用户名: 密码: 验证码:
氮化硼的半导体特性和紫外光电探测器的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硼(BN)材料具有立方氮化硼(cBN)、六方氮化硼(hBN)、三方氮化硼(rBN)、纤维锌矿结构氮化硼(wBN)四种晶体结构,其中cBN和hBN因其宽的禁带宽度、优异的物化性质和半导体性质备受研究者们的关注。它们在微电子及光电子器件等方面具有广泛的应用前景。目前研究的重点主要是制备高质量的BN单晶及薄膜材料,器件方面的研究较少,特别是对BN深紫外光电探测器的研究还处于起步阶段。本文主要对cBN的表面极性、掺杂特性、金半接触特性、BN薄膜的制备和性质、以及BN紫外光电探测器的设计和模拟等进行了一系列基础研究,取得的主要研究结果如下:
     (1)cBN单晶表面极性研究
     根据所用cBN单晶样品具有颜色分区的特性,发现了一种利用显微镜观察即可区分cBN晶体{111}B面和{111}N面的方法。{111}N面的生长扇区聚集很多缺陷和杂质,成为色心,呈现琥珀色,而{111}B生长扇区的缺陷和杂质很少,因而是无色透明的。与{111}B面相比,{111}N面具有更快的腐蚀速度和更大的表面漏电流,其Raman光谱也因为杂质和缺陷的扰动而表现出无序活性的Raman散射(disorder-activated Raman scattering,DARS)现象。研究结果均表明{111}B面具有更好的晶体完整性和化学稳定性。
     (2)cBN晶体的掺杂研究
     采用高温热扩散工艺对cBN晶体进行了Si掺杂研究。典型的掺杂温度为850—950℃,掺杂时间为4—5h。XPS谱分析表明晶体表层的Si含量可达2.7%以上。Si主要占据B位,成为替位式施主杂质。测量了掺杂后的cBN样品的杂质激活能,激活能普遍大于0.4eV,因而Si杂质室温下很难电离,掺杂后的cBN样品依然具有较高的电阻率,其I-V特性曲线符合空间电荷限制电流模型。可以通过控制掺杂时间和掺杂温度来控制杂质的浓度和电离能。掺杂时间越长、掺杂温度越高,杂质电离能越低。
     (3)cBN晶体的金半接触特性研究
     采用真空蒸镀的方法在cBN样品上制作了Au、Al电极,采用磁控溅射方法在cBN样品上制作了Cr、Ti等电极,研究了这些金属电极以及金浆、银浆与cBN样品的接触类型。结果表明Au、金浆和银浆可与cBN晶体形成欧姆接触,而Al、Cr、Ti与cBN单晶的接触为肖特基接触。对Cr/Au金属电极分别在450℃、900℃退火20分钟,金属与cBN单晶间的接触质量得到了改善。
     (4)BN薄膜制备及表征
     采用射频磁控溅射方法,在N型Si衬底和石英玻璃衬底上制备了BN薄膜,采用FTIR、UV-Via谱等对薄膜进行了表征。FTIR谱结果表明在Ar/N2=4:1时,BN薄膜生长速率最快;Ar/N2=1:1时,得到了六方相含量为80%以上的薄膜,此薄膜的光学带隙为5.8eV,185nm处吸收系数为40000cm-1。但是此BN薄膜不稳定,暴露在潮湿的空气中最终会转化为硼酸晶体,导致薄膜碎裂和脱落。为了得到稳定的宽带隙薄膜,在BN薄膜生长过程中引入了Fe元素,制备出Fe-B-N-O薄膜,XPS结果表明薄膜主要包含Fe-N-O、B-N-O和Fe-O等化学键。在溅射功率150W、衬底温度300℃、溅射时间120min,纯氩气条件下得到的Fe-B-N-O薄膜在可见光区具有良好的透光性,光学带隙为5.32eV,185nm处吸收系数达到100000cm-1,并且与N型Si衬底形成的异质结构具有良好的整流特性,整流比达到103量级。Fe-B-N-O薄膜结构稳定,与衬底结合稳固,在紫外光区有很强的的吸收,适用于紫外光电探测器的制作。
     (5)cBN紫外光电探测器的设计与模拟研究
     建立了cBN材料的参数库及器件模拟的物理模型,研究了掺杂浓度、电极结构对cBN紫外光电探测器性能的影响。模拟结果显示在外加电压小于5V的较低电压下,材料掺杂浓度为1013cm-3的器件有较高的光响应;而电压大于5V时,掺杂浓度为1014cm-3器件的光响应率更高。电极宽度3μm、电极间距为10μm的器件具有低的暗电流和高的光、暗电流比。对于电极宽度和电极间距相等的器件,随着电极尺寸的增加光电流的变化不大,而暗电流在迅速降低。
     利用蒸镀、溅射和光刻技术分别制备了两种具有MSM交叉指状电极结构的cBN紫外探测器原型器件,一种是以Au为电极,为光电导器件,另一种以Cr为电极,为光伏型器件。以30W氘灯为光源,测量了两种cBN探测器件的紫外光电响应,前者的光电流与暗电流比为2~3,而后者的光电流与暗电流比值达到56,与模拟结果一致。由于cBN单晶含有较多缺陷和深能级杂质,cBN单晶紫外探测器的性能有待进一步改善。
Boron nitride is a poly-phase system of different stacking/layered structure:hexagonal boron nitride (hBN),cubic boron nitride (cBN),wurtzitic boron nitride(wBN) and rhombohedral boron nitride (rBN). cBN and hBN attracted researcher’sattention because of their excellent physicochemical properties, semiconductorproperties and wide bandgap. They have broad potential applications in the fields ofmicroelectronic and optoelectronic devices. At present, the major research is focusedon the preparation of high quality BN single crystals and thin films. Less attention ispaid to devices, especially to the BN based deep ultraviolet (UV) photodetectors. Inthis dissertation, primary studies on the surface polarity, doping, metal-semiconductorcontact of cBN, preparation and property of BN thin films, and design and simulationof BN based UV photodetectors, etc. were carried out. The main research results arelisted as follow:
     (1) The studies of the surface polarity of cBN single crystals. According tothe truth that cBN crystal samples have obvious color zoning, a simple method ofdistinguishing {111}B and {111}N faces by microscopy was found. The defectsand impurities incorporate in {111}N sectors serving as the amber color centers,while very little defects and impurities exist in {111}B sectors, so {111}B sectorsare colorless. Compared with {111}B faces,{111}N faces have faster etch rateand larger surface leakage current, and the disorder-activated Raman scatteringhappens in {111}N faces because of the high density of defects and impurities. Allresults indicate that {111}B faces have better crystalline and chemical stability.
     (2) The studies of doping cBN crystals. Si was doped into cBN crystals bythermal diffusion at high temperature. The typical doping temperature is850~950℃,and the doping time is about4~5hours. XPS analysis indicated that the content of Siimpurity at the surface layer of cBN samples was more than2.7%. Si mainly occupiedB lattices and became substitutional donor impurities. The measured activation energyof doped cBN samples were larger than0.4eV, so it was difficult for Si impurities tobe ionized at room temperature, and the doped cBN samples still had very high resistivity and the mechanism of space charge limited current. The activation energyand density of Si impurity can be controlled by the doping time and temperature. Thelonger the doping time is, or the higher the doping temperature is, the lower theactivation energy becomes.
     (3) The studies of metal-semiconductor contact of cBN crystals. Au and Alelectrodes were evaporated on the cBN samples in vacuum. Cr and Ti electrodes weredeposited on the cBN samples by RF magnetron sputtering. The contact properties ofthese metal electrodes, as well as Au pastes and Ag pastes, with cBN samples wereinvestigated. The results revealed that Al, Cr, Ti can formed Schottky contacts withcBN crystals, and Au, Au paste or Ag paste were able to form the ohmic contacts withcBN. After vacuum annealing at450℃and900℃for20minutes respectively, thecontact quality of Cr/Au with cBN was improved.
     (4) The preparation and characterization of BN films. BN films weredeposited on the substrates of N-type Si and quartz glass by using RF magnetronsputtering, and were characterized by FTIR, UV-Via spectra etc. FTIR resultsrevealed that the fastest growth rate of BN films obtained when Ar:N2was4:1. WhenAr:N2was1:1, the BN films including more than80%hBN phase were attained. Theoptical bandgap of this film was about5.8eV, and the absorption factor was40000cm-1at185nm. However, this BN film was unstable and could become intoboric acid in moist air, which will make the films break and separate from thesubstrate. In order to obtain the stable film with wide bandgap, Fe was added in thegrowth process of BN films, and FeBNO films were achieved. XPS results showedthat the FeBNO films mainly included Fe-N-O, B-N-O, and Fe-O etc. chemical bonds.The FeBNO films were deposited for120minutes with the sputtering power of150W,the substrate temperature of300℃in pure argon atmosphere. The FeBNO films weretransparent for the visible light, and the optical bandgap and the absorption factors ofthe films were5.32eV and100000cm-1at185nm respectively. Moreover, theheterojunction between the FeBNO films and N-type Si substrate had goodrectification characteristics, the rectification ratio reached103. The FeBNO films arevery stable, tightly bond with the substrate, and have very strong absorption in UVregion, therefore, they are suitable to manufacture the UV photodetectors.
     (5) The design and simulation of cBN UV photodetectors. A parameter libraryof cBN single crystal and a model of a cBN MSM UV photodetector are established with the simulation package Atlas. The simulation results showed that under less than5V voltage, the UV detector with doping concentration of1013cm-3had highresponsibility. When the voltage was greater than5V, the photodetector with dopingconcentration of1014cm-3have higher responsibility. The device with3μm electrodewidth and10μm electrode spacing had the lowest dark current and the highest ratioof photocurrent to dark current. As for the devices with the same electrode width andspacing, the dark current reduced rapidly with the increase of the size of electrodes,but the photocurrent was almost the constant.
     Two kinds of MSM cBN UV photodetectors with interdigitated finger electrodeswere fabricated by evaporation, sputtered and lithography. One was thephotoconductive device with Au electrodes, and the other was photovoltaic devicewith Cr electrodes. The dark currents and UV photoresponses of the two devices weremeasured. The ratio of photocurrent to dark current the former was only2-3, as forthe latter, the ratio reached56, which was in accordance with the simulation. Becauseof the bad quality of cBN crystals, the performances of cBN UV photodetectors needto be improved further.
引文
[1] R. S. Pease. Crystal Structure of Boron Nitride [J]. Nature,1950,165:722-723.
    [2] T Sato. Influence of Monovalent Anions on the Formation of RhombohedratBoron Nitride, rBN [J]. Jpn Acad Ser B,1985,61:459-463.
    [3] O.Mishima, J.Tanaka and S.Yamaoka, High-temperature cubic boron nitride pnjunction diode made at high pressure [J]. Science,1987,238:181-183.
    [4] F. P. Bundy and R. H. Wentorf, Direct Transformation of Hexagonal Boron Nitrideto Denser Forms [J]. J Chem Phys,1963,38:1144-1149.
    [5] Batsanov.S.S, Blokhina.G.E, and Deribas.A.A, The effects of explosions onmaterials [J]. Journal of Structural Chemistry,1965,6:209-213.
    [6] A.V.Kurdiumov, A.N.A.N. Piliankevii, Phase transformations in carbon and boronnitride (in Russian) Naukova Dumka, Kiev,1979.
    [7]朱建勇.在石英玻璃上MPCVD制备金刚石薄膜.武汉理工大学硕士学位论文.2002,5:9~12.
    [8] Kilgus C C. Multi-element fractional turn helices [J]. Antennas Propagation1968,16:499-500.
    [9] Kilgus C C.Resonant quadrifilar helices [J]. Antennas Propagation,1969,17:349-351.
    [10] Kilgus C C.Resonant quadrifilar helices design [J].Microwave J,1970,18:49-54.
    [11] T. Ishii, T. Sato, J. Cryst. Growth of nitride crystals, BN, AlN and GaN by usinga Na flux [J]. Diamond Relat. Mater,1983,61:512~515.
    [12] M. Kuhr, S. Reinke, W. Kulisch, Nucleation of cubic boron nitride (cBN) withion-induced plasma-enhanced CVD [J]. Diamond Relat. Mater.1995,4:375~380.
    [13]王光祖.立方氮化硼合成与应用[M].河南:河南科学技术出版社,1995.10
    [14] Y. Chen, J. Fitz Gerald, J.S. Williamsa, S. Bulcockd Synthesis of boron nitridenanotubes at low temperatures using reactive ball milling [J].Chemical PhysicsLetters1999,299(3–4):260–264.
    [15]赵凤鸣,黄运衡.热解氮化硼(PBN)坩埚的研制及在分子束外延中的应用[J].稀有金属,1985,9:46.
    [16] Collin R E. Field Theory of Guided Waves [M]. New York:The Institute ofElectrical and Electronics,1991.
    [17] Watanabe K, Taniguchi.T and Kanda H, Direct-bandgap properties and evidencefor ultraviolet lasing of hexagonal boron nitride single crystal [J]. NatureMaterials,2004,3:404-409.
    [18] B. Arnaud, S. Lebe`gue, P. Rabiller, and M. Alouani, Huge Excitonic Effects inLayered Hexagonal Boron Nitride [J]. Physical Review Letters,2006,96:026402-1~026402-4
    [19] D A Evans,A G McGlynn and B M Towlson, Determination of the opticalband-gap energy of cubic and hexagonal boron nitride using luminescenceexcitation spectroscopy.[J]. Journal of Physics: Condensed Matter,2008,20:075233.
    [20] Z. Remes, M. Nesladek and K. Haenen, The optical absorption andphotoconductivity spectra of hexagonal boron nitride single crystals [J]. phys. stat.sol.(a),2005,202(11):2229–2233.
    [21] Takashi Sugino, Kazuhiko Tanioka, Seiji Kawasaki, Shirafuji. Electron emissionfrom nanocrystalline boron nitride films synthesized by plasma-assisted chemicalvapor deposition [J]. Diamond and Related Materials,1998,7(2-5):632--635.
    [22] B.He, W.J.Zhang, Z.Q.Yao, p-type conduction in beryllium-implanted hexagonalboron nitride flms [J]. Appl. Phys. Lett2009,95:252106-1-252106-3.
    [23] G.F.Cardinale, P.B. Mirkarimi, K.F. McCarty, E.J.Klaus, D.L.Medlin, W.M.Clift, D.G. Howitt, Effects of ambient conditions on the adhesion of cubic boronnitride films on silicon substrates [J].Thin Solid Films,1994,253:130-135.
    [24] Rand M.J and Roberts J.F J.Electrochem.Soc.,1968,115:423.
    [25] Chen G.H, Zhang X.W, Wang B, Song X.M and Yan H. Optical absorption edgecharacteristics of cubic Boron nitride thin films [J].Appl.Phys.Lett,1999,75:10-12.
    [26] A.J.Noreika and M.H.Francombe, Structural, Optical, and Dielectric Propertiesof Reactively Sputtered Films in the System AlN–BN [J]. J. Vac. Sci. Technol.1969,6:722-724.
    [27] Deng Jin-Xiang and Zhang Xiao-Kang,Optical properties of hexagonal boronnitride thin films deposited by radio frequency bias magnetron sputtering.[J].JChinese Physics B,2009,18(09):4013-4018.
    [28] R.J. Nemanich, S.A. Solin and R.M. Martin, Light scattering study of boronnitride microcrystals [J].Phys. Rev. B,1981,23:6348-6356.
    [29] Ming Lu, A. Bousetta and A. Bensaoula,Electrical properties of boron nitride thinfilms grown by neutralized nitrogen ion assisted vapor deposition.[J].AppliedPhysics Letters,1996,68:622-624.
    [30] R.Dahal, J.Li and S.Majety, Epitaxially grown semiconducting hexagonal boronnitride as a deep ultraviolet photonic material [J]. Applied Physics Letters,2011,98:211110.
    [31] K. Nose, H. Oba, and T. Yoshida.Electric conductivity of boron nitride thin filmsenhanced byin situ doping of zinc [J]. Applied Physics Letters,2006,89:112124.
    [32] B. He, W. J. Zhang and Z. Q. Yao,p-type conduction in beryllium-implantedhexagonal boron nitride films [J]. Applied Physics Letters,2009,95:252106.
    [33] F.J.Yang, H.Wang and H.B.Wang, microstructure evolution, magnetic andmechanical properties of FePt/B4C multifunctional multilayer composite films [J].Journal of Physics D:Applied Physics,2007,40:6735-6739.
    [34] L. Vel, Demazeau, and Etourneau J, Cubic boron notride: Synthesis,physicochemical properties and application [J]. Materials Science Engineering B,1991,10:149-164.
    [35] Yu Z, Inagawa K, and Jin Z. Tribological properties of cBN coating in vacuum athigh temperature [J]. Surface and Coatings Technology,1994,70:147.
    [36] Park K.T, Terakura K, Hammada N, Band-structure calculations for boronnitrides with three different crystal structures [J], Journal of Physics C: SolidState Physics,1987,20:1241-1251.
    [37] Gardinier C.F, Physical properties of superabrasives [J]. American CeramicSociety Bulletin,1988,67:1006-1009.
    [38] Wakatsuki M, Ichinose K, Aoki T, Synthesis of polycrystalline cubic BN [J].Materials Research Bulletin,1972,7:999-1003.
    [39] DeVries R.C. Cubic boron nitride: Handbook of properties Compiler: USA,4225488[P/OL].1972-06-01.
    [40] Solozhenko V L., On the Phase Diagram of Boron Nitride Dokl. Akad. Nauk.SSSR1988,301:147-149.
    [41] Landolt-Bornstein,New Series,vol.3,Madelung O,editor.Berlin:Springer;1972.
    [42] Wentorf R H.[J]. Chemical Engineering,1961,16:177.
    [43] Tani E,Soma T,SawaokaA,Saito S. Jpn JAppl Phys,1971,10:1605.
    [44] Kobayashi T, Susa K, and Taniguchi S. Pressure and temperature stability regionof cubic BN in the presence of ammonium borate [J]. Materials Research Bulletin1977,12:847-852.
    [45] Rodriguez-Hernandez P, Gonzalez-Diaz M, and Munoz A. Electronic andstructural properties of cubic BN and BP [J]. Physical Review B,1995,51:14705-14708.
    [46] Michael P. Surh, Steven G. Louie, and Marvin L. Cohen. Quasiparticle energiesfor cubic BN, BP, and BAs [J]. Phys. Rev. B,1991,43:9126–9132.
    [47] A Chayahara, H Yokoyama, Y Osaka, M Fujisawa, Reflectance spectra of BNmaterials in the vacuum ultraviolet [J]. Jpn JAppl Phys,1988,27:440-441.
    [48] H Yokoyama, M Okamoto and T Hamada, Imaginary Part of the DielectricFunction of Sintered and Microcrystalline Cubic Boron Nitride [J].Jpn J ApplPhys,1989,28:555-556.
    [49] N Miyata, K Moriki and O Mishima, Optical constants of cubic boron nitride [J].Phys Rev B,1989,40:12028-12029.
    [50] P. Gielisse, S.S. Mitra and J.N. Plendl, Lattice infrared spectra of boron nitrideand boron monophosphide [J]. Phys. Rev,1967,155:1039–1046.
    [51] D.R. Wiff, R. Keown, Energy Bands in Cubic Boron Nitride [J]. J. Chem. Phys,1967,47:3113–3119.
    [52] V.A. Fomichev, M.A. Rumsh, Investigation of X-ray spectra of hexagonal andcubic boron nitride [J]. Journal of Physics and Chemistry of Solids,1968,29:1015–1024.
    [53] R.M. Chrenko, Ultraviolet and infrared spectra of cubic boron nitride [J].SolidState Commun,1974,14:511–515.
    [54] A. Zunger, A.J. Freeman, Ab initio self-consistent study of the electronicstructure and properties of cubic boron nitride [J]. Phys. Rev. B,1978,17:2030–2042.
    [55] Y.F. Tsay, A. Vaidyanathan and S.S. Mitra,Electronic structure and opticalproperties of cubic BN [J]. Phys. Rev. B,1979,19:5422–5428.
    [56] R. Dovesi, C. Pisani, P. Delarole, Exact-exchange Hartree-Fock calculations forperiodic systems. IV. Ground-state properties of cubic boron nitride [J]. Phys. Rev.B,1981,24:4170–4176.
    [57] C. Prasad, J.D. Dubey, Phys. Electronic Structure and Properties of Cubic BoronNitride [J]. Stat. Sol. B,1984,125:629–638.
    [58] M.Z. Huang, W.Y. Ching, J. Phys. Chem. Solids46(1987)987–995
    [59] K.T. Park, K. Terakura, N. Hamada, Band-structure calculations for boronnitrides with three different crystal structures [J]. J. Phys. C: Solid State Phys,1987,20:1241–1251.
    [60] P.E. Van Camp, V.E. Van Doren, J.T. Devreese,Ground State and ElectronicProperties of Silicon Carbide and Boron Nitride [J].Phys. Stat. Sol.B,1988,146:573–587.
    [61] P.E. van Camp, V.E. van Doren, J.T. Devreese, Pressure dependent properties ofcubic boron nitride [J], Solid State Commun,1989,71:1055–1058.
    [62] Y.N. Xu, W.Y. Ching, Calculation of ground-state and optical properties of boronnitrides in the hexagonal, cubic, and wurtzite structures [J].Phys. Rev. B,1999,44(I):7784–7798
    [63] A. Onodera, M. Nakatani, M. Kobayashi, Y. Nisida, Pressure Dependenceof the Optical-Absorption Edge of Cubic Boron Nitride [J]. Phys. Rev.B,1993,48(II):2777–2780.
    [64] A. Agui, S. Shin and M. Fujisawa,Resonant soft-x-ray emission study in relationto the band structure of cBN [J].Phys. Rev. B,1997,55(II):2073–2078.
    [65] D. Vogel, P. Kruger, J. Pollman, Structural and electronic properties of group-IIInitrides [J]. Phys. Rev. B,1997,55(I):12836–12839.
    [66] G. Chen, X. Zhang and B. Wang, Optical absorption edge characteristics of cubicboron nitride thin films [J]. Appl. Phys. Lett,1999,75:10–12.
    [67] K. Lawniczak-Jablonska, T. Suski and I. Gorczya, Electronic states in valenceand conduction bands of group-III nitrides: Experiment and theory [J]. Phys. Rev.B,2000,61(II):16623–16632.
    [68] Levan Chkhartishvili Quasi-classical approach: Electronic structure of cubicboron nitride crystals [J]. Journal of Solid State Chemistry,2004,177:395–399.
    [69] S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson,Resonant Raman scattering in cubic and hexagonal boron nitride [J].PhysicalReview B,2005,71:205201
    [70] R.C.Devries,cubic boron nitride:Hanbook of properties,in Rep.72CRD178,General Electric Company1972
    [71] R.H.Wentrof, Cubic Form of Boron Nitride [J].J.of Chem.Phys,1962,36:19909.
    [72] O.Mishima, J.Tanaka and S.Yamaoka, High-temperature cubic boron nitride pnjunction diode made at high pressure [J]. Science,1987,238:181-183.
    [73] M.Z.Karim and DC.Camerom and M.S.J.Hashmi, Characterization ofmixed-phase BN thin films deposited by plasma CVD [J]. Surf coat Technol,1993,60:502-505.
    [74] C.Ronning, E.Dreher and H.Feldermann, Electrical properties and thermalstability of ion beam deposited BN thin films [J]. Diamond and Related Materials,1997,6:1129-1134.
    [75] T.Taniguchi, J.Tanaka and O.Mishima, High pressure synthesis ofsemiconducting Be-doped polycrystalline cubic boron nitride and its electricalproperties [J]. Appl.Phys.Lett,1993,62:576-578.
    [76] O.Mishima, K.Era and J.Tanaka, Ultraviolet light‐emitting diode of a cubicboron nitride p-n junction made at high pressure [J]. Appl.Phys.Lett,1988,53:962-964.
    [77] H.Tomokage, N.Nomura and T.Taniguchi, Electron-beam-induced currents onberyllium-doped cubic boron nitride single crystal [J]. Diamond and RelatedMaterials,2000,9:605-608.
    [78] T.Taniguchi, S.Koizumi and K.Watanabe, High pressure synthesis of UV-lightemitting cubic boron nitride single crystals [J]. Diamond and Related Materials,2003,12:1098-1102.
    [79] C.X.Wang, G.W.Yang and T.C.Zhang, High-quality heterojunction betweenp-type diamond single-crystal film and n-type cubic boron nitride bulk singlecrystal [J].Appl.Phys.Lett,2003,83:4854-4856.
    [80] L.M.Gameza, V.B.Shiplo and V.A.Savchuk, Investigation of sulphur additions onkinetic processes of cubic boron nitride crystallization in the Li-B-N-H system [J].Diamond and Related Materials,1998,7:32-34.
    [81] B.He, W.J.Zhang and Y.S.Zou, Electrical properties of Be-implantedpolycrystalline cubic boron nitride films [J]. Appl. Phys. Lett,2008,92:102108.
    [82] K. Nose and T. Yoshida.Semiconducting properties of zinc-doped cubic boronnitride thin films [J]. Journal ofApplied Physics,2007,102:063711.
    [83] I. Bello, Y.M. Chong and Q. Ye, Y. Yang, Materials with extreme properties:Their structuring and applications [J].Vacuum,2012,86:575-585.
    [84] H. Yin, I. Pongrac, P. Ziemann, Electronic transport in heavily Si doped cubicboron nitride films epitaxially grown on diamond(001)[J]. J. Appl. Phys,2008,104:023703.
    [85] K. Kojima, K. Nose, M. Kambara, T. Yoshida, Effects of magnesium doping ongrowth and electric conductivity of nanocrystalline cubic boron nitride thin films[J]. J. Phys. D: Appl. Phys,2009,42:055304.
    [86] K. Nose, T. Yoshida, Semiconducting properties of zinc-doped cubic boronnitride thin films [J]. J. Appl. Phys,2007,102:063711.
    [87] C.X. Wang, G.W. Yang, T.C. Zhang, High-quality heterojunction between p-typediamond single-crystal film and n-type cubic boron nitride bulk single crystal [J].Appl. Phys. Lett.,2003,83:4854-4856.
    [88] C.X. Wang, H.W. Liu and X. Li, Preparation of ohmic n-type cubic boron nitridecontacts [J]. J. Phys. Condens. Matter,2002,14:10937-10940.
    [89] X.W. Zhang, Y.J. Zou and H. Yan, Electrical properties and annealing effects onthe stress of RF-sputtered c-BN films [J].Mater. Lett,2000,45:111-115.
    [90] A.R. Phani, S. Manorama and V.J. Rao, n-type conductivity in c-BN filmsdeposited by microwave plasma-assisted chemical vapour deposition[J].Semiconductor Science.Technology,1995,10:1520-1522.
    [91] K. Nose, H.S. Yang, T. Yoshida, Electrical characterization of p-type cubic boronnitride/n-type silicon heterojunction diodes [J]. Diamond and Related Materials,2005,14:1297-1301.
    [92] K. Teii, T. Hori, Y. Mizusako, S. Matsumoto, Origin of Rectification in BoronNitride Heterojunctions to Silicon [J]. ACS Appl. Mater. Interfaces,2013,5:2535-2539.
    [93] A. Soltani, H. A. Barkad and M. Mattalah,193nm deep-ultraviolet solar-blindcubic boron nitride based photodetectors [J]. APPLIED PHYSICS LETTERS,2008,92:053501.
    [94] J. Li, S. Majety, R. Dahal, W. P. Zhao, J. Y. Lin, and H. X. Jiang, Dielectricstrength, optical absorption, and deep ultraviolet detectors of hexagonal boronnitride epilayers [J]. APPLIED PHYSICS LETTERS,2012,101:171112.
    [95] H.C.Gatos and M.C.Lavine, Characteristics of the {111} Surfaces of the III–VIntermetallic Compounds [J]. J.Electrochem.Soc,1960,107:427-433.
    [96] H.C.Gatos, P.L.Moody and M.C.Lavine, Growth of InSb Crystals in the <111>Polar Direction [J]. J.Appl.Phys,1960,31:212.
    [97] S.G.Ellis, On the Growth of Gallium Arsenide Crystals from the Melt[J].J.Appl.Phys,1959,30:947-948.
    [98] R.K.Mueller and R.L.Jacobson,Growth Twins in Indium Antimonide[J].J.Appl.Phys,1961,32:550-551.
    [99] J.W.Faust, Jr. And A.Aagar, Effect of the Polarity of the III‐V IntermetallicCompounds on Etching [J].J.Appl. Phys,1960,31:331-333.
    [100] D.Haneman, Surface Structures and Properties of Diamond-StructureSemiconductors [J].Phys.Rev,1961,121:1093-1100.
    [101] T. Taniguchi, S. Yamaoka, Spontaneous nucleation of cubic boron nitride singlecrystal by temperature gradient method under high pressure [J]. J. Crystal Growth,2001,222:549-557.
    [102] T. Taniguchi, T. Teraji and S. Koizumi, Appearance of n-type semiconductingproperties of cBN single crystals grown at high pressure [J].Jpn. J. of Appl. Phys,2002,41:L109-L111.
    [103] W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, B. Rauschenbach,Raman scattering in ion-implanted GaN [J]. Appl. Phys. Lett.,1998,72:2589-2591.
    [104] O. Mishima, J. Tanaka, S. Yamaoka, and O. Fukunaga, High-temperature cubicboron nitride p-N junction diode made at high pressure [J].Science,1987,238:181-183.
    [105] O. Mishima, K. Era, J. Tanaka, and S. Yamaoka, Ultraviolet light-emitting diodeof a cubic boron nitride pn junction made at high pressure [J].Appl. Phys. Lett.,1988,53:962-964.
    [106] T. Taniguchi, K. Watanabe, S. Koizumi, I. Sakaguchi, T. Sekiguchi, and S.Yamaoka, Ultraviolet light emission from self-organized p–n domains in cubicboron nitride bulk single crystals grown under high pressure [J]. Appl. Phys. Lett.,2002,81:4145-4147.
    [107] B. He, W. J. Zhang, Y. S. Zou, Y. M. Chong, Q. Ye, A. L. Ji, Y. Yang, I. Bello, S.T. Lee, and G. H. Chen, Electrical properties of Be-implanted polycrystallinecubic boron nitride films [J]. Appl. Phys. Lett.,2008,92:102108.
    [108] K. Kojima, K. Nose, M. Kambara and T. Yoshida, Effects of magnesium dopingon growth and electric conductivity of nanocrystalline cubic boron nitride thinfilms [J]. J. Phys. D: Appl. Phys.,2009,42:055304.
    [109] K. Nose and T. Yoshida, Semiconducting properties of zinc-doped cubic boronnitride thin films [J]. J. Appl. Phys.,2007,102:063711.
    [110] X. Deng, Y. Qin, L. Kong, X.-L. Yang, T. Li, W.-P. Zhao, and P. Yang, Theelectrical properties of sulfur-implanted cubic boron nitride thin films [J]. Chin.Phys. B21(2012)047202.
    [111] C.-X. Wang, C.-X. Gao, T.-C. Zhang, H.-W. Liu, X. Li, Y.-H. Han, J.-F. Luo,and C.-X. Shen, Preparation of p-n Junction Diode by B-Doped Diamond FilmGrown on Si-Doped c-BN [J]. Chin. Phys. Lett.,2002,19:1513-1515.
    [112] W. Ding, L. Li, L. Zhang, D. Ju, S. Peng, and W. Chai, An XPS study on thechemical bond structure at the interface between SiO(x)N(y) and N dopedpolyethylene terephthalate.[J]. J. Chem. Phys.,2013,138:104706.
    [113] C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, Handbook of X-rayPhotoelectron Spectroscopy, Perkin-Elmer Corp., Physical Electronics Div.,Minnesota,1979, p52.
    [114] M. A. Sobolewski, C. R. Helms, X‐r ay photoelectron spectroscopy and Augerspectroscopy studies of thin silicon nitride films thermally grown on silicon [J].J.Vac. Sci. Technol. A,6(1988)1358.
    [115] M.A. Mannan, M. Nagano, K. Shigezumi, T. Kida, N. Hirao, and Y. Baba,Characterzation of Boron Carbonnitride (BCN) Thin Films Deposited byRadiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition[J]. Am. J. Appl. Sci.,2007,5:736-741.
    [116] C. Ronning, A. D. Banks, B. L. McCarson, R. Schlesser, Z. Sitar, R. F. Davis, B.L. Ward, R. J. Nemanich, Structural and electronic properties of boron nitride thinfilms containing silicon [J]. J. Appl. Phys.,1998,84:5046.
    [117] S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova, and I. Rashkov,Fullerene core star-like polymers-1. Preparation from fullerenes andmonoazidopolyethers [J]. European Polymer Journal,1998,34:905-915.
    [118] G.Lin. Ma, Y.M. Zhang, Y.M. Zhang, and Z.F. Ma, The study of optimal fittingparameter for C1s spectra of SiC surface [J]. Acta Phys. Sin.,2008,57(7):4125-4129.
    [119] C. Guimon, D. Gonbeau, G. Pfister-Guillouzo, O. Dugne, A. Guette, R. Naslain,and M. Lahaye, XPS study of BN thin films deposited by CVD on SiC planesubstrates [J]. Surf. Interface Anal.,1900,16:440-445.
    [120] J. Viard, E. Beche, D. Perarnau, R. Berjoan, and J. Durandb, XPS and FTIRstudy of silicon oxynitride thin films [J]. J. Eur. Ceram. Soc.,1997,17:2025-2028.
    [121] J. Ying, X. W. Zhang, Z. G. Yin, H. R. Tan, S. G. Zhang, and Y. M. Fan,Electrical transport properties of the Si-doped cubic boron nitride thin filmsprepared by in situ cosputtering [J]. J. Appl. Phys.,2011,109:23716.
    [122] X.W. Zhang, H.-G. Boyen, H. Yin, P. Ziemann, F. Banhart, Microstructure ofthe intermediate turbostratic boron nitride layer [J]. Diamond Relat. Mater.,2005,14:1474-1481
    [123] K. Nose, T. Yoshida, J Semiconducting properties of zinc-doped cubic boronnitride thin films.[J]. Appl. Phys.,2007,102:63711.
    [124] T. Taniguchi, T. Teraji, S. Koizumi, K. Watanabe, S. Yamaoka, Appearance ofn-Type Semiconducting Properties of cBN Single Crystals Grown at HighPressure [J]. Jpn. J. Appl. Phys.,2002,41:L109-L111.
    [125] H. Yin, I. Pongrac, P. Ziemann, Electronic transport in heavily Si doped cubicboron nitride films epitaxially grown on diamond(001)[J]. J. Appl. Phys.,2008,104:023703.
    [126] C.X. Wang, G.W. Yang, T.C. Zhang, H.W. Liu, Y.H. Han, J.F. Luo, C.X. Gao,G.T. Zou, High-quality heterojunction between p-type diamond single-crystal alfilm and n-type cubic boron nitride bulk single crystal [J]. Appl. Phys. Lett.,2003,83:4854-4856.
    [127] C.X. Wang, H.W. Liu, X. Li, T.C. Zhang, Y.H. Han, J.F. Luo, C.X. Shen, C.X.Gao, G.T. Zou, Preparation of ohmic n-type cubic boron nitride contacts [J]. J.Phys. Condens. Matter,2002,14:10937-10940.
    [128] H. Yin, H.-G. Boyen, X.W. Zhang, P. Ziemann, Fabrication of ohmic Au/Crcontacts on top of cubic Boron Nitride films [J]. Diamond Relat. Mater.,2007,16:46-49.
    [129] Watanabe K, Taniguchi T, Kanda H, Direct-bandgap properties and evidence forultraviolet lasing of hexagonal boron nitride single crystal [J]. Nature Materials.2004,3:404-409.
    [130] Watanabe, K. Taniguchi, T. Kanda, H. Ultraviolet luminescence spectra ofboron nitride single crystals grown under high pressure and high temperature[J].Phys. Status Solidi A,2004,201:2561-2565.
    [131] Taniguchi.T, Watanabe. K. Synthesis of high-purity boron nitride single crystalsunder high pressure by using Ba–BN solvent [J]. J. Cryst. Growth,2007,303:525-529.
    [132] Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep UltravioletLight-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure [J].Science,2007,317:932-934.
    [133] Y. Kubota, K.Watanabe, T.Taniguchi, Synthesis of cubic and hexagonal boronnitrides by using Ni solvent under high pressure [J].Jpn. J. Appl.Phys,2007,46:311-314.
    [134] Kowanda, C, M. O. Speidel, Solubility of nitrogen in liquid nickel and binaryNi–Xi alloys (Xi=Cr, Mo,W, Mn, Fe, Co) under elevated pressure [J].Scr.Mater,2003,48:10731078.
    [135] Nash, P. In Binary Alloy Phase Diagrams,2nd ed.; Massalski, T. B., Ed.; ASMInternational: Materials Park, OH,1990; Vol.2, p1301.
    [136] Yoichi Kubota, Kenji Watanabe, Osamu Tsuda, and Takashi Taniguchi,Hexagonal Boron Nitride Single Crystal Growth at Atmospheric Pressure UsingNi-Cr Solvent. American Chemical Society.20:1661-1663(2008).
    [137] Kulisch. W, Reinke. S Modeling of cBN Thin-Film Deposition [J]. DiamondFilms and Technology,1997,17:105-138.
    [138] Hofsass H, Ronning and C.Griesmeier, Characterization of cubic boron nitridefilms grown by mass separated ion beam deposition [J]. Nuclear Instruments andMethods in Physics Research Section B: Beam Interactions with Materials andAtoms,1995,106:153-158.
    [139] Saitoh. H, Yarbrough. W. AGrowth of cubic boron nitride from vapor phase [J].Diamond Related Mater,1992,1:137-146.
    [140] Seidel K H, Reichelt and K. Schaal, The preparation of cubic boron nitridefilms by reactive diode sputtering [J]. Thin Solid Films,1987,151:243-249.
    [141] Reisse G, Weissmantel S Characterization of pulsed laser deposited h-BN filmsand h-BN/c-BN layer systems [J]. Thin Solid Films,1999,355-356:105-111.
    [142] Reinke S, Kuhr M, Kulisch W Critical test of the cBN sputter model [J]. SurfCoat Technol,1995,74:723-728.
    [143] Kulisch. W, Reinke. S Modeling of cBN Thin-Film Deposition [J]. DiamondFilms and Technology,1997,17:105-138.
    [144] SetsuharaY, Kumagai M and Suzuki M, Properties of cubic boron nitride filmswith buffer layer control for stress relaxation using ion-beam-assisted deposition[J].Surf Coat Technol,1999,119:100-107.
    [145] Boyen H-G, Widmayer P and Schwertberger D Sequential ion-induced stressrelaxation and growth: Away to prepare stress-relieved thick films of cubic boronnitride [J]. Appl Phys Lett,2000,76:709-711.
    [146] Kulisch W, Freudenstein R, Klett A and Plass.M.F A concept for the depositionof adherent cubic boron nitride films [J].Thin Solid Films,2000,377/378:170-176.
    [147] W.J Zhang and Matsumoto, The effects of dc bias voltage on the crystal sizeand crystal quality of cBN films [J]. Appl. Phys. A,2000,71:469-472.
    [148] T. A. Friedmann, K. F. McCarty and E. J. Klaus, Cubic boron nitride formationon Si (100) substrates at room temperature by pulsed laser deposition [J]. Appl.Phys.Lett.,1992,61:2406–2408.
    [149] T. Klotzbucher, W. Pfleging and M. Mertin, Structure and chemical compositionof BN thin films grown by pulsed-laser deposition (PLD)[J]. Applied SurfaceScience,1995,86:165–169.
    [150] H.Saitoh and W.A.Yarbrough Growth of cubic boron nitride on diamondparticles by microwave plasma enhanced chemical vapor deposition[J].Appl.Phys.Lett,1991,58:2482-2484.
    [151] M.Kuhr, S.Reinke and W.Kulisch Nucleation of cubic boron nitride (c-BN) withion-induced plasma-enhanced CVD [J]. Diam.Rel.Mater,1995,4:375-380.
    [152] S. Monorama, G. N. Chaudhari and V. J. Rao, Growth of BN by hot filamentassisted electron beam deposition [J]. J. Phys. D: Appl. Phys.,1993,26:1793–1795.
    [153] X. Ma, J. Yang, D. He and G. Chen, Temperature effects on growth of boronnitride thin films by a hot filament assisted rf plasma chemical vapor deposition[J]. Thin Solid Films,1998,322:37–40.
    [154] M. N. P. Carreno, J. P. Bottecchia and I. Pereyra, Low temperature plasmaenhanced chemical vapour deposition boron nitride [J]. Thin Solid Films,1997,308/309:219–222.
    [155] X. Ma, J. Yue, D. He and G. Chen, Characterization of cubic boron nitride thinfilms grown on different substrates [J].Materials Letters,1998,36:206–209.
    [156] T. S. Yang, Y. P. Cheng, C. L. Cheng and M. S. Wong, Effect of diamond filmsas bufferlayer on formation of cubic boron nitride films by chemical vapordeposition [J].Thin Solid Films,2004,447-448:136–141.
    [157] F. Kiel, M. Cotarelo, M. P. Delplancke and R.Winand, Comparison of theproperties of BN films synthesized by inductively coupled r.f. and microwaveplasmas [J]. Thin Solid Films,1995,270(1-2):118–123.
    [158] YoKoyama.H, Okamoto.M, Osaka.Y, Effects of a Negative Self-Bias on theGrowth of Cubic Boron Nitride Prepared by Plasma Chemical Vapor Deposition[J]. Jpn. J.Appl. Phys,1991,30:344-348.
    [159] S. J. Zhang, G. H. Chen, J. X. Deng and D. X. Zhang, cBN Films grown by hotfilament assisted microwave electron cyclotron resonance CVD [J]. Vacuum,2002,66(1):65–70.
    [160] Kuhr.M, Reinke.S, Kulisch.W, Deposition of cubic boron nitride with aninductively coupled plasma [J]. Surface and Coatings Technology,1995,74-75:806-812.
    [161] T. Ichiki and T. Yoshida, Preparation of cubic boron nitride films by lowpressure inductively coupled plasma enhanced chemical vapor deposition [J].Appl. Phys. Lett.,1994,64:851–853.
    [162] K. Bewilogua, J. Buth, H. Hubsh and M. Grishke, Preparation of c-BNcontaining films by reactive r.f. Sputtering [J]. Diamond and Related Materials,1993,2(8):1206–1210.
    [163] W. Otano-Rivera, J. Pilione and R. Messier, Pressure dependence of thenegative bias voltage for stabilization of cubic boron nitride thin films depositedby sputtering [J]. Appl. Phys. Lett.,1998,72:2523–2525.
    [164] Y. K. Le and H. O echsner, On the stoichiometry condition for the formation ofcubic boron nitride films [J]. Appl. Phys. A,2004,78,681–685.
    [165] Y. K. Le and H. O echsner, On the influence of substrate temperature for cubicboron nitride growth [J]. Thin Solid Films,2003,437(1-2):83–88.
    [166] L. Jiang, A. G. Fitzgerald and M. J. Rose, Formation of cubic boron nitridefilms by r.f. magnetron sputtering [J]. Surface and Interface Analysis,2002,34(1):732–734.
    [167] J. Deng, B. Wang, L. Tan, H. Yan and G. Chen, The growth of cubic boronnitride films by RF reactive sputter [J]. Thin Solid Films,2000,368(2):312–314.
    [168] S. Gimeno, J. L. Andu’jar, E. Bertran and A. Lousa, Growth of boron nitridethin films by tuned substrate RF magnetron sputtering [J]. Diamond andRelated.Materials,1996,5(3-5):535–538.
    [169] M.D.Wiggins, C.R.Aita and F.S.Hickemell, Radio frequency sputter depositedboron nitride films [J]. J. Vac. Sci. Technol. A,1984,2:322.
    [170][170]B Rother, C Weissmantel, Structure and chemical composition ofRF-sputtered boron nitride films [J]. Phys Status Solidi (a),1985,87:K119-K121.
    [171] D.G Rickerby, P.N.Gibson, W.Gissler and J.Haupt, Structural investigation ofreactively sputtered boron nitride films,[J]. Thin Solid Films,1992,209:155-160.
    [172] K.H. Seidel, K Reichelt, W Schaal and H Dimigen, The preparation of cubicboron nitride films by reactive diode sputtering [J]. Thin Solid Films,1987,151:243-249.
    [173] M Mieno, T Yoshida, Preparation of cubic boron nitride films by RF sputtering[J]. Jpn.J.Appl.Phys,1990,29:L1175-.L177.
    [174] S Kidner, CATaylor II, R Clarke, Low energy kinetic threshold in the growth ofcubic boron nitride films [J]. Appl.Phys.Lett,1994,64:1859-1861.
    [175] X. W. Zhang, Y. J. Zou, H. Yan, B. Wang, G. H. Chen, and S. P. Wang, Electricalproperties and annealing effects on the stress of RF-sputtered c-BN films [J].Materials Letters.2000,45(2):111-115.
    [176] K Kojima, K Nose, M Kambara and T Yoshida,Effects of magnesium dopingon growth and electric conductivity of nanocrystalline cubic boron nitride thinflms [J]. J. Phys. D: Appl. Phys.,2009,42(5):55304.
    [177] T. A. Friedmann, K. F. McCarty, E. J. Klaus, D. Boehme, W. M.Clift, H. A.Johnsen, M. J. Mills and D. K. Ottesen, Ablation of BN ceramics by femtosecondand picosecond laser pulses [J]. Appl. Phys.Lett.,1992,61:406–2408.
    [178] K. S. Park, D. Y. Lee, K. J. Kim, and D. W. Moon, Growth mechanism of cubicboron nitride thin films by ion beam assist sputter deposition [J]. J. Vac. Sci.Technol.,1997, A15:1041.
    [179] F. Zhang, Y. Guo, Z. Song and G. Chen, Deposition of high quality cubic boronnitride films on nickel substrates [J]. Appl. Phys. Lett.,1994,65:971–973.
    [180] Z. Song, F. Zhang, Y. Guo and G. Chen, Textured growth of cubic boron nitridefilm on nickel substrates [J]. Appl. Phys. Lett.,1994,65:2669–2671.
    [181] X. W. Zhang, H.-G. Boyen, N. Deyneka, P. Ziemann, F. Banhart and M. Schreck,Epitaxy of cubic boron nitride on (001)-oriented diamond [J]. Nature Mater.,2003,2:312–315.
    [182] Toru Yamashita and Peter Hayes, Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials [J].Applied Surface Science,2008,254:2441–2449.
    [183] P.B.Mirkarimi, K.F. McCarty, and D.L. Medlin, Review of advances in cubicboron nitride film synthesis [J]. Materials Science and Engineering,1997,R21:47-100.
    [184] Hasan Erdem C amurlu, Naci Sevinc and Yavuz Topkaya, Effect of calciumcarbonate addition on carbothermic foration of hexagonal boron nitride [J].Journal of the European Ceramic Society,2008,28:679-689.
    [185] Myron J.Rand and James F.Roberts, Preparation and Properties of Thin FilmBoron Nitride [J]. Journal of the Electrochemical Society,1968,115(4):423-429.
    [186]李紫蕊.新型紫外探测器及其应用[J].光电技术,2000,21(1):45~51.
    [187] Ferguson I, Tran C A, and Karllcer R F, et al. GaN and AlGaN metal–semiconductor–metal photodetectors [J].Material Science and Engineering B,1997,50:311~314.
    [188] Averin S, Cha Y C, and Lam Y L. Evaluation of Schottky contact parameters inmetal–semiconductor–metal photodiode structures [J]. Appl. Phys. Lett,2000,77:274~276.
    [189] E.Monroy, F.Omn, and F. Calle, Wide-bandgap semiconductor ultravioletphotodetectors [J]. Semicond. Sci. Technol.,2003,18:R33–R51.
    [190] Sze S M, Coleman D J, Loya A. Current transport inmetal-semiconductor-metal (MSM) structures [J]. Solid-State Electronics,1971,14:1209-1218.
    [191] Bahram Nabet, A Heterojunction Metal–Semiconductor–Metal Photodetector,[J]. Photonics Technology Letters, IEEE,1997,9(2):223-226.
    [192] Chi On Chui, Ali K. Okyay, and Krishna C. Saraswat, Effective Dark CurrentSuppression With Asymmetric MSM Photodetectors in Group IV Semiconductors[J]. Photonics Technology Letters, IEEE,2003,15(11):1585-1587.
    [193]杨伟锋,蔡加法,张峰等,一维阵列MSM4H-SiC紫外光电探测器的研制,半导体学报,2008,29(3):570-573.
    [194] Behnam A, Jason J, Choi Y H, et al. Metal-semiconductor-metal photodetectorsbased on single-walled carbon nanotube film-GaAs Schottky contacts [J]. JournalofApplied Physics,2008,103(11):114315-1-6.
    [195] Tomoko B, Williams D F, Hale P D, et al. Novel nano-structuredmetal-semiconductor-metal photodetector with high peak voltage [J]. JapaneseJournal ofApplied Physics,2009,48:06FD031-06FD035.
    [196] Das N, Karar A, Vasiliev M, et al. Analysis of nano-grating-assisted lightabsorption enhancement in metal-semiconductor-metal photodetectors patternedusing focused ion-beam lithography [J]. Optics Communications,2011,284(6):1694-1700.
    [197] Sano E. A device model for metal-semiconductor-metal photodetectors and itsapplications to optoelectronic integrated circuit simulation [J]. IEEE Transactionson Electron Devices,1990,37(9):1964-1968.
    [198]陈维友,刘式墉,金属半导体金属光探测器电路模型的研究[J].电子科学学刊,1994,16(3):327-331.
    [199]范辉,陆雨田,一种改进型金属-半导体-金属光电探测器数学模型[J].中国激光,2007,34(8):1032-1036.
    [200] Manuel G. Rodríguez1, Oxana V. Kharissova and U. Ortiz-Méndez, Formationof Boron Carbide Nanofibers and Nanobelts From Heated by Microwave [J].Rev.Adv.Sci.,2004,7:55-60.
    [201] Lester Andrews, George V. Chertihin, Angelo Citra, and Matthew Neurock,Reactions of Laser-Ablated Iron Atoms with N2O, NO, and O2in CondensingNitrogen.Infrared Spectra and Density Functional Calculations of Ternary IronNitride Oxide Molecules [J]. J. Phys. Chem,1996,100:11235-11241.
    [202] A. Essafti, C. Gomez-Aleixandre, J.M. Albella, Preparation of Si-N-B films byCVD techniques: effect of SiH4addition to B2H6and NH3gas mixtures [J].Diamond and Related Materials,1996,5:580-583.
    [203] A. Essafti, E. Ech-chamikh, J.L.G. Fierro, Structural and chemical analysis ofamorphous B–N–C thin films deposited by RF sputtering [J].Diamond&RelatedMaterials,2005,14:1663-1668.
    [204] J.F. Pierson, C. Rousselot,Amorphous Fe–B–Nfilms deposited by reactivesputtering of a FeB target [J]. Surface and Coatings Technology,2004,180–181:44–48.
    [205] Ph.V. Kiryukhantsev-Korneev, D.V. Shtansky, M.I. Petrzhik, E.A. Levashov,and B.N. Mavrin Thermal stability and oxidation resistance of Ti–B–N,Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N films [J].Surface&CoatingsTechnology,2007,201:6143–6147.
    [206] A. Essafti, C. Gomez-Aleixandre, J. L. G. Fierro, M. Fern′andez and J. M.Albella, Chemical vapor deposition synthesis and characterization ofco-deposited silicon–nitrogen–boron materials [J]. Journal of materials research,1996,10:2565-2574.
    [207] Ki Hyeon Kim, Jongryoul Kim, Hee Jun Kim, Suk Hee Han, and Hi Jung Kim,A Megahertz Switching DC/DC Converter Using FeBN Thin Film Inductor [J].IEEE Transactions on Magnetics,2002,38(5):3162-3164.
    [208] S. Ohnuma, F. Matsumoto, H. Fujimori, and T. Masumoto, Soft MagneticProperties of FeN/FeBN Multi-layers [J]. IEEE Translation Journal on Magneticsin Japan,1992,7(11):896-901.
    [209] S. Furukawa, S. Ohnuma, F. Matsumoto, H.Fujimori and T. Masumoto,Relationship between Deposition Conditions and the Magnetic Properties ofHighly Resistive Fe-BN Films [J]. IEEE Translation Journal on Magnetics inJapan,1994,9:158-164.
    [210] A. Essafti, A. Abouelaoualim, J.L.G. Fierro, E. Ech-chamikh, Structural andoptical properties of amorphous oxygenated iron boron nitride thin filmsproduced by reactive co-sputtering [J]. Thin Solid Films,2009,517:4281–4285.
    [211] Zhongwen Li, Guangze Tang, Xinxin Ma, Mingren Sun, and Liqin Wang,XPSStudy on Chemical State and Phase Structure of PBII Nitriding M50Steel [J].IEEE Transactions on Plasma Science,2010,38(11):3079-3082.
    [212] Jessica Torres, C. C. Perry, Stephen J. Bransfield, and D. Howard Fairbrother,Low-Temperature Oxidation of Nitrided Iron Surfaces [J]. J. Phys. Chem. B,2003,107(23):5558-5567.
    [213] A.Olszyna, J.Konwerska-Hrabowska, M.Lisicki, Molecular structure of E-BN[J].Dimond and Related Materials,1997,6:617-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700