用户名: 密码: 验证码:
生物质和煤共气化共燃的实验和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的过度开采及温室气体排放使得生物质燃料资源的利用受到极大关注。本文采用热重质谱联用仪研究了四种生物质热解的气体产物特征,采用小型固定床进行了稻壳、稻秸热解实验,分析半焦的微观形貌、元素组成和物相组成;进行了生物质和煤流化床共气化的实验,研究不同掺混比例、空气当量比、水蒸气/燃料质量比对共气化过程的影响规律,分析生物质和煤共气化机理,探索共气化过程的协同效应,并建立了一维稳态鼓泡流化床生物质气化模型;进行了300MW煤粉炉的稻壳和煤共燃的工业实验研究,分析煤粉炉中燃烧的稻壳飞灰特性,并研究生物质和煤共燃对锅炉飞灰利用的影响。本文所取得的主要研究结论总结如下。
     (1)采用热重质谱联用仪进行生物质热解实验结果表明,四种生物质依据最大失重温度排序为:稻壳>松木屑>棉秆>稻秸;CH4的析出曲线在100℃左右由于植物腐烂会形成小峰值,在最大失重温度处达到最大值,在400~560℃区间内维持较高的释放量;H2O的析出曲线由于自由基水分蒸发在110℃形成小峰值,一次挥发份的形成使得H2O、CO、CO2在最大失重温度处达到最大释放量,CO、CO2在高温段(>500℃)维持一定释放量。
     (2)采用SEM、EDX、XRD分析了小型固定床中不同热解终温的半焦物化特性,当温度高于800℃,半焦中的钾元素所占比例逐渐减小;以有机物形式存在的氯、硫在热解温度低于500℃进行迁移,在800℃-1000℃之间,半焦中氯、硫大部分会析出;稻壳和稻秸半焦的主要孔隙结构产生在500℃-800℃之间的碳化阶段。
     (3)在鼓泡流化床反应器中采用新型床料陶粒砂进行生物质单独气化、生物质和煤共气化的热态实验,研究不同掺混比例、空气当量比、水蒸气/燃料质量比对燃气组分、气化效率和碳转化率的影响,结果表明在松木屑、稻秸分别与烟煤、褐煤共气化过程中存在协同效应;阐释了反应器不同区域的共气化主要反应原理。
     (4)建立了一维稳态生物质气化模型,采用不同的流体动力学模型模拟反应器不同区域的流动状况,分析空气当量比、水蒸气/燃料质量比、自由空间区域对气化过程的影响,计算结果和流化床生物质单独气化试验结果基本吻合。
     (5)进行稻壳和煤共燃工业试验研究,确定稻壳的合理输送浓度为0.9~1kg/m3(标准状况),输送风温在150-180℃;分析了共燃的稻壳灰的元素分布、孔隙特性等性质;进行了稻壳和煤共燃的飞灰用于混凝土的实验研究。
Due to the problem of the excessive use of fossil fuels and the greenhouse gas emission, the utilization of biomass resources is continuously sought. Firstly, in this thesis by monitoring the pyrolysis profiles using TG-MS the characteristic of the gas products of 4 biomass pyrolysis is investigated. The coke's micro-morphology, elemental composition and phase composition from rice husk and rice straw pyrolysis are analyzed. Secondly, the fluidized bed experimental system is designed to study the different mixing ratio, air equivalence ratio, steam/fuel mass ratio on the impact of the biomass and coal co-gasification process. The mechanism of co-gasification is discussed and synergies are explored. One-dimensional steady-state model for bubbling fluidized bed biomass gasification is presented. Lastly, the industrial co-combustion test of rice husk and coal on 300MW pulverized coal boiler is carried out. The physical and chemical properties of the rice husk ash separated from the co-combustion fly ash are analyzed. The effect of the co-combustion mode on the fly ash application is investigated. The main conclusions are as follows.
     The order of 4 kind of biomass according to the maximum weight loss temperature is:rice husk>pine sawdust>cotton stalk>rice straw. During the biomass pyrolysis process, the releasing profile of CH4 forms a small release peak at about 100℃since the plants have decomposed, which reaches the maximum at the maximum weight loss temperature and maintains a high release in the range of 400-560℃; The releasing profile of H2O forms a small release peak corresponding to the evaporation of free water. During the formation of primary volatiles H2O, CO and CO2 gets the maximum at the maximum weight loss temperature. CO and CO2 in high-temperature segment (>500℃) maintain a certain release due to thermal decomposition of lignin.
     During the pyrolysis of rice straw, when the final temperature is higher than 800℃the proportion of potassium gradually decreased. In the range of less than 500℃, chlorine and sulfur in organic form will be migrated. Most of the remaining chlorine and sulfur will vaporize in the range of 800-1000℃.
     The co-gasification test of biomass and coal with air-steam is carried out in bubbling fluidized bed using new bed material (ceramite). The rules of the temperature variation in different regions are obtained. The effect of the different mixing ratio, air equivalence ratio, Steam/fuel mass ratio on gas composition, gasification efficiency and carbon conversion rate is studied. The results show that there is synergistic effect during co-gasification process of pine sawdust, rice straw and bituminous coal, lignite. The main principles of the co-gasification reaction in the different regions of the reactor are explained.
     One-dimensional steady-state model for bubbling fluidized bed biomass gasification is presented. Based on the simulated results the effects of air equivalence ratio, steam/fuel mass ratio, free-board region on the gasification process are analyzed. The calculation results and the experimental results are basically consistent.
     The industrial co-combustion test of rice husk and coal is carried out. The reasonable transportation concentration of rice husk is 0.9-lkg/m3, the temperature of the conveying air should be in the range of 150-180℃. The characteristics of micro-morphology, elemental composition, phase composition and pore structure of the rice husk ash separated from the co-combustion fly ash are analyzed. The tests that the co-combustion fly ash is used as the mixing material of the concrete are done. Key words:biomass, coal, co-gasification, co-combustion, bubbling fluidized bed, pulverized coal boiler
引文
[1]能源发展“十一五”规划.国家发展改革委,2007年4月
    [2]国家自然科学基金委员会工程与材料科学部,工程热物理与能源利用学科发展战略研究报告(2006~2010年)[R].科学出版社,2006年
    [3]马隆龙,吴创之,孙立编著.生物质气化技术及其应用[M].北京:化学工业出版社,2003年
    [4]中国电力科学研究院生物质能研究室编.生物质能及其发电技术[M].北京:中国电力出版社.2008.1~25
    [5]倪维斗.我国的能源现状与战略对策[N].科技日报,2007年1月25日
    [6]陈吟颖.生物质与煤共热解试验研究[D].华北电力大学,2007年4月
    [7]张晓东.生物质气化和催化焦油裂解的试验和机理研究[D],浙江大学,2003年
    [8]James Hansen, Makiko Sato, Pushker Kharecha et al. Target Atmospheric CO2:Where Should Humanity Aim? [J]. The Open Atmospheric Science Journal,2008,2 (1):217-231
    [9]A.A. Khan, W. de Jong, P.J. Jansens et al. Biomass combustion in fluidized bed boileres:Potential problems and remedies [J]. Fuel Processing Technology, 2009,90 (4):21-50
    [10]Robert H. Hurt. Structure, properties, and reactivity of solid fuels[C].Twenty-Seventh Symposium (International) on Combustion/The Combustion institute,1998:2887-2904
    [11]Stanislav V. Vassilev,David Baxter, Lars K. Andersen et al. An overview of the, chemical composition of biomass [J]. Fuel,2009,89 (5):913-933
    [12]Colomba Di Blasi. Modeling chemical and physical processes of wood and biomass pyrolysis [J]. Progress in Energy and Combustion Science,2008,34 (1):47-90
    [13]Haiping Yang, Rong Yan b, Hanping Chen. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel,2007,86 (12):1781-1788
    [14]Banyasz JL, Li S, Lyons-Hart J.L., Shafer KH. Gas evolution and the mechanism of cellulose pyrolysis [J].Fuel,2001,80 (12):1757-1763
    [15]Gomez, C. J. Understanding Biomass Pyrolysis Kinetics:Improved Modeling Based on Comprehensive Thermokinetic Analysis (D). Universitat Politecnica de Catalunya,2006
    [16]Gomez, C. J. Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques [J]. J. Anal. Appl. Pyrolysis, 2007,80 (2):416-426
    [17]E.Jakab, O.Fdix, F.Tiii. Thermal decomposition of milled WOCA lignins studied by thermogravimetry/mass spectrometry[J]. Journal of Analytical and Applii olysis,1997,40-41 (6):171-186
    [18]E. Jakab, O. Faix, F. Till. Thermogravimetry/mass spectrometry was applied to characterize six lignins prepared for an international round robin test [J]. Journal of Analytical and Applied Pyrolyhls,1995,35 (2):167-179
    [19]Yong-Cang Chen, Sylvie Charperany, Anker Jensen.Modeling of Biomass Prolysis Kinetics. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute,1998:1327-1334
    [20]W. de JonCa,, A. Pironea, M.A. Wo jtowiczb. Pyrolysis of Miscanthus GiCanteus and wood pellets:TG-FTIR analysis and reaction kinetics [J]. Fuel,2003,82 (9):1139-1147
    [21]Nakorn Worasuwannarak, Taro Sonobe, Wiwut Tanthapanichakoon. Pyrolysis behaviors of rice straw, rice husk and corncob by TG-MS technique [J]. J. Anal. Appl. Pyrolysis,2007,78 (2):265-271
    [22]Chihiro Fushimi, Kenichi Araki, Yohuske Yamaguchi. Effect of Heating Rate on Steam Casification of Biomass.2. Thermogravimetric-Mass Spectrometric (TG-MS) Analysis of Gas Evolution[J].Ind. Eng. Chem. Res.,2003,42 (17):3929-3936
    [23]王磊,沈胜强,杨树华.玉米秸秆热裂解试验研究[J].太阳能学报.2007,28(7):810-813.
    [24]吕当振,姚洪,王泉斌.纤维素、木质素含量对生物质热解气化特性影响的实验研究[J].工程热物理学报.2008,29(10):1771-1774
    [25]文丽华,王树荣,骆仲泱.生物质的多组分热裂解动力学模型[J].浙江大学学报,2005,39(2):247-252
    [26]于娟,章明川,沈轶.生物质热解特性的热重分析[J].上海交通大学学报,2002,36(10):1478~1484
    [27]程世庆,尚琳琳,张海清.生物质的热解过程及其动力学规律.煤炭学报.2006,31(4):501-505
    [28]米铁,陈汉平,杨国来.农林生物质废弃物的热重实验研究[J].太阳能学报,2008,29(1): 52~58
    [29]Peng Fu. Structural evolution of maize stalk/char particles during pyrolysis [J]. Bioresource Technology,2009,100 (7):4877-4883
    [30]Song Hu, Jun Xiang, Lushi Sun. Characterization of char from rapid pyrolysis of rice husk[J]. Fuel Processing Technology,2008,89 (11):1096-1105
    [31]Biagini, E., Cioni, M., Tognotti, L.. Development and characterization of a labscale entrained flow reactor for testing biomass fuels [J]. Fuel,2005,84, (3):1524-1534
    [32]Biagini, E., Pintus, S., Tognotti, L..Characterization of high heating-rate chars from alternative fuels using an electrodynamic balance [J]. Proc. Combust. Institure,2005,30 (2):2205-2212
    [33]Cetin, E., Moghtaderi, B., Gupta, R.. Influence of pyrolysis conditions on the structure and Gasification reactivity of biomass chars [J]. Fuel,2004,83 (16):2139-2150
    [34]Sharma, R.K., Wooten, J.B., BaliCa, V.L.. Characterization of chars from biomass-derived materials:pectin chars [J]. Fuel,2001,80 (12):1825-1836
    [35]Sharma, R.K., Wooten, J.B., BaliCa, V. L..Characterization of char from the pyrolysis of tobacco [J]. Agric. Food Chem.2002,50 (4):771-783
    [36]Sharma, R.K., Wooten, J.B., BaliCa, V.L..Characterization of chars from pyrolysis of lignin[J].Fuel,2004,83 (11):1469-1482
    [37]Reina,J. Velo, E. Puigjaner, L. Predicting the minimum fluidization velocity of polydisperse mixtures of scrap-wood parti cles[J]. Powder Technology 2000,111 (3):245-251
    [38]Heping Cui, John R. Grace. Fluidization of biomass particles:A review of experimental multiphase flow aspects[J]. Chemical Engineering Science,2007,62 (1): 45-55
    [39]Cui, H.P., Grace, J. R..A review of biomass multiphase flow research I:settling, feeding, packed bed and fluidization[R]. Report for Natural Resources Canada and National Research Council of Canada,2005a
    [40]Cui, H.P., Grace, J.R.. A review of biomass multiphase flow research Ⅱ:spouting, pre-processing, conveying, suspension and separation[R]. Report for Natural Resources Canada and National Research Council of Canada,2005b
    [41]T. R. Rao, J.V. Ram. Bheemarasetti. Minimum fluidization velocities of mixtures of biomass and sands [J]. Energy,2001,26 (6):633-644
    [42]Abdullah, M.Z., Husain, Z., Yin Pong, S.L.,2003. Analysis of cold flow fluidization test results for various biomass fuels [J]. Biomass and Bioenergy,24 (6):487-494
    [43]Clarke, K.L., Pugsley, T., Hill, G.A.. Fluidization of moist sawdust in binary particle systems in a Gas-solid fluidized bed [J]. Chemical Engineering Science,2005,60 (24):6909-6918
    [44]郭慕孙,李洪钟主编.流态化手册[M].北京:化学工业出版社,2008
    [45]吴占松,马润田,汪展文编著.流态化技术基础及应用[M].北京:化学工业出版社,2006
    [46]刘德昌,阎维平.流化床燃烧技术[M].北京:水利电力出版社,1995
    [47]T.A. Milne, R.J. Evans. Biomass Gasifier "Tars":Their Nature, Formation, and Conversion[R]. National Renewable Energy Laboratory. November 1998.
    [48]Jose Corella, Alvaro Sanz. Modeling circulating fluidized bed biomass Casifiers. A pseudo-rigorous model for stationary state [J]. Fuel Processing Technology 2005,86 (3):1021-1053
    [49]A. van der Drift, J. van Doorna, J.W. Vermeulenb. Ten residual biomass fuels for circulating uidized-bed Gasification [J]. Biomass and Bioenergy 2001,20 (1)-.45-56
    [50]Ian Narvaez, Alberto Orio, Maria P. Aznar, Jose Corella. Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality on the Produced Raw Gas [J]. Ind. Eng. Chem. Res.1996, 35 (7):2110-2120
    [51]Yu Q, Brage C, Chen G. Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor [J]. Journal of Analytical and Applied Pyrolysis 1997,40-41 (1):481-489
    [52]Capucine Dupont, Guillaume Boissonnet, Jean-Marie Seiler. Study about the kinetic processes of biomass steam Gasification [J]. Fuel,2007,86 (1):32-40
    [53]T.G. Bridgeman, L.I. Darvell, J.M. Jones. Influence of particle size on the analytical and chemical properties of two energy crops [J]. Fuel,2007,86 (3):60-72
    [54]Osvalda Senneca. Kinetics of pyrolysis. combustion and Gasification of three biomass fuels[J]. Fuel Processing Technology,2007,88 (1):87-97
    [55]F. Mermoud, S. Salvador, L. Van de Steene. Influence of the pyrolysis heating rate on the steam Gasification rate of large wood char particles [J]. Fuel,2006,85 (10):1473-1482
    [56]H. Haykiri-Acma, S. Yaman.S. Kucukbayrak. Gasification of biomass chars in steam-nitrogen mixture[J]. Energy Conversion and Management,2006,47 (7):1004-1013
    [57]Anna Ponzio, Sylwester Kalisz, Wlodzimierz Blasiak. Effect of operating conditions on tar and Gas composition in high temperature air/steam Gasification (HTAG) of plastic containing waste[J].Fuel Processing Technology,2006,87 (3):223-233
    [58]Weihong Yang, Anna Ponzio, Carlos Lucas. Performance analysis of a fixed-bed biomass Gasifier using high-temperature air[J].Fuel Processing Technology,2006,87 (3):235-245
    [59]Y.Matsumuraa, Tomoaki Minowab, Biljana Potic. Biomass Gasification in near-and super-critical water:Status and prospects [J]. Biomass and Bioenergy,2005,29 (2) 269-292
    [60]X.T. Lia, J.R. Gracea;, C.J. Lima, Biomass Gasification in a circulating fluidized bed[J], Biomass and Bioenergy,2004,26 (2):171-193
    [61]WalterM, eridaa, Pin-Ching Manessb, Robert C. Brown. Enhanced hydrogen production fromindirectly heated, Gasified biomass, and removal of carbon Gas emissions using a novel biological Gas reformer [J]. International Journal of Hydrogen Energy,2004,29 (3):283-290
    [62]G.Chen, J.Andries, H.Spliethoff. Biomass Gasification integrated with pyrolysis in a circulating fluidised bed [J]. Solar Energy,2004,76 (1):345-349
    [63]G. Chen, J. Andries, Z. Luo. Biomass pyrolysis/Gasification for product Gas production:the overall investigation of parametric effects [J]. Energy Conversion and Management 2003,44 (11):1875-1884
    [64]C. Franco, F. Pinto, I. Gulyurtlu, I. Cabrita. The study of reactions influencing the biomass steam Gasification process [J]. Fuel,2003,82 (7):835-842
    [65]Samy S. Sadakaa, A.E. Ghalyb, M.A. Sabbahc. Two phase biomass air-steam Gasification model for fluidized bed reactors:Part Ⅰ-model development [J]. Biomass and Bioenergy,2002,22 (6):439-462
    [66]Philippe Mathieu, Raphael Dubuisson. Performance analysis of a biomass Gasifier[J]. Energy Conversion and Management,2002,43 (2):1291-1299
    [67]Roberto Coll, Joan Salvado, Xavier Farriol. Steam reforming model compounds of biomass Gasification tars:conversion at different operating conditions and tendency towards coke formation [J]. Fuel Processing Technology.2001,74 (1):19-31
    [68]Ragnar Warnecke, Gasification of biomass:comparison of fixed bed and fluidized bed Gasifier [J]. Biomass and Bioenergy,2000,18 (6):489-497
    [69]Peter McKendry. Energy production from biomass (part 3):Gasification technologies [J]. Bioresource Technology,2002,83 (1):55-63
    [70]Toshiaki Hanaoka, Seiichi Inoue, Seiji Uno. Effect of woody biomass components on air-steam Gasification [J]. Biomass and Bioenergy,2005,28 (1):69-76
    [71]Pengmei Lv, Zhenhong Yuan, Chuangzhi Wu. Bio-syngas production from biomass catalytic Gasification [J]. Energy Conversion and Management.2007,48 (4):1132-1139
    [72]吕鹏梅,常杰,熊祖鸿.生物质在流化床中的空气-水蒸气气化研究[J],燃料化学学报,2003,31(4):305-310
    [73]赵先国,常杰,吕鹏梅.生物质富氧-水蒸气气化制氢特性研究[J].太阳能学报,2006,27(7):677-681
    [74]陈冠益,高文学,颜蓓蓓.生物质气化技术研究现状与发展.煤气与热力[J].2006,26(7):20-26
    [75]E. Cetin, B. Moghtaderi, R. Gupta. Influence of pyrolysis conditions on the structure and Gasification reactivity of biomass chars [J]. Fuel,2004,83 (16):2139-2150
    [76]H. Haykiri-Acma, S. Yaman. Interpretation of biomass Gasification yields regarding temperature intervals under nitrogen-steam atmosphere [J]. Fuel Processing Technology,2007,88 (4):417-425
    [77]Yin Wang, Kunio Yoshikawa, Tomoaki Namioka. Performance optimization of two-staged Gasification system for woody biomass [J]. Fuel Processing Technology,2007,88 (3):243-250
    [78]A. V. Bridgwater. The technical and economic feasibility of biomass Gasification for power generation [J]. Fuel,1995,14 (5):631-653
    [79]Antero Moilanen. Thermogravimetric characterizations of biomass and waste for Gasification processes[D], VTT Technical Research Centre of Finland,2006
    [80]Lopamudra Devi. Catalytic removal of biomass tars; Olivine as prospective in-bed catalyst for fluidized-bed biomass Gasifiers[D], Eindhoven University,2005
    [81]周劲松,王铁柱.生物质焦油的催化裂解研究[J].燃料化学学报.2003,31(2):144-148
    [82]Yan Cao, Yang Wang. A novel biomass air Gasification process for producing tar-free higher heating value fuel Gas [J]. Fuel Processing Technology,2006,87 (4) 343-353
    [83]Y.G. Pan, X. Roca, E. Velo. Removal of tar by secondary air in fluidised bed Gasification of residual biomass and coal [J]. Fuel,1999,78 (14):1703-1709
    [84]L. Devi, A review of the primary measures for tar elimination in biomass Gasification processes [J]. Biomass and Bioenergy.2003,24 (2):125-140
    [85]Maria P, Aznar, Miguel A. Caballero, Jose Corella. Hydrogen Production by Biomass Gasification with Steam-O2 Mixtures Followed by a Catalytic Steam Reformer and a CO-Shift System[J].Energy and Fuels 2006,20 (3):1305-1309
    [86]Jose Corella, Jose M. Toledo, Rita Padilla. Olivine or Dolomite as In-Bed Additive in Biomass Gasification with Air in a Fluidized Bed:Which Is Better? [J]. Energy and Fuels.2004,18 (3):713-720
    [87]Jose Corella, Miguel A. Caballero, Maria-Pilar Aznar. Two Advanced Models for the Kinetics of the Variation of the Tar Composition in Its Catalytic Elimination in Biomass Gasification [J]. Ind. Eng. Chem. Res.,2003,42 (13):3001-3011
    [88]Jesus DelCado Mara P. Aznar, Jose Corella. Biomass Gasification with Steam in Fluidized Bed:Effectiveness of CaO, MgO, and CaO-MgO for Hot Raw Gas Cleaning [J]. Ind. Eng. Chem. Res.,1997,36 (5):1535-1543
    [89]Miguel A. Caballero, Maria P. Aznar, Javier Gil. Commercial Steam Reforming Catalysts To Improve Biomass Gasification with Steam-Oxygen Mixtures.1. Hot Gas Upgrading by the Catalytic Reactor [J]. Ind. Eng. Chem. Res.,1997,36, (7):5227-5239
    [90]Takeo Kimura, Tomohisa Miyazawa, Jin Nishikawa. Development of Ni catalysts for tar removal by steam Gasification of biomass [J]. Applied Catalysis B: Environmental,2006,68 (3):160-170
    [91]Jun Han, Heejoon Kim. The reduction and control technology of tar during biomass Gasification/pyrolysis:An overview [J]. Renewable and Sustainable Energy Reviews,2008,12 (2):1-20
    [92]Tomohisa Miyazawa, Takeo Kimura, Jin Nishikawa. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass [J]. Catalysis Today,2006,115 (1):254-262
    [93]Keiichi Tomishige, Takeo Kimura, Jin Nishikawa. Promoting effect of the interaction between Ni and CeO2 on steam Gasification of biomass [J]. Catalysis Communications,2007,8 (7):1074-1079
    [94]S. Rapagna, H. Provendierc, C. Petite. Development of catalysts suitable for hydrogen or syn-Gas production from biomass Gasification [J]. Biomass and Bioenergy 2002,22 (5):377-388
    [95]A. Demirbas. Gaseous products from biomass by pyrolysis and Gasification: effects of catalyst on hydrogen yield [J]. Energy Conversion and Management, 2002,43 (7):897-909
    [96]L.P.L.M. Rabou. Biomass tar recycling and destruction in a CFB Gasifier [J]. Fuel 2005,84 (5):577-581
    [97]Christoph Pfeifer, Hermann Hofbauer. Development of catalytic tar decomposition downstream from a dual fluidised bed biomass steam Gasifier [J]. Powder Technology,2008,180(1):9-16
    [98]D. Swierczynski, S. Libs, Courson, A. Kiennemann. Steam reforming of tar from a biomass Gasification process over Ni/olivine catalyst using toluene as a model compound [J]. Applied Catalysis B, Environmental,2007,74(3):211-222
    [99]Claes Brage, Qizhuang Yu, Guanxing Chen. Tar evolution profiles obtained from Gasification of biomass and coal [J]. Biomass and Bioenergy,2000,18 (1):87-91
    [100]Susanto H, Beenackers AACM. A moving-bed Gasifier with internal recycle of pyrolysis Gas [J]. Fuel,1996,75 (11):1339-1347
    [101]Brandt P, Larsen E, Henriksen U. High tar reduction in a two-stage Gasifier [J]. Energy and Fuels,2000,14 (4):816-819
    [102]Fast Internally Circulating Fluidized Bed basic concept, www.ficfb.at.
    [103]Filomena Pinto, Helena Lopes, Rui Neto Andre, I. Gulyurtlu, I. Cabrita. Effect of catalysts in the quality of synGas and by-products obtained by co-Gasification of coal and wastes.1. Tars and nitrogen compounds abatement [J]. Fuel,2007,86 (14):2052-2063
    [104]Rui Neto Andrea, Filomena Pintoa, Carlos Francoa. Fluidised bed co-Gasification of coal and olive oil industry wastes [J]. Fuel,2005,84 (12):1635-1644
    [105]Kazuhiro Kumabe, Toshiaki Hanaoka, Shinji Fujimoto. Co-Gasification of woody biomass and coal with air and steam [J]. Fuel,2007,86 (5):684-689
    [106]Collot CA, Zhuo Y, Dugwell DR, Kandiyoti R. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors[J]. Fuel,1999,78 (6):667-79
    [107]Robert C. Browna, Qin Liua, Glenn Norton. Promoted reactivity of char in co-Gasification of biomass and coal:synergies in the thermochemical process [J]. Fuel,1999,78 (10):1189-1194
    [108]K. Sjostrom, G. Chen, Q. Yu, C. Brage, C. Rosen. Gatalytic effects observed during the co-Gasification of coal and switchgrass [J]. Biomass and Bioenergy,2000,18 (6):499-506
    [109]宋新朝,李克忠,王锦凤.流化床生物质与煤共气化特性的初步研究[J].燃料化学学报,2006,34(3):303-309
    [110]印佳敏,吴占松.TP347H在生物质锅炉过热器气相条件下的腐蚀特性(Ⅰ)[J].热力发电,2009,38(7):27-31
    [111]李永玲,印加敏.新型秸秆双床热解制气工艺的设计研究[J].热力发电,2008,55(11):55-58
    [112]李明,王伟.生物质热解参数对焦碳生成特性及产氢率的影响.太阳能学报,2009,30(8):1129-1133
    [113]王惺,李定凯.生物质压缩颗粒的燃烧特性[J].燃烧科学与技术,2007,13(1):86-90
    [114]秦建光,余春江.循环流化床秸秆燃烧中的碱金属迁徙转化研究[J].太阳能学报,2009,30(5):667-672
    [115]周劲松,赵辉.生物质气流床气化制取合成气的试验研究[J].太阳能学报,2008,29(11):1406-1413
    [116]王树荣,刘倩.基于热重红外联用分析的生物质热裂解机理研究[J].工程热物理学报,2006,27(2):351-353
    [117]谭洪,王树荣.生物质三组分热裂解行为的对比研究[J].燃料化学学报,2006,34(1) : 61-65
    [11 8]谭洪,王树荣.金属盐对生物质热解特性影响试验研究[J].工程热物理学报,2005,26(5):742-744
    [119]陈汉平,杨海平.生物质流化床气化焦油析出特性的研究[J].燃料化学学报,2009,37(4):433-437
    [120]王贤华,陈汉平.无机矿物质盐对生物质热解特性的影响[J].燃料化学学报,2008,36(6):679-683
    [121]米铁,陈汉平.农林生物质废弃物的热重实验研究[J].太阳能学报,2008,29(1)109-113
    [122]陈汉平,赵向富.基于ASPEN PLUS平台的生物质气化模拟[J].华中科技大学学报:2007,14(9):134-139
    [123]杨海平,陈汉平.油棕废弃物及生物质三组分的热解动力学研究[J].太阳能学报, 2007,28(6):626-631
    [124]王泉斌,姚洪.纤维素、木质素对生物质与煤混烧特性的影响[J].工程热物理学报,2007,z2:205-208
    [125]王泉斌,徐明厚.生物质与煤的混烧特性及其对可吸入颗粒物排放的影响[J].中国电机工程学报,2007,27(5):7-12
    [126]胡松,孙路石.非传统动力学分析法解析生物质热解过程[J].太阳能学报,2008,29(8):1038-1044
    [127]胡松,付鹏.典型农业生物质催化气化反应动力学特性研究[J].太阳能学报,2008,29(6):716-721
    [128]Peijun Ji, Wei Feng, Biaohua Chen. Production of ultrapure hydrogen from biomass Gasificationwith air [J]. Chemical Engineering Science,2009,64 (3):582-592
    [129]D.A. Nemtsov, A. Zabaniotou. Mathematical modelling and simulation approaches of agricultural residues air Gasification in a bubbling fluidized bed reactor [J]. Chemical Engineering Journal,2008,143 (13):10-31
    [130]Stefano Brandani, Kai Zhang. A new model for the prediction of the behaviour of fluidized beds[J]. Powder Technology,2006,163 (1):80-87
    [131]C.N. Lim, M.A. Gilbertson, A.J.L. Harrison. Measurement and simulation of bubbling fluidised beds[J]. Powder Technology 2006,170 (3):167-177
    [132]X. Fan, Z. Yang, D.J. Parker, B. Armstrong, Prediction of Bubble Behaviour in Fluidised Beds Based on Solid Motion and Flow Structure[J], Chemical Engineering Journal,2007,2008,140 (1):358-369
    [133]Ivano Miracca, Guido Capone. The staging in fluidised bed reactors:from CSTR to plug-flow[J]. Chemical Engineering Journal,2001,82 (1):259-266
    [134]Samy S.Sadaka, A.E.Ghaly, M.A.Sabbah. Two phase biomass air-steam Gasification model for fluidized bed reactors:Part I-model development [J]. Biomass and Bioenergy,2002,22 (6):439-462
    [135]Bryden K. M., Ragland K. W. Numerical modeling of a deep, fixed bed combustor [J] AIChE Journal 1995,40 (3):269-275
    [136]Davidson, D. Harrison, Fluidized particles[M],Cambridge University Press (1963) New York
    [137]Grace,J.R. Handbook of Multiphase[M].G. Hetsroni,G.,Hemisphere,Washington,1982.
    [138]D.Kunii, Levenspiel O.. FLUIDIZATION ENGINEERING [M].2nd ed. MA, Butterworth-Heinemann series in chemical engineering
    [139]Nunn T. R., Howard J. B., Longwell J.P. et al. Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood [J]. Industrial & Engineering Chemistry Process,1985,24 (3):836-844
    [140]Radmanesh, R., Mabrouk, R., Chaouki, J.. Effect of Temperature on Solids Mixing in a Bubbling Fluidized Bed Reactor[J]. Internaltional Journal of Chemical Reactor Engineering 2005.16 (3):565-572
    [141]J. Rath, G. Steiner, M. G. Wolfinger. Tar cracking from fast pyrolysis of large beech wood particles [J]. Journal of Analytical and Applied Pyrolysis.2002,62 (1):83-92
    [142]Wurzenberger J.C., Wallner S., Raupenstrauch H et al.Thermal conversion of biomass: Comprehensive reactor and particle modeling [J]. AIChE Journal 2002,48 (10):2398-2411
    [143]樊泉桂阎维平.锅炉原理[M].北京:中国电力出版社.2003
    [144]锅炉机组热力计算标准方法(73版)
    [145]M. Sami, K. Annamalai, M. Wooldridge. Co-firing of coal and biomass fuel blends[J].Progress in Energy and Combustion Science 2001,27 (2):171-214
    [146]http://www.ieabcc.nl/database/cofiring.php
    [147]T. Madhiyanon. Co-firing of rice husk with coal in a cyclonic fluidized-bed combustor (w-FBC) [J]. Fuel,2009,88 (1):132-138
    [148]Osvalda Senneca. Burning and physico-chemical characteristics of carbon in ash from a coal fired power plant [J]. Fuel,2008,87 (7):1207-1216
    [149]阎维平,陈吟颖.生物质混合物与煤共热解的协同作用[J].中国电机工程学报,2007.25(7):79-83
    [150]米铁等.生物质灰化学特性的研究[J].太阳能学报,2004,5(2):237-241
    [151]范志林等.关于生物质基本性质分析的问题[J].东南大学学报,2004,34(3):352-355
    [152]Tzong-Horng Liou. Evolution of chemistry and morphology during the carbonization and combustion of rice husk [J]. Carbon,2004,42 (5):785-794
    [153]Armesto L. et al. Combustion behaviour of rice husk in a bubbling fluidised bed[J]. Biomass and Bioenergy,2002,23 (2):171-179
    [154]K.Umamaheswaran. et al. Physico-chemical characterisation of Indian biomass ashes [J]. Fuel,2008,87 (4):628-638
    [155]SarbakZ. et al. Characterization of surface properties of various fly ashes[J]. Powder Technol 2004; 145 (7):82-87
    [156]Kutchko BG, Kim A. G. Fly ash characterization by SEM-XEDS [J]. Fuel,2006,85 (4):2537-2544
    [157]Della, V.P., Kiihn, I., Hotza, D.. Rice husk ash as an alternate source for active silica production [J], Material Letters.2002,57 (5):818-821
    [158]T.P. Ding, S.H. Tian, L. Sun c at el. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle [J]. Geochimica et Cosmochimica Acta,2008,72 (3):5600-5615
    [159]Mark Jan Prins. Thermodynamic analysis of biomass Gasification and torrefaction[D]. Eindhoven University,2005
    [160]S.R.A.Kersten, W.Prins, A.van der Drift. Experimental Fact-Finding in CFB Biomass Gasification for ECN's 500 kWth Pilot Plant [J]. Ind. Eng. Chem. Res. 2003,42 (5):6755-6764
    [161]谢玉荣,肖军.生物质催化气化制取富氢气体实验研究[J].太阳能学报,2008,29(7):888-893
    [162]高杨,肖军.串行流化床生物质气化制取富氢气体模拟研究[J].太阳能学报,2008,29(7):894-899
    [163]刘仁平,金保升.循环流化床燃烧棉秆两种床料的特性[J].东南大学学报,2007,37(3):441-445
    [164]任强强赵长遂.生物质热解的TGA-FTIR分析[J].太阳能学报,2008,29(7):910-914
    [165]范晓旭,那永洁.富钒石煤与生物质在CFBC试验台上的混烧实验[J].热能动力工程,2009,4(1):529-532
    [166]乔春珍,肖云汉.生物质一步制氢的热力学分析及实验研究[J].太阳能学报.2007,28(1) : 91-96
    [167]赵义军,孙绍增,田洪明.木屑旋风空气分级气化试验研究[J].太阳能学报,2009,30(8):1106-1110
    [168]董芃,齐国利.生物质快速热解制取生物质油[J].太阳能学报,2007,28(2):223-226
    [169]陈冠益.生物质二级固定床催化热解制取富氢燃气[J].太阳能学报,2008,29(3):360-364
    [170]陈冠益,李强.生物质热解气化制取氢气[J].太阳能学报,2004,25(6):776-781
    [171]陈祎,罗永浩.生物质废弃物的热解研究[J].燃料化学学报,2007,35(3):370-374
    [172]段佳.生物质气化再燃特性实验研究[J].燃料化学学报,2007,35(2):245-248
    [173]许庆利,颜涌捷.生物质气合成二甲醚实验研究[J].太阳能学报,2009,30(5):673-676
    [174]郭晓亚,颜涌捷.生物质裂解油催化裂解精制[J].过程工程学报,2003,3(1):91-95
    [175]易维明,柏雪源.生物质在闪速加热条件下的挥发特性研究[J].工程热物理学报,2006,27(z2):135-138
    [176]何芳,徐梁.生物质热解过程吸热量[J].太阳能学报,2006,27(3):237-241
    [177]楼波,罗玉和.回转窑内生物质高温空气燃烧NOx生成模型与验证[J].中国电机工程学报,2007,27(29):68-73
    [178]何军飞,马晓茜.中型生物质气化发电CDM项目案例分析[J].太阳能学报,2006,27(10):1043-1048
    [179]吕友军,金辉,郭烈锦.生物质在超临界水流化床反应系统中气化制氢实验研究[J].太阳能学报,2009,30(10):1335-1340
    [180]梁慧荣,郭烈锦.铜钼基硫氧化物催化剂及其光催化产氢性能[J].太阳能学报.2009,30(10):1331-1334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700