用户名: 密码: 验证码:
不同改性树脂对饮用水中氟的去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟是广泛存在于自然界的微量元素,也是人体必须的微量元素之一。饮用水中的氟离子对于人类来说是一柄双刃剑:一方面氟是人体所需的微量元素之一,摄入适量的氟可有效的预防龋齿;而另一方面,氟是亲骨性元素,当摄入过量时,它会影响机体的钙、磷代谢,导致氟斑齿甚至氟骨症等不同程度的氟中毒。几乎所有的天然水中都含有氟离子,平均含量在0.01mg/L—1.50mg/L之间。根据世界卫生组织规定,饮用水中适宜的氟浓度为1.5mg/L。中国是世界上饮水型地方性氟中毒流行最广、危害最严重的国家之一。我国含氟地下水分布广泛,尤其是在东北、华北和西北地区,大约有7226万人饮用超标含氟水,因此,饮用水除氟势在必行。
     离子交换树脂是一种在溶液中进行离子交换、带功能基团的树脂。利用离子交换树脂可以有效地除去水中的各种金属离子,用阳离子交换树脂除氟属于吸附法中比较新颖的一种方法。本研究将阳离子交换树脂改性为H型树脂、Al型树脂和La型树脂,进行除氟研究,结果表明:改性树脂较未改性树脂可显著提高对水中氟离子的去除效率。吸附时间、外界氟离子浓度、树脂量、pH值对于三种改性树脂的除氟效率都有影响,其中Al改性树脂除氟效果最好,其最佳除氟条件是:吸附时间为16h,吸附浓度为12mg/L,4mg树脂量最好,酸性条件吸附效果好。BET比表面积的测定和IR分析结果表明:Al改性树脂对氟离子的去除效率显著增加,不是由树脂表面孔结构的影响,而是树脂中R-SO_3发生变化。
     壳聚糖是一种天然的生物高分子多聚糖,因其良好的生物相容性以及无毒无害等特点,在饮用水除氟中显示出了巨大的优越性。本文以壳聚糖为原料制备铁改性壳聚糖树脂,研究其对饮用水中氟离子的吸附性能,探讨饱和吸附时间、氟离子浓度、树脂容量、pH值以及其它离子等因素对吸附的影响。结果发现Al_(13)改性壳聚糖树脂和Fe改性壳聚糖树脂吸附容量大,受pH影响较小,再生简单,去除效果稳定,且Al_(13)改性壳聚糖树脂吸附效果比Fe改性壳聚糖树脂好。Al_(13)改性壳聚糖树脂和Fe改性壳聚糖树脂吸附水中氟离子的最佳时间都为12h,树脂容量为150μg/g,其对不同浓度的氟离子均有较好的去除率,保持在80%左右,其中pH值对去除率影响不大。饮用水中所含的PO_4~(3-)对两种改性壳聚糖树脂除氟效率影响未达到显著水平,可不予考虑,而溶液中SO_4~(2-)和Cl~-均会浓度显著影响改性树脂去除效率,影响随着外界离子浓度增大而增加。吸附后的壳聚糖树脂采用氨水作为再生液可反复使用多次,且再生效果较好。再生后的树脂除氟效率与原树脂相近。壳聚糖树脂是一种良好的氟离子吸附剂,其对于饮用水中氟离子的去除具有很高的研究和应用价值。
The fluorine is a kind of minor chemical element which is extensively existed in nature, and also one of necessary minor element of human body. For the mankind, fluoride in drinking water is a blade sword: on the one hand, the fluoride is one of the minor chemical elements that the human body needs, absorbing just the right amount of fluoride can prevent from dental caries effectively; but on the other hand, the fluoride is a chemical element which is easy to attach itself to bones. The excessive absorption of fluoride will influence the metabolism of the calcium and phosphorus of human body, resulting in fluorosis in degree, such as the diseases of dental fluorosis and Kaschi-Beck. The fluoride exists in all natural water, with the average content between 0.01mg/L~1.5mg/L. According to the World Health Organization, the concentration of fluoride in drinking water should be 1.5mg/L. China is one of the most popular and serious countries in the world, where endemic fluorosis spread widely in drinking water and endanger the people's heath. Fluoride groundwater extensively distributes in our country, especially in the Northeast, North, Northwest China, with approximate 72.26 million people drinking excessive fluoride water.
     The cation-exchange resin is a kind of resin with functional base groups, which can be transformed by different solutions and used to effectively remove various mental ions of water. The principle of defluordiation of drinking water in this research is to introduce the cation-exchange resin to defluoridate water. In this study the defluoridation is transformed into model-H resin、model-Al resin and model-La resin, and the research findings are that the highest efficiency of defluridation is Al cation-exchange resin, the model-La takes the second place and the lowest is strong acid cation exchange resin. And the Al cation exchange resin is analyzed by SEM, BET and IR.
     Chitosan, a kind of naturally occurring polysaccharide in the fungi and arthropod, was found to show an excellent ability of absorbing fluoride in drinking water treatment in terms of its biologic compatibility and avirulence. This study examines in drinking water the adsorption of fluoride with the iron-modified chitosan resin which was prepared with the chitosan as the raw material, and discusses the adsorption effects in different conditions involving the saturated adsorption time, initial concentration, adsorbent dose, pH value and other ions. It is found that model-Al_(13) chitosan resin and model-Fe chitosan resin are characteristic of the high ,little effect from pH, easy and the stable removal effect. Additionally model-Al_(13) chitosan resin is better than model-Fe chitosan resin in terms of adsorption effects. For both model-Al_(13) chitosan resin and model-Fe chitosan resin which adsorb, the optimal time of adsorbing fluoride in water is 12h, and the most adsorption is 150μg/g. Under these optimized conditions, the efficiency of removal of fluoride reaches up to more than 80%, and the pH value has little effect for removal rate. PO_4~(3-) contained in the drinking water whose effect of removal fluoride rate for the two kinds of chitosan resin has not obtained the significant level and could be out of the consideration. However the concentration of SO_4~(2-) and Cl~- in the solutions greatly effect the removal rate of chitosan resin and the effect is gradually increased according to the of the concentration of fluoride. After being treated with ammonia, the adsorbed chitosan resin could be effectively reused for many times and maintains the same removal rate. The regenerated chitosan resin is similar to the original resin. Chitosan resin, one of the good adsorbent for fluoride, owns the high value of research and apply for the removal of fluoride in the drinking water.
引文
[1] P. Pitter. Forms of Occurrence of Fluorine in Drinking Water[J]. Water Res, 1985,19(3): 281~284
    [2] 中国卫生年鉴.中国卫生出版社,2004:199
    [3] 焦有,杨占平.氟的危害及控制[J].生态学杂志,2000,19(5):67~70.
    [4] 奚旦立等编.环境监测[M].第二版.北京:高等教育出版社,2002:12
    [5] 罗媛.氟元素与人体健康[J].广东微量元素科学,2002,9:21~23.
    [6] Usha R. Maheshwari, B.D.S., Ph.D., Janet T McDonald, Ph.D., R.D.,Victor S. Schneider, M.D., et al. Fluoride balance studies in ambulatory healthy men with and without fluoride supplements [J]. The American Journal of Clinical Nutrition 34: DECEMBER 1981, pp. 2679~2684.
    [7] Wojciech Czarnowski, Krystyna Wrzesniowska, Jerzy Krechniak. Flouride in drinking water and human urine in Northern and Central Poland [J]. The science of the Total environment,1996,191:177~184.
    [8] 吴春华,周小飞,唐文浩.大气氟化物对植物的伤害[J].热带农业科学,2001,1:70~74.
    [9] W. H. Bowen. Caries Prevention-Fluoride: Reaction Paper[J]. Adv Dent Res, 1991,5: 46-49
    [10] 利锋.土壤氟与植物[J].广东微量元素科学,2004,17(5):6~11
    [11] 杨红晓,周爱东.治理氟污染,实现可持续发展[J].有色矿冶,2005,21:45~50.
    [12] 陈国阶.环境氟与人类健康[J].国外医学地理分册,1980,4:151~153.
    [13] 孙殿军.饮水加氟须慎重[J].中国地方病学杂志,2002,21:510~511.
    [14] 李军,王正辉,程晓天等.山西省盐湖区地方性氟中毒病情调查分析[J].中国地方病防治杂志,2005,(20)3:168~169.
    [15] 陈思怀,黎晓敏,魏光何.高氟水的危害及控制[J].畜禽业,2003,2:53~54
    [16] Hocine Garmes.et al. Defluoridation of groundwater by a hybrid process combining adsorption and Dorman dialysis[J]. Desalination, 2002, 145: 287~291
    [17] 李卫东.饮水理化除氟方法与进展[J].安徽预防医学杂志,2002,8(2):126~129
    [18] 王惟咨,何增跃,叶兆杰.氟化物对土壤中几种生化代谢过程影响的研究初报[J].农业环境保护,1989,8(5):7~9
    [19] 张晓辉.氟污染及防治[J].邯郸职业技术学院学报,2001,1:67~69.
    [20] 王晓玲,邵金风.氟化物的自然分布和在人体代谢及其生理作用[J].中国地方病防治杂志,2002,17:314~316.
    [21] 张强国,谢果.氟危害及重庆氟污染的对策[J].重庆科技学院学报(自然科学版),2005,7:17~27.
    [22] 任启勤.饮水氟中毒与人体健康[J].安徽预防医学杂志.2002,8:123~125.
    [23] 朱来东.工业氟污染的生物效应分析与研究[J].甘肃冶金,2003,25(1):57~60.
    [24] 何公理,吉荣娣.饮水除氟方法的研究进展[J].中国地方病学杂志,1995,14(4):236~239
    [25] 韩建勋,贺爱国.含氟废水处理方法[J].有机氟工业,2004,3:27~36
    [26] 李雪玲,刘俊峰,李培元.石灰沉淀法除氟的应用[J].水处理技术.2000,26(6):359~361
    [27] 黄国林,邹丽霞,路达.含氟工业废水处理技术研究[J].污染防治技术,1999,12(4):131~133
    [28] 张燕.高效氧化铝除氟剂及其除氟实用技术的研究[J].黄石理工学院学报,2005,21(4):43~46
    [29] 王敏,童芳华.铝盐混凝剂的研究进展[J].江西化工,2005,2:9~11
    [30] 刘建,李梦耀,赵金辉等.含铁氨羧螯合树脂配体交换除氟研究[J].汉中师范学院学报(自然科学),2002,20(1):62~66.
    [31] 王云波.沸石除氟工艺研究.西安建筑科技大学硕士学位论文.
    [32] 陈艳艳,周文斌,黄克玲等.无机类吸附剂处理含氟废水的研究[J].江西化工,2005,1:23~26.
    [33] 任锦霞.高氟废水除氟实验研究.西安建筑科技大学硕士研究生论文.
    [34] 张玲,薛学佳,周钰明.含氟废水处理的最新研究进展[J].化工时刊,2004,18:16~18.
    [35] 张千杰.载铝离子树脂用于天然水降氟试验[J].岩矿测试,1999,18(4):295~298.
    [36] 周春琼,邓先和,刘海敏等.吸附法处理含氟水溶液的研究与应用[J].水处理技术,2006,32(1):1~4.
    [37] 韩建勋,贺爱国.含氟废水处理方法[J].有机氟工业,2004,3:27~36.
    [38] 王丽敏,李佳丽,李秋荣.电絮凝法去除工业废水中的F~-实验分析[J].大庆石油学院学报,2005,29(3):36~38,122
    [39]吴华雄,孟林珍,许维宗.反渗透法处理含氟废水的试验研究[J].电力环境保护,1998,14(3):1~5
    [40]曾平,王桂清.液膜法处理高氟废水研究[J].膜科学与技术,1996,16(4):17~21
    [41]Zakia Amof. et al. Fluoride removal from brackish water by electrodialysis[J]. Desalination, 2001, 133:215-223
    [42]陆少红,宫葵.高纯度水的制取一离子交换树脂法[J].沈阳航空工业学院学报.2004,21(3):66~68.
    [43]黄明元,吕昌银.镧型阳离子交换树脂用于饮水除氟的实验研究[J].卫生研究,2003,32(6):553~555.
    [44]王晓波,张晓慧.用Al—型强酸性阳离子交换树脂除氟的试验研究[J].齐齐哈尔大学学报.2000,16(4):87~89.
    [45]谢祖芳,周能,陈渊.含氟废水处理研究与应用[J].玉林师范学院学报,2002,23:66~69.
    [46]吴华雄,孟林珍,许维宗.反渗透法处理含氟废水的实验研究[J].电力环境保护,1998,14(3):1~5.
    [47]C.Y. Hua, S.L. Lo, W. H. Kuan. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes[J]. Water Research,2003,37:4513"-~4523.[48] N. Mameri, A. R. Yeddou, H. Lounici, et al. Defluoridation of septentrional saharawater of north Africa by electrocoagulation process using biopolar aluminium electrodes[J]. Wat. Res, 1998,32:1604~1611.
    [49王三反.电凝聚除氟条件的研究[J].处理技术,1990,16(4):298~303.
    [50]Mustapha Hichour.Francoise Persin, Jean Mol6nat.et al. Fluoride removal from diluted solutions by Donnan dialysis with anion-exchange membranes[J]. Desalination,1999,122:53 ~62.
    [51]周霞萍,周芩,张英.焦化废水脱氟脱色的膜分离机制[J].华东理工大学学报,200 1,27(4):427~429.
    [52]华河林,吴光夏,刘锴.电渗析技术的新进展[J].环境污染治理技术与设备.2001,2(3):44~47.
    [53]于亚鑫,翟秀静,祝立英.电渗析法分离氯氟离子[J].有色金属.1999,51(4):49~51
    [54]张威,杨胜科,费晓华.反渗透技术去除地下水中氟的方法[J].长安大学学报(自然科学版),2002,22(6):116~117.
    [55]张国义.浅谈离子交换法[J].黔西南民族师专学报(综合版),1998,3,4:67~68.
    [56]龚云表,石安富.合成树脂与塑料手册,上海:上海科学技术出版社,1993,367.
    [57]俞卫华,钱俊青.732脂吸附蛋白质的机理研究[J].氨基酸和生物资源,2002,24(2):14~16.
    [58]吕仪军.离子交换树脂应用进展[J].四川化工与腐蚀控制,1999,2:36~38.
    [59]冯新亮,管传金,赵成学.阳离子交换树脂的有机催化进展[J].有机化学.2003,23(12):1348~1355.
    [60]Elizabeth Roditi Lachter, Rosane Aguiar da Silva San Gil,David Tabaka. Alkylation of toluene with aliphatic alcohols and 1-octene catalyzed by cation-exchange resins [J]. Reactive & Functional Polymers,2000,44: 1~7.
    [61]刘喜纲,刘翠哲,王栋.离子交换树脂在医药方面的应用[J].承德医学院学报,2004,21:243~244.
    [62]汪青.离子交换树脂在食品工业中的应用[J].食品研究与开发,2005,26(4):161~163.
    [63]Seen.A.J.J.Mol.Catal.A 2001,177,105.
    [64]张昱,魏国.锆负载型树脂用于含氟废水深度处理的研究[J].环境污染治理技术与设备,2002,3(5):45~48.
    [65]刘瑞霞,汤鸿霄.负载镧纤维吸附剂对氟离子的吸附性能[J].环境科学,2000,21(4):34~37.
    [66]尹玲玲,谢雄华.处理后沸石和改性D401树脂除氟研究[J].山西建筑,2006,32(1):196~197.
    [67]康贻军.壳聚糖的研究与开发进展[J].内蒙古民族大学学报(自然科学版),2004,19(3):293~296
    [68]刘辉.化学改性壳聚糖作为重金属离子吸附剂在水处理中的应用[J].山西能源与节能,2004,2:40~41
    [69]卞雅娜,刘殿祥.壳聚糖的研究进展[J].职业与健康,2002,18(1):44~45
    [70]孙冀平.壳聚糖及其应用[J].中国食品添加剂,2005,5:83~86
    [71]胡宗智,游敏,陈燕.天然高分子壳聚糖在环保领域中的研究及应用[J].云南化工.2004:31(8)20~22,25
    [72]Jill Ruhsing Pan. et al. Evaluation of a Modified Chitosan Biopolymer for Coagulation of Colloidal Particles [J]. Physicochemical and Engineering Aspects. 1999,(147):359~364
    [73]壳聚糖在纺织工业中的应用[J].纺织品工业,2003,9
    [74]侯世珍,张岩,安郁琴.壳聚糖一磷酸酯淀粉对纸的增强助留作用及机理.中国造纸,1992,(6):27~32
    [75]Allan G. G. Proceedings of the Symposium on Man-Made Poly-mer in Paper-making[J]. Helsinki, 1982,85-96
    [76]胡道道,史启祯,唐宗薰.甲壳素/壳聚糖的配位化学和配合物应用的研究进展[J].无机化学学报,2000,16(3):391
    [77]莫秀梅.甲壳胺·明胶共混物的研究[J].高分子学报,1997,(2):222~226
    [78]黄丽萍,刘宗明,姚波.甲壳质、壳聚糖在农药上的应用[J].天然产物研究与开发,1999,11(5):60~64
    [79]汪玉庭,朱海,唐玉蓉等.交联壳聚糖对重金属离子的吸附性能研究[J].环境污染与防治,1998,20(1):1~3
    [80]黄文强.模板交联壳聚糖对Cu~(2+),Ni~(2+),C0~(2+)离子的吸附作用[J].离子交换与吸附,1998,14(1):329
    [81]彭长宏,汪玉庭.接枝羧基壳聚糖的合成及其对重金属离子的吸附性能[J].环境科学,1998,19(5):29~33
    [82]贺小进,谭天伟.球形壳聚糖树脂制备方法及吸附性能研究[J].离子交换与吸附,2000,16(1):47~53
    [83]丁小斌,孙宗华,万国祥.磁性高分子微球的制备和应用研究进展[J].化学通报,1997,(1):1
    [84]曹同玉,戴兵,戴俊燕.单分散大粒径聚合物微球的合成及应用[J].高分子通报,1995,(3):174
    [85]卢灿辉,陈文定.高分子超微粉体的制备,应用及高功能化[J].功能高分子学报,1996,9(2):307
    [86]易琼,叶菊招.壳聚糖吸附剂的制备及其性能[J].离子交换与吸附,1996,12(1):19
    [87]张所信,王为国,江龙法等.球形交联壳聚糖的制备及其在固定化 α-淀粉酶方面的应用[J].现代化工,1997,(4):29
    [88]钱国强,周菊岩,马建标等.壳聚糖微球固定化L-天门冬酰胺酶研究[J].高等学校化学学报,1996,17(7):1147
    [89]范娟,阮复昌.甲壳素及壳聚糖最新研究进展[J].广东化工,2002,2:23~25,26
    [90]张跃华,张燕,何炳林.新型交联甲壳糖吸附树脂对胆红素的吸附性能研究[J].高等学校化学学 报,1995,16(4):643~647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700