cadmium and nickel on photosynthesis and water relations in wheat leaves of different insertion level. Photosynthetic 28: 473-479.
    56. Bovet, L., Eggmann, T., Meylan-Bettex, M., Polier, J., Kammer, P., Marin, E., Feller, U., Mmartinoia, E. 2003. Transcript levels of AtMRPS after Cadmium treatment: induction of AtMRP3. Plant Cell Environ. 26:371-381.
    57. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    58. Bristow, J.M., Whitcombe, M., 1971. The role of roots in the nutrition of aquatic vascular plants. Am. J. Bot. 58: 8-13.
    59. Brooks, R. R., Lee, J., Reeves, R. D. 1977. Detection of nickeliferous rocks by alysus of herharium species of indicators plants [J]. J. Geochem. Exp. 7: 49-57.
    60. Brooks, R.R., editor. 1998. Plants that hyperaccumulate trace metals. Wallingford: CAB International. p. 380.
    61. Cakmak, I, Sad, N., Braun, H.J. 1996. Phytosiderophores release in bread and durum wheat genotype differing in zinc efficiency. Plant Soil. 180:183-189.
    62. Cakmak, I., Marschner, H. 1988. Enhanced superoxide radical production in roots of zinc deficient plants. J.Exp. Bot. 39: 1449-1460.
    63. Cardwell, A.J., Hawker, D.W., Greenway, M., 2002. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48: 653-663.
    64. Chaney, R. L. 1983. Plant uptake of inorganic waste constituent [A].In: Parr J. Feds. Land Treatment of Hazardous wastes[C]. Noyes Data Corporation, Park Ridge, New Jersey, USA. pp. 50-76.
    65. Chatterjee, J., Chatterjee, C. 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower [J]. Environ. Pollut. 109: 69-74.
    66. Cheung, C.W., Porter, C. F., Mckay, G., 1997. Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep. Purif. Thechnol. 19: 55-64.
    67. Cimino, G., Passerini, A., Toscano, G. 2000. Removal of toxic cations and Cr (Ⅵ) from aqueous solution by hazelnut shell. Water Res. 34(11): 2955-2962.
    68. Citterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., Sgorbati, S. 2003. Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil. 256: 243-252.
    69. Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212: 475-486.
    70. Curie, C., Alonso, J.M., Le Jean, M., Ecker, J.R., Briat, J.F. 2000. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Bioch. J. 347: 749-755.
    71. Dai, L.F., Gao, H., Xia, J.R. 1998. Tolerance to heavy metal Cd and detoxification of Synechococcus cedrorum. Chin. J. Appl. Environ. Bio. 4(3): 192-195.
    72. Das, P., Samantaray, S., Rout, G.R. 1997. Studies on cadmium toxicity in plants: a review. Environ. Pollut. 98: 29-36.
    73. Davies, T.G.E., Coleman, J.O.D. 2000. The Arabidopsis thaliana ATP-binding cassette proteins: an emerging superfamily. Plant Cell Environ. 23:431-443.
    74. de la Rosa, G., Peralta-Videa, J.R., Montes, M., Parsons, J.G., Cano-Aguilera, I., Gardea-Torresdey, J.L. 2004. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159-1168.
    75. dela Fuent, J.M., Ramirez-Rodriguez, Y. Cabrera-Ponce, J.L., Herrera-Estralla, L. 1997. Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science. 276:1566-1568.
    76. Delhaize, E., Kataoka, T., Hebb, D.M., White, R.G., Ryan, R.R. 2003. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell. 15:1131-1142.
    77. Demirezen, D., Aksoy, A. 2004. Accumulation of heavy metals in Tyha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 56: 685-696.
    78. Denny, P., 1972. Sites of nutrient absorption in aquatic macrophytes. J. Ecol. 60: 819-829.
    79. Dietz, K.J., Baier, M., Kramer, U. 1999. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J, eds. Heavy metal stress in plants: from molecules to ecosystems. Berlin: Springer-Verlag, pp. 73-97.
    80. Eapen S, D'Souza SF. 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Advance 23: 97-114.
    81. Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R., Kochain, L.V. 1997. Phytoextraction of cadmium and zinc from contaminated soil. J. Environ. Qual. 26: 1424-1430.
    82. Ebbs, S.D., Lau, I., Ahner, B., Kochian, L. 2002. Phytochelatin sythesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C.Presl). Planta, 214: 635-640.
    83. Eide, D.J. 1998. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Ann. Rev. of Nutr. 18: 441-469.
    84. EI-Jaoul, T., Cox, D.A. 1998. Manganese toxicity in plants. J. Plant Nutr. 21: 353-386.
    85. Eilu, G., Obua, J., Tttmuhairwe, J. K., Nkwine, C. 2003. Traditional farming and plant species diversity in agricultural landscapes of south-western Uganda. Agile. Ecosyst. Environ. 99: 125-134.
    86. Ekvall, L., Greger, M. 2003. Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environ. Pollut. 121: 401-411.
    87. Erinotml, G.U. 2000. The ZIP family of metal transporters [J]. Biochim. Biophys. Acta. 1465: 190-198.
    88. Fabio, F. N., Livia, P., Maurizio, C., Gian, A.S. 2002. Cadmium-induced sulfate uptake in maize root. Plant Physiol. 129:1872-1879.
    89. Fecht-Christoffers, M.M., Braun, H.P., Lemaitre-Guiller, C., VanDorsselaer, A., Horst, W.J. 2003. Effect of mamganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol. 133:1935-1946.
    90. Fernandez, N., Chacin, C., Garcia, C., Alastre, N., Leal, F., Forster, C. F. 1996. The use of seed pods from Albizia lebbek for the removal of alkyl benzene sulphonates feom aqueous solution. Process Biochem. 32: 383-387.
    91. Forster, C.F., Mehrotra, I., Alibhai, K.R.K. 1985. The multiple binding of heavy metals by digested sludge. J. Chem. Technol. Biotechnol. 35B: 145-154.
    92. Forstner, U. 1995. Land contamination by metals global scope and magnitude of problem. In: Metal Speciation and Contamination of Soil: Allen, H.E., Huang, C.P., Baley, G.W., Bowers, E.R., Eds.; CRC Press, Boca Raton, FL, USA, 1-33.
    93. Forstner, U., 1979. Metal transfer between solid and aqueous phyases.In: Ffrstner, U., Wittman, G.T.W. (Eds.), Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin, pp. 197-270.
    94. Francisco, J.P., Daniel, V., Nilo, M. 2002. Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H_2O_2 in grapevine leaves. Phytoehemistry 60: 573-580.
    95. Franzin, W.G., McFarlane, G.A., 1980. An analysis of the aquatic macrophytes, Myriophyllum exalbescens as an indicator of metal contamination of aquatic ecosystems near metal smelter. Bull. Environ. Contam. Toxicol. 24: 597-605.
    96. Ffitioff, A., Kautsky, L., Greger, M., 2005. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ. Pollut. 133: 265-274.
    97. Fry, J.C., Gadd, G.M., Herbert, R.A. 1992. Microbial control of pollution. In: Forty-eighth Symposium of the Society for Microbiology, University of Cardiff. Cambridge: Cambridge University Press; pp. 59-89.
    98. Gaither, L.A. and Eide D.J. 2001. Eukaryotic zinc transporters and their regulation. BioMetals 14: 251-270.
    99. Garcia, M.A.F., Utrilla, J.R., Gorrdillo, J.R. 1988. Adsorption of zinc, cadmium and toper on activated carbon obtained from agricultural by-products. Carbon 26 (3): 363-373.
    100. Gaxiola, R.A., Fink, G.R., Hirschi, K.D. 2002. Genetic manipulation of vacuolar proton pump and transporters. Plant Physiol. 129: 967-973.
    101. Goncalves, E.P.R., Boaventura, R.A.R. 1998. Uptake and release kinetics of copper by the aquatic moss Fontinalis antipyretica. Water Res. 32(4): 1305-1313.
    102. Goncalves, E.P.R., Boaventura, R.A.R., Mouvet, C. 1992. Sediments and aquatic mosses as pollution indicators for heavy metals in the fiver basin (Portugal). Sci. Total Environ. 114: 7-24.
    103. Goncalves, E.P.R., Soares, H.M.V.M., Boaventura, R.A.R., Machado, A.A.S.C., Silva, J.C.G.E. 1994. Seasonal variations of heavy metals in sediments and aquatic mosses from the Cavado river basin (Portugal). Sci. Total Environ. 142:143-156.
    104. Gonzalez-Davila, M., Santana-Casiano, J.M., Perez-Pena, J., Millero, F.J. 1995. The binding of Cu(Ⅱ) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ. Sci. Technol. 29(2): 289-301.
    105. Gosset, T., Transcart, J.L., Thevenot, D.R. 1986. Batch metal removal by peat: kinetics and thermodynamics. Water Res. 20: 21-26.
    106. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., Takaiwa, F. 1998. Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Res. 7:173-180.
    107. Greger, M., Kautsky, L. 1993. Use of macrophytes for mapping bioavailable heavy metals in shall coastal areas. Appl. Geochem. 2: 37-43.
    108. Greger, M., Kautsky, L., Sandberg, T. 1995. A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environ. Exp. Bot. 35:215-225.
    109. Grichko, V.P., Filby, B., Glick, B.R. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and zinc. J. Biotechnol. 81:45-53.
    110. Griffith, O.W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal. Biochem. 106:207-212.
    111. Grill, E., Thumann, J., Winnacker, E.L., Zenk, M.H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific r-glutamycysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA, 86: 6838-6842.
    112. Grill, E., Winnacker, E.L., Zenk, M.H. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674-676.
    113. Guerinot ML. 2000. The ZIP family of metal transporters. Biochim. Biophys. Acta. 1465: 190-198.
    114. Guilizzoni, P. 1991. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquat. Bot. 41: 87-109.
    115. Gupta, G.S., Shukla, S.P., Prasad, G., Singh, V.N. 1992. China clay as an adsorbent for dye house wasters. Environ. Technol. 13: 925-936.
    116. Hall, J.L., Williama, L.E. 2003. Transition metal transporters in plants. J. Exp. Bot. 54: 2601-2613.
    117. Harrison, M.D., Jones, C.E., Solioz, M., Dameron, C.T. 2000. Intracellular copper routing: the role of copper chaperones. Trends Biochem. Sci. 25: 29-32.
    118. Hernandez, E., Olguin, E. J., 2002. Biosorption of heavy metals influenced by the chemical composition of Spirulina sp. (Arthrospira) biomass. Environ. Technol. 23: 1369-1377.
    119. Hiradates, M., Matsumoto, H. 1998. High aluminum resistance in buckwheat Ⅱ. Oxalic acid detoxifies aluminum internally [J]. Plant Physiol. 117:753-759
    120. Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey, W.P., Dancis, A., Echer, J.R. 1999. Responsive-to-antagonist 1, a Menkes/Wilson disease-related copper tranporter, is required for ethylene signaling in Arabidopsis. Cell. 97: 383-393.
    121. Hirschi, K. 2001. Vacuolar H~+/Ca~(2+) transport: who's direcfiong the traffic? Trends in Plant Sci. 6: 100-104.
    122. Hirschi, K.D., Korenkov, V.D., Wilganowski, N.L., Wagner, G.J. 2000. Expression of Arbidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124:125-134.
    123. Hirschi, K.D., Zhend, R.G., Cunningham, K.W., Rea, P.A., Fink, G.R. 1996. CAX1, an H~+/Ca~(2+) antiporter from Arabidopsis. Proceedings of the National Academy of Sciences, USA 93: 8782-8786.
    124. Ho, Y.S., Huang, C.T., Huang, H.W. 2002. Equilibrum sorption isotherm for metal ions on tree fern. Process Biochem. 37: 1421-1430.
    125. Ho, Y.S., Mckay, G. 2000. The kinetics of sorption of divalent metal ions onto Sphagnum moss peat. Water Res. 34(3): 735-742.
    126. Ho, Y.S., Wase, J., Forster, C.F. 1995. Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 299(5): 1327-1332.
    127. Ho, Y. S., Wase, D.A.J., Forster, C.F. 1996. Kinetic studies of competitive heavy metal adsorption by Sphagnum moss peat. Environ. Technol. 17: 71-77.
    128. Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I. 1996. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. Plant 98: 685-692.
    129. Host, W.J. 1988. The physiology of Mn toxicity. In MJ Webb, RO Nable, RD Graham, RJ Hannam, eds, Manganese in Soil and Plants. Kluwer Academic Publishers, Dodrecht, The Netherlands, pp 175-188.
    130. Hozhina, E.I., Khramov, A.A., Gerasimov, P.A., Kumarkov, A.A. 2001. Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J. Geochem. Explorat. 74:153-162.
    131. Huang, J.W., Blaylock, M.J., Kapulnik, Y., Ensley, B.D. 2001. Phytoremediation of uranium contaminated soil: role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 124:125-133.
    132. Huang, L., Gitsvhier, J. 1997. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nature Gen. 17: 292.
    133. Huang, Z.C., Chen, T.B., Lei, M., Hu, T.D. 2004. Direct Determination of Arsenic Species in Arsenic Hyperaccumulator Pteris vittata by EXAFS. Act. Bot. Sin. 46(1): 46-50.
    134. Huffman, D.L., O'Halloran, T.V. 2001. Function, structure, and mechanism of intracellular copper transporter and its yeast homologue. J. Bio. Chem. 270: 28479-28486.
    135. Jochimsen, M.E. 2001.Vegetation development and species assemblages in a long-term reclamation project on mine spoil. Ecolog. Engin. 17:187-198.
    136. Johnson, D., Kershaw, L., Mackinnon, A., Pojar, J. 1995. Plants of Western Boreal Forest and Aspen Parland. Lone Pine publishing, Vancouver, BC.
    137. Kabata-Pendias, A., Pendias, H. 1992. Trace Elements in Soils and Plants; 2nd Edition. CRC Press. Boca Raton, FL. USA.
    138. Kamal, M., Ghaly, A.E., Mahmoud, N., Cote, R. 2004. Phytoaccumulation of heavy metals by aquatic plants. Environ. Intern. 29:1029-1039.
    139. Kampfenkel, K., Kusjnir, S., Babiychuk, E., Inze, D., Van Montagu, M. 1995. Molecular characterization of a putative Arbidopsis thaliana copper transporter and its yeast homologue. J. Bio. Chem. 270: 28479-28486.
    140. Kandah, M. 2001. Zinc adsorption from aqueous solutions using disposal sheep manure waste (SMW). J.Chem. Eng. 84: 543-549.
    141. Kelly, M.G., Girton, C., Whitton, B.A. 1987. Use of moss-bags for monitoring heavy metals in rivers. Water Res. 21(11): 1429-1435.
    142. Keskinkan, O., Goksu, M.Z.L., Basibuyuk, M., Forster, C.F. 2004. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Biores. Technol. 92: 197-200.
    143. Keskinkan, O., Goksu, M.Z.L., Yueeer, A., Basibuyuk, M., Forster, C.F. 2003. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem. 39, 179-183.
    144. Kinnersely, A.M. 1993. The role of phytochelates in plant growth and productivity. Plant Growth Regul. 12: 207-217.
    145. Knocke, W.R. and Hemphill, L.H. 1981. Mercury sorption by waste rubber. Water Res. 15: 275-282.
    146. Koppolu, L., Agblevor, F.A., Clements, L. D. 2003. Pyrolysis as a technique for separating heavy metals from hyperaecumulators. Part Ⅱ: Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biom. Bioen. 25(6): 651-663.
    147. Koppolu, L., Prasad, R., Clements, D. 2004. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. PartⅢ: pilot-scale pyrolysis of synthetic hyperaccumulator biomass. Biom. Bioen. 26:463—472.
    148. Kramer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M., Smith, J.A.C. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635-638.
    149. Kumar, P.B.A.N., Dusheukkov, V. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29(5):1232-1238.
    150. Kumar, P.P. and Dara, S.S. 1980. Modified barks for scavenging toxic heavy metal ions. J. Environ. Health. 22(3): 196-202.
    151. Kupper, H., Lombi, E., Zhao, F. J., McGrath, S.P. 2000. Celluar compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212: 75-84.
    152. Kuyucak, N., Volesky, B. 1989. Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett. 10:137-142.
    153. Lacher, C., Smith, R.W. 2002. Sorption of Hg by Potamogeton natans dead biomass. Min. Eng. 15: 187-191.
    154. Lasat, M.M., Baker, A.J.M., Kochian, L.Y. 1996. Physiological characterization of root Zn~(2+) adsorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol. 112:1715-1722.
    155. Lee, C.L., Wang, T.C., Lin, C.K., Mok, H.K. 1999. Heavy metlas removal by a promising locally available aquatic plant, Najas gramine del., in Taiwan. Water Sic. Technol. 39(10-11): 177-181.
    156. Lewander, M., Kautsky, L., Szarek, E. 1996. Macrophytes as indicators of bioavailable Cd, Pb and Zn flow in the fiver Przemsza, Katowice Region. Appl. Geochem. 11: 169-173.
    157. Lewis, B.G., Johnson, C.M., Broyer, T.C. 1974. Volatiles selenium in high plants. The produce of dimethyl selenonium salt. Plant soil. 40:107-118.
    158. Li, X.D., Thornton, I. 2001. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appli. Geochem. 16: 1693-1706.
    159. Liang, F., Cunningham, K.W., Harper, J.F., Sze, H. 1997. ECA1 complements yeast mutants defective in Ca~(2+) pumps and encodes an endoplasmic reticulum-type Ca~(2+)-ATPase in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 94: 8579-8584.
    160. Liu, W., Shu, W.S., Lan, C.Y. 2003. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Sci. Bull. 49: 29-32.
    161. Lombi, E., Zhao, F.J., Dunham, S.J., McGrath, S.P. 2000. Cadmium accumulation in population of Thlspi caerulescens and Thlspi goedingense. New Phytol. 145:11-20.
    162. Lou, L.Q., Shen, Z.G., Li, X.D. 2004. The copper tolerance mechanisms of Elsholtzia haichowensi, a plant from copper-enriched soils. Environ. Exp. Bot. 51: 111-120.
    163. Luna, C. M., Gonzalez, C.A., Trippi, V.S. 1994. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol. 35:11-15.
    164. Ma, J.F., Nomoto, K. 1996. Effective regulatuon of iron acquisition in graminaceous plants—the role of mugineic acids as phytosiderophores. Physiol. Plant. 97:609-617.
    165. Ma, J.F., Ryan, ER., Delhaize, E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273-278.
    166. Maeshima, M. 2001. Tonoplast transporters: organization and function. Ann. Rev. Plant Physiol. Plant Molec. Bio. 52,469-497.
    167. Malik, D., Sheoran, I.S., Randhir, S. 1992. Carbon metabolism in leaves of cadmium treated wheat seedlings. Plant Physiol. Biocbem. 30: 223-229.
    168. Marschner, H., editor. 1995. Mineral nutrition of higher plants. London: Academic Press.
    169. Marshall, W.E., Champagne, E.T. 1995. Agricultural by-products as adsorbents for metal ions in laboratory prepared solutions and in manufanturing wastewater. J Environ Sci Heath A: Environ Sci Eng Toxic Hazardous Substance Control. 30(2): 241-261.
    170. Martinoia, E., Klein, M., Geisler, M., Bovert, L., Forestier, C., Kolukisaoglu, U., Muller-Rober, B., Schulz, B. 2002. Multifunctionality of plant ABC transporters-more than just detoxifiers. Planta. 214: 345-355.
    171. Martins, R.J., Boaventura, R.A. 2001. Uptake and release kinetics of copper by the aquatic moss Fontinalis antipyretica. In: Proceedings of the Sixth World Congress of Chemical Engineering, Melbourne, Australia pp. 10
    172. Martins, R.J., Boaventura, R.A. 2002. Uptake and release of zinc by aquatic bryophytes (Fontinalis antipyretica L. ex. Hedw.). Water Res. 36 (20): 5005-5012.
    173. Martins, R.J.E., Pardo, R., Boaventura, R.A.R. 2004. Cadmium(Ⅱ) and zinc(Ⅱ) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. 38: 693-699.
    174. Maser, P., Thomine, S., Schroeder, J.I. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126:1646-1667.
    175. Matheickal, J.T., Yu, Q. 1996. Biosorption of lead from aqueous solutions by marine algae Ecklonia Rdiata. Water Sci Thenl. 34: 1-7.
    176. Mautose, P.J. and Beckett, R.P. 1996. A preliminary study of the factors affecting the kinetics of cadmium uptake by the liverwort Dumortiera hirsute. South Afric. J.Bot. 62(6): 332-336.
    177. McBride, M.B. 1994. Environmental Chemistry of Soils. Oxford University Press, New York.
    178. McGrath, S.P. 1998. Phytoextraction for soil remediation. In: Brook R R, (ed.) Plants that hyperaccumulate heavy metal. Wallingford, U K: C A B International pp. 216-287.
    179. McGrath, S.P., Zhao, F.J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14: 277-282.
    180. Mckay, G., Blair, H.S., Gardner, J.R., 1982. Adsorption of dyes of chitin. 1. Equilibrium studes. J. Appl. Pplmer Sci. 27: 3043-3047.
    181. Mckay, G., Otterbum, M.S., Sweeney, A.G. 1980. The removal of colour from effluent using various adsorbents-Ⅲ silica rate processes. Water Res. 14:15-20.
    182. Meagher, R.B., Rugh, C.L., Kandasamy, M.K., Gragson, G., Wang, N.J. 2000. Eegineered phytoremediation of mercury pollution in soil and water using baterial genes. In: Terry N., Banuelos, G. editors. Phytoremediation of eontarninated soil and water. Boca. Raton: Lewis; p. 201-221.
    183. Meerts, P., Van Isacker, N. 1997. Heavy metal tolerance and accumulation in metallicolous and non-metallieolous populations of Thlsapi caeruleseens from continental Europe. Plant Eeo. 133:221-231.
    184. Meharg, A.A., Macnair, M.R.1992. Suppression of the high affinity phosphate uptake system: mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 43: 524-529.
    185. Mench, M.E., Morel, J.L., Guchert, A. 1988. Metal binding with root exudates of low molecular weight. J. Soil Sci. 39: 521-527.
    186. Mench, M.E.1991. Mobilization of Cd and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana narustica L. Plant and Soil. 132(20): 187-196.
    187. Mill, R.F., Krijger, G.C., Baccarini, P.J., Hall, J.L., Williams, L.E. 2003. Functional expression of AtHMA4, a P1B-type ATPase in the Zn/Co/Cd/Pb subclass. The Plant J. 35:164-175.
    188. Mouvet, C. 1984. Accumulation of chromium and copper by the aquatic moss Fontinalis antipyretica L. ex. Hedw. Transplanted in a metal-contaminated rive. Environ. Technol. Lett. 5: 541-548.
    189. Mouvet, C. 1985. The use of aquatic bryophytes to monitor heavy metal pollution of freshwaters as illustrated by case studies. Verh Int Ver Limnol. 22: 2420-2425.
    190. Nedelkoska, T. V., Doran, P. M. 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Mingerals Eng. 13(5): 549-561.
    191. Nicks, L., Chambers, M.F. 1998. A pioneering study of the potential of phytomining for nickel. In: Brooks RR, ed. Plants that hyperaceumulate heavy metals. Wallingford: CAB International, 313-326.
    192. Nies, H. and Silver, S. 1995.Ion effux systems involved in bacterial metal resistances. J. Ind. Microbiol. 14: 186-199.
    193. Noctor, G., Foyer, C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279.
    194. Noraho, N. and Gaur, J.P. 1995. Effect of cations, including heavy metals, on cadmium uptake by Lemna polyrhiza L. Biometals. 8: 95-98.
    195. Norris, P.R. and Kelly, D.P. 1979. Accumulation of metals by bacteria and yeasts. Dev. Ind. Microbiol. 20: 299.
    196. Nwlson, N. 1999. Metal ion transporters and homeostasis. EMBO J. 18:4361-4371.
    197. Palmgren, M.G., Axelsen, K.B. 1998. Evolution of P-type ATPases. Bioch. Biophys. Acta 1365: 37-45.
    198. Palmgren, M.G., Harper, J.F. 1999. Pumping with P-type ATPases. J. Exp. Bot. 50: 883-893.
    199. Pan, A., Yang, M., Tie, F., Li, L. Chen, Z., Ru, B. 1994. Expression of mouse metallothionein-1-gene confers cadmium resistance in transgenic tobacco plants. Plant Mol. Biol. 24: 341-351.
    200. Patsilla, E., Kairavuo, M., Sersen, F. 2002. Excess coper predisposes photosystem Ⅱ to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol. 129:1359-1367.
    201. Paulsen, I.T., Saier-Jr, M.H. 1997. A novel family of ubiquitous heavy metal ion transport proteins. J. Memb. Bio. 156, 99-103.
    202. Pellet, D.M., Grunes, D.I., Kochian, L.V. 1995. Organic acid exudation as an aluminium tolerance mechanism in maize (Zea mays L.) Planta. 196: 788-795.
    203. Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Last, M.M., Garvin, D.F., Eide, D., Kochian, L.V. 2000. The molecular physiology of heavy metal transport in the Zn Cd hyperaccumulator Thlasp caerulescens. Proceedings of the National Academy of Sciences. USA 97: 4956-4960.
    204. Peng, K. J., Li, X.D., Luo, C.L., Shen, Z.G. 2006. Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. J. Environ. Sci. Health, Part A.41: 65-75.
    205. Pieta, L.F. 1988. Evolutionary response of plants to anthropogenic pollutants. Tre. Ecol. Evol. 3(9): 233-236.
    206. Pollard, A.J., Powell, K.D., Harper, F.A. Smith, J.A.C. 2002. The gentic basis of metals hyperaccumulation in plants. Crit. Rev. Plant Sci. 21 (6): 539-566.
    207. Purves, D.1985. Trace-element contamination of the environment. Elsevier, Amsterdam.
    208. Rahrnani, G.N.H., Sternberg, S.P.K. 1999. Bioremoval of lead from water using Lemna minor. Bioresour. Technol. 70: 225-230.
    209. Rai, U.N., Sinha, S., Tripathi, R.D., Chandra, P. 1995. Waste water treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol. Eng. 5: 5-12
    210. Rai, U.N., Tripathi, R.D., Vajpayee, P., Oandey, N., Ali, M.B., Gupta, D.K. 2003. Cadmium accumulation and its phytoxicity in Potamogeton pectinatus L. (Potamogetonaceae). Bull. Environ. Contam. Toxicol. 70: 566-575.
    211. Rea, P.A., Li, Z.S., Lu, Y.P., Drozdowicz, Y.M. 1998. From vacular GS-X pumps to multispecific ABC transporters. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 727-760.
    212. Rea, P.A. 1999. MRP subfamily ABC transporters from plants and yeast. J.Exp. Bot. 50: 895-913.
    213. Reddy, K.R., De Busk, W.E 1985. Nutrient removal potential of selected aquatic maerophytes. J. Environ. Qual. 14: 459-462.
    214. Reeves, R.D., Baker, A.J.M. 2000. Metal-accumulating plants. In: Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Raskin, I.; Ensley, B.D., Eds. John Wiley & Sons: New York; pp. 193-229.
    215. Robert, M., Saltde, D. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol, 8: 221-226.
    216. Roberts, S.K., Tester, M. 1995. Inward and outward K~+ selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Planta 8:811-825.
    217. Roberts, S.K., Tester, M. 1997. Permeation of Ca~(2+) and monovalent cations through an outwardly rectifying channel in maize root stellar cells. J. Exp. Bot. 48: 839-846.
    218. Robinsion, B.H., Brooks, R.R., Clothier, B.E. 1999. Soil Amendments Affecting Nickel and Cobalt Uptake by Berkheya coddii: Potengtial Use for Phytomining and Phytoremediation. Annu. Bot. 84: 689-694.
    219. Robinson B.H., Brooks R.R., Gregg, EE.H., Kirkman J.H. 1997.The potential of the high-biomass nickel hyperaccnmulator Berkheya coddii for phytoremediation and phytomining. J. Geoch. Explor. 60:115-126.
    220. Ross, S.M. editor. 1994. Toxic metals in soil-plant systems. United Kingdom: Wiley Chichester.
    221. Salt, D.E., Prince, R.C., Baker, A.J.M., Raskin, I., Picketing, I.J. 1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Thechnol. 33:713-717.
    222. Salt, D.E., Prince, R.C., Picketing, I.J., Raskin, I. 1995. Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109: 1426-1433.
    223. Salt, D.E., Rauser, W.E. 1995. Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107:1293-1301.
    224. Salt, D.E., Smith, R.D., Raskin, I. 1998. Phytoremediation. Annu. Rev. Plant Physiol. 49: 643-648.
    225. Salt, D.E., Wager, G.J. 1993. Cadmim transport across tonoplast of vesicles from oat roots. Evidence for a Cd~(2+)/H~+ antiport activity. J. Bio. Chem. 268: 12297-12302.
    226. Samecka-Cymerman, A., Kempers, A.J. 1996. Bioaccumulation of heavy metals by aquatic macrophytes around Wroctaw, Poland. Ecotoxicol. Environ. Saf. 35: 242-247.
    227. Samecka-Cymerman, A., Kempers, A.J., 2001. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci. Total Environ. 281: 87-98.
    228. Samecka-Cymerman, A., Kempers, A.J. 2004. Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicol. Environ. Saf. 59:64-69
    229. Sanger, S., Kneer, R., Wanner, G., Cosson, J.P., Deus-Neumann, B., Zenk, M.H. 1998. Hyperaccumulaton, complexation and distribution of nickel in Sebertia acuminate. Phytochemistry 43: 339-347.
    230. Sawidis, T., Chettri, M.K., Zachariadis, G.A., Stratis, J.A. 1995. Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicol Environ Saf. 32:73-80
    231. Schneider, I. A.H., Rubio, J., Smith, R. W. 2001. Biosorption of heavy metals onto plant biomass:exchange adsorption or surface precipitation? Int. J. Mineral Process. 62: 111-120.
    232. Schneider, I.A.H., Rubio, J. 1999. Sorpotion of heavy metal ions by the non-living biomass of freshwater macrophytes. Environ. Sci. Technol. 33:2213-2217.
    233. Schuzendubel, A., Nikoloa, P., Rudolf, C. 2002a. Cadmium and H_2O_2-induced oxidative stress in Populusx canescens roots. Plant Physiol. Biochem. 577-584.
    234. Schuzendubel, A., Polle, A. 2002b. Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351-1365.
    235. Sedlak, J., Lindsay, R.H. 1968. Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue by Ellman's reagent, Anal. Biochem. 25:192-208.
    236. Seregin, I.V., Ivanov, V.B. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 48: 606-630.
    237. Serrano, R.1989. Structure and function of plasma membrane ATPase. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 61-94.
    238. Shan, X.Q., Wang, H.O., Zhang, S.Z., Zhou, H.F., Zheng, Y., Yu, H., Wen, B. 2003. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165: 1343-1353.
    239. Shen, Z.G., Li, X.D., Chen, H.M., Wang, C.C. Chua H. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual. 31: 1893-1900.
    240. Shen, Z.G., Zhao, F.J., McGrath, S.P. 1997. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the northyperaccumulator Thlaspi ochroleucum [J]. Plant Cell Environ. 20: 898-906.
    241. Shigaki, T., Pittman, J.K., Hirschi, K.D. 2003. Manganese specificity determinants in the Arabidopsis metal/H~+ antiporter CAX2. J. Bio. Chem. 278: 6610-6617.
    242. Shiganai, T., Muller-Moule, P., Munekage, Y., Niyogi, K.K., Pilon, M. 2003. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. The Plant Cell 15: 1333-1346.
    243. Silver, S. 1996. Bacterial resistance to toxic metal ions-a VIEW. Gene. 179: 9-19.
    244. Singh, D.K., Tiwari, D.P., Salsena D.N. 1993. Removal of lead from aqueous solutions by chemically treated used tea leaves. Indian J. Environ. 35(3): 169-177.
    245. Sivaci, E.R., Sivaci, A., Srkmen, M. 2004. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere. 56:1043-1048.
    246. Solioz, M., Odermatt, A. 1995. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270:9217-9221.
    247. Solioz, M., Vulpe, C. 1996. CPx-type ATPases: a class of P-type ATPase that pump heavy metals. Trends Bioch. Sci. 21: 237-241.
    248. Song, W.Y., Sohn, E.J., Martinoia, E., Lee, Y.J., Yang, Y.Y., Jasinski, M. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21(8): 914-919.
    249. Steffens, J.C. 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant Mol. Biol. 41: 553-575.
    250. Stephan, U.W., Schmidke, L., Stephan, V.W., Scholz, G. 1996. The nicotinamine molecule is made to measure for complexation of metal micronutrients in plants. Biometals 9: 84-90.
    251. Sternberg, S.P.K., Dom, R.W. 2002. Cadmium removal using Cladophora in batch, semi-bacth and flow reactors. Bioresour. Thechnol. 81: 249-255.
    252. Steven, N.W. 2001. Hyperaccumulation of Zn by Thlaspi carulescens can ameliorate Zn toxicity in rhizosphere of cocroped Thlaspi arvense [J]. Environ. Sci. Technol. 35: 3237-3241.
    253. Stoltz, E., Greger, M. 2002. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. 47: 271-280.
    254. Takahashi, M., Nakanishi, H., Kawasaki, S., Nishiawa, N.K., Mori, S. 2001. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotinamine aminotransferase genes. Nat. Biotechnol. 19: 466-469.
    255. Tee, T.W., Khan, A.R.M. 1988. Removal of lead, cadmium and zinc by waste tea leaves. Environ. Technol. Lett. 9: 1223-1232.
    256. Theodoulou, F.L. 2000. Plant ABC transporters. Biochim. Biophys. Acta. 1465: 79-103.
    257. Thomine, S., Wang, R., Ward, J.M., Crawford, N.M., Schroeder, J.I. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, USA. 97: 4991-4996.
    258. Tie, B.Q., Yuan, M., Tang, M.Z. 2005. Phytolaacca americana L.: A new manganese accumulator plant. J Agro Environ Sci China. 24: 340-343.
    259. Tordoff, G.M., Baker, A.J.M., Willis, A.J. 2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41: 219-228.
    260. U S Environmental Protection Agency (1996) ECO update: ecotox thresholds. Intermittent Bulletin Vol 3 (2). Office of Emergency and Remedial Response, EPA, 540/F-95/038
    261. Uminska, R. 1993. Cadmium contents of cultivated soils exposed to contamination in Poland. Environ. Geochem. Health. 15: 15-19.
    262. Van der Zaal, B.J., Neuteboom, L.W., Pinas, J.E., Chardonnen, A.N., Sehat, H., Verkleij, J.A.C. Hooykaas, P.J.J. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 119:1047-1055.
    263. Van Ho, A., Ward, D.M., Kaplan, J. 2002. Transition metal transport in yeast. Annu. Rev. Microbio. 56: 237-261.
    264. Vangronsveld, J., Colpaer, J.V., Van Tichelen, K.K. 1996. Reclamation of bare industrial area contaminated by non-ferrous metals: physiochemical and biological evaluation of the durability of soil treatment and revegetation. Environ. Pollut. 94: 131-140
    265. Vasconcelos, L.A.T., Beta, C.G.G. 1993. Adsorption equilibra between pine bark and several ions in aqueous solution, 2. Cd (Ⅱ),Cr (Ⅲ) and H~+. Eur. Water Pollut Control. 3 (6): 29-39.
    266. Vassilev, A., Yordanov, I., Tsonev, T. 1997. Effects of Cd~(2+) on the physiological state and photosynthetic activity of young barley plants. Photosynthetica 34: 293-302.
    267. Vazquez, M.D., Barcelo, J., Poschenrieder, C., Madico, J., Hatton, P., Baker, A.J.M., Cope, G.H. 1992. Localization of zinc and cadmiu in Thlaspi caerulescens (Brassicaceae), a metallopte than can hyperzccumulate both metals. J. Plant Physiol. 140: 350-355.
    268. Vazquez, M.D., L6pez, J., Carballeira, A. 1999. Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecot. Environ. Safety. 44:12-24.
    269. Vazquez, M.D., Poschenrieder, C., Barcelo, J., Madico, J., Hatton, P., Baker, A.J.M., Cope, G.H. 1994. Compartment of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J. Presl. Bot. Acta. 107: 243-250.
    270. Veglio, F., Beolchini, F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44:301-316.
    271. Villaescusa, I., Martinez M., Miralles N. 2000. Heavy metal uptake from aqueous solution by cork and yohimbe bark wastes. J. Chem Technol. Biotechnol. 75: 812-816.
    272. Volesky, B. 1994. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14: 291-302.
    273. Von Wiren, N., Klair, S., Bansal, S., Briat, J.E, Khodr, H., Shiori, T. 1999. Nicotinamine chelates both Fe(Ⅲ) and Fe(Ⅱ) Implications for metal transport in plants. Plant Physiol. 119:1107-1114.
    274. Wagner, G.L. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron. 51: 173-212.
    275. Wang, C.C., Shen, Z.G, Li, X.D., Luo, C.L., Chen, Y.H., Yang, H. 2004. Heavy metal contamination of agricultural soils and stream sediments near a copper mine in Tongling, People's Republic of China. Bull. Environ. Contam. Toxicol. 73: 862-869.
    276. Wang, H.O., Shan, X.Q., Zhang, S.Z. 2003. Preliminary characterization of a light-rare-earth-element-binding peptide of a natural perennial fern Dicranopteris dichotoma. Anal. Bioanal. Chem. 376: 49-52.
    277. Wang, T.C., Weissman, J.C., Ramesh, G., Varadarajian, R., Benemann, J.R. 1996. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bull. Environ. Contamin. Toxicol. 57: 779-786.
    278. Wase, D.A.J., Forster, C.E 1997. Biosorbents for Metal Ions. Taylor and Francis, London.
    279. Weber, W.J., Morris, J.C. 1963. Kinetics of adsorption on carbon from solutions. J. Sanit. Engng. Div. Am. Soc. Civ. Eng. 89, 31-60.
    280. Wei, S.H., Zhou, Q.X., Wang, X., Zhang, K.S., Guo, G.L., Ma Lena, Q.Y. 2005. A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chinese Sci Bull 50(1): 33-39.
    281. Wenzel, W.W., Jockwer, F. 1999. Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environ. Pollut. 104: 145-155.
    282. Whitton, B.A., Say P.P., Wehr J.D. 1981.Use of plants to monitor heavy metals in river; heavy metals in Northern England. In: Say P.J. Whitton BA, editors. Environmental and biological aspects. Durham, England: University of Durham.
    283. Williams, L.E., Pittman, J.K., Hall J.L. 2000. Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta 1465: 104-126.
    284. WiseR.R., Naylor A.W. 1987. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83: 272-277.
    285. Woeste, K.E., Kieber, J.J. 2000. A strong loss-of-function mutation in RAN1 results in consyitive activation of the ethylene response pathway as well as a rosette-lethal phenotype. The Plant Cell. 12: 443-455.
    286. Wolterbeek, H.T., Van der Meer, A.J.G.M. 2001. Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L: radiotracer experiments with 76As, 109, 115Cd, 64Cu and 65, 69Zn. Sci. Total Environ. 287: 13-30.
    287. Wu, Z., Liang, F., Hong, B., Young, J.C., Sussman, M.R., Harper, J.F., Sze, H. 2002. An endoplasmic reticulum-bound Ca~(2+)/Mn~(2+) pump, ECA1, supports plant growth and confer tolerance to Mn~(2+) stress. Plant Physiol. 130:128-137.
    288. Xue, S.G., Chen, Y.X., Reeves, R.D., Bake, A.J.M., Lin, Q., Femando, D. 2004. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ. Pollut. 131:393-399.
    289. Yarnaguchi, H., Nishizawa, N.K., Nakanishi, H., Mori, S. 2002. IDI7, a new iron-regulated ABC transporter from bareley root, localizaes to the tonoplast. J. Exp. Bot. 53: 727-735.
    290. Ye, Z.H., Baker, A.M.J. et al. 1997. Zinc, lead and cadmium tolerance, uptake and accumulation by the commom reed, Phragmites australis (Cav.) Trin. Ex Steudel. Ann. Bot. 80: 363-370.
    291. Zayed, A., Gowthaman, S., Terry, N. 1998. Phytoaccumulation of trace elements by wetland plants: Ⅰ. duckweed. J. Environ. Qual. 27: 715-721.
    292. Zayed, A., Terry, N. 1992. Selenium volatilization in Broccoli as influenced by sulfate suppy. J. Plant physiol. 140: 646-652.
    293. Zhang, W.H., Cai, Y. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ. 300:167-177.
    294. Zhao, F.J., Hamon, R.E., Lombi, E., Mclaughlin, M.J. 2002. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 53: 535-543.
    295. Zhao, F.J., Lombi, E., McGrath, S.P. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249: 37-43.
    296. Zhao, F.J. Lombi, E., Breedon, T. 2000. Zinc hyperaccumulation and cellular distribution in Arabidop sishalleri [J]. Plant, Cell Environ. 23: 507-514.
    297. Zhao, F.J., McGrath, S.P., Crosland, A.R. 1994. Comparison of three wet digestion methods for the determination of plant sulphur by coupled plasma atomic emission spectrometry (ICP-ASE). Commun. Soil Sci. Plant Anal. 25,407-418.
    298. Zhao, F.J., Shen, Z.G., McGrath, S.P. 1998. Solubility of zinc and interactions between zinc and phosphorus in hyperaccumulator Thlaspi caerulescens [J]. Plant, Cell Environ. 21: 108-114.
    299. Zhao, H., Eide, D. 1996. The yeast ZRT 1 gene encodes the zinc transporter of a high affinity up take system induced by zinc limitation [J]. Proc. Natl. Acad. Sci. USA., 93: 2454-2458.
    300. Zhao, H., Eide, D. 1996. The ZRT 2 gene encodes the low affinity zinc transporter in Saccharomy cescerevisiae [J]. J. Biol. Chem. 271:2303-2310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700