用户名: 密码: 验证码:
车载式施药机变量施药监控系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实行变量施药是保证单位面积施药量符合农艺要求、减少农药使用量以及降低化学污染的一项重要措施。针对目前部分施药机变量施药控制性能较差、无法进行施药过程在线监测、无法进行施药参数存储和独立喷头控制等问题,本文设计了一套车载式施药机变量监控系统。该系统能够依据施药机的行走速度,通过喷药量和压力控制,实现单位面积施药量不变;同时可实现施药过程的在线监控以及喷头的独立开闭控制等。
     (1)明确系统总体设计要求,即能够实现喷药量的变量控制、在线监测和喷头独立控制等三个方面的功能。通过方案比较分析,确定了系统整体方案,即系统依据施药机行走速度的变化和设定的单位面积施药量,实时调整喷药量;依据设定压力值调整实际压力值;通过LCD和PC机实时监测施药情况,并对施药参量进行存储;通过软键盘实现喷头的独立开闭控制。
     (2)建立了系统压力和喷药量控制模型,并进行了压力和施药量PID和模糊控制算法仿真分析。结果表明:在单位阶跃信号输入下,压力和施药量PID控制系统的响应时间分别为0.4s和0.18s;压力和施药量模糊控制系统的响应时间分别为40ms和55ms。同时提出了采用跳变步长法对施药量滞环控制算法进行优化的方法。
     (3)根据系统方案,对系统执行、检测部件和其它硬件设备进行了选择;设计了电源、键盘、液晶显示、通信、SD卡存储、电动球阀控制、电磁阀控制等模块电路,绘制了PCB板并制作了控制器。设计并实现了系统上位机软件和下位机软件。其中上位机软件程序包括数据库构建、系统注册、系统登录、系统设置、数据接收显示存储和数据处理等模块的程序;下位机软件程序系统初始化、液晶显示、键盘处理、数据采集处理、SD卡存储、串口通信、电动球阀控制和电磁阀控制等模块的程序。
     (4)进行了系统调试及验证试验,结果表明:系统上位机能够正常接收存储下位机传送的施药参量数据,并可以进行数字和图形化实时显示;下位机可以显示施药参量并将数据打包存储于SD卡中;系统对速度、压力和流量的测量精度分别达到97.7%、98.5%和99.3%;系统可以实现采用软键盘对20个喷头进行独立开闭控制。
     (5)进行了滞环控制算法优化试验,结果表明:在设定喷药量为200ml/s时,采用等步长和跳变步长滞环控制算法控制喷药量的平均恢复时间分别为12s和7s、恢复时间段内的平均误差分别为27.19%和13.24%、整个控制过程的平均误差分别为12.68%和7.55%;在压力为0.75MPa时,采用跳变步长滞环控制算法控制施药压力的平均恢复时间为13.4s、恢复时间段内和整个控制过程中的平均误差分别为25.49%和14.42%。
Variable pesticide application is one of the most important measures for spray value of per unit area to meet the agricultural requirements, reducing the use of pesticide and chemical pollution. Some of the pesticide application machines can not spray pesticide variably, monitor on line, store the pesticide application parameter data and control nozzles independently at present. On the basis of such situations, a variable pesticide application monitoring and control system of pesticide application machine hauled by tractor was designed. The system can store and display the pesticide application parameter data while monitoring and control the spraying volume according to the speed of the tractor to stabilize pesticide application volume on per unit area and control the pressure based on the setting data, besides that it could also control nozzles independently by using soft keyboard.
     (1) The overall requirements of the system, which included that the system could spay pesticide variably, monitor on line and control nozzles independently, were determined. After comparision and analysis of different schemes, the system’s scheme was determined, which was that the system can change the spray volume based on the speed of the tractor and the setting spray volume, change the pressure based on the setting data, monitoring the spray situation by LCD and PC, and control the nozzles by soft keyboard, was ensured through the compare and analysis of schemes.
     (2) The pressure and spray volume control models were established and the PID and fuzzy control algorithm were designed and simulated. The results showed that the response time of pesticide pressure and spraying volume control were 0.85s and 1.04s respectively under the PID control, and were 40ms and 55ms respectively under the fuzzy control. Hysteresis control algorithm was optimized by jumping control step size.
     (3) The executive components, testing components and the other equipment were chosen according to the system’s scheme. And circuit modules including power supply, keyboard, LCD displayer, communication, storage of SD card, control circuit of electronic ball valve and solenid valve, and so on were designed, meanwhile the PCB board and the system’s controller was made. The system’s master computer software and lower computer software were designed. Among them, the master computer software’s program included construction of database, system registration, system login, system settings and reception, display, storage and analysis of data, etc. While the lower computer software’s program conained system initialization module program, LCD display, keyboard scanning, data sampling, storage of SD card, serial communication and control modules programs, etc.
     (4) The system debugging and verification experiments were finished, which showed that the system’s master computer can receive, store and display the pesticide application parameter data, while the lower computer can display and store the data. The average measuring accuracy of speed, pressure and spray volume was 97.7%, 98.5%and 99.3% respectively. The system can control twenty nozzles independently by using soft keyboard.
     (5) The optimization experiment of hysteresis control algorithm was done and the results showed that the average recovery time was twelve seconds and seven seconds respectively at the spray volume being 200ml/s while control the spray volume by hysteresis control algorithm with the same control step and jumping control step, and the average error was 27.19% and 13.24% respectively in the recovery time, while the average error was 12.68% and 7.55% respectively in the whole control process. The average recovery time was 13.4 seconds at the pressure being 0.75MPa, when controlled the pressure, and the average error was 25.49% and 14.42% respectively during the recovery time and the whole control process.
引文
蔡美琴,张为民,何金儿.2004.MCS-51系列单片机系统及其应用(第二版).北京:高等教育出版社:154~156
    陈勇,郑加强,周宏平,田磊.2003.精确农业管理系统可变量技术研究现状与发展.农业机械学报,34(6):156~159
    陈勇,郑加强.2005.精确施药可变量喷雾控制系统的研究.农业工程学报,21(5):69~72
    戴奋奋,袁会珠,何雄奎.2002.植保机械与施药技术规范.北京:中国农业科学技术出版社
    代丽丽.2009.农产品质量安全与农药.现代农业科技,8(1):100
    邓魏.2007.喷雾图像处理及脉宽调制(PWM)变量喷雾的雾化特性研究.[博士学位论文].南京:南京农业大学
    邓魏,丁为民,何雄奎.2009.变量喷施技术及其雾化特性评价方法综述.中国农业大学学报,14(3):94~102
    傅泽田,祁力钧.1998.国内外农药使用状况及解决农药超量使用问题的途径.农业工程学报,18(2):7~12
    傅泽田,祁力钧,王俊红.2007.精准施药技术研究进展与对策.农业机械学报,38(1):189~192
    葛玉峰,周宏平,郑加强,张慧春.2005.基于机器视觉的室内农药自动精确喷雾系统.农业机械学报,36(3):86~89
    郭天祥.2009.51单片机C语言教程.北京:电子工业出版社:221~230
    何雄奎,曾爱军,何娟.2002.果园喷雾机风速对雾滴的沉积分布影响研究.农业工程学报,18(4):75~77
    何雄奎.2002.植保机械与施药技术.植保机械与清洗机动态,(4):7~10
    何雄奎.2004.改变我国植保机械和施药技术严重落后的现状.农业工程学报,20(1):13~15
    何立民.2000.我国单片机技术的应用和发展.电子设计技术,(11):10~16
    蒋大明,戴胜华.2003.自动控制原理.北京:清华大学出版社
    焦生杰,刘志敏.2005.智能型沥青洒布车洒布质量控制方案的确定.筑路机械与施工机械化,22(2):39~41
    陆琳.2008.植保机械及施药技术落后的原因.云南农业,9(1):20
    李广弟.1999.单片机基础.北京:航空航天大学出版社:46~98
    李祖欣.2003.MATLAB在模糊控制系统设计和仿真的应用.系统仿真学报,15(1):132~134
    李会芳,邱白晶,刘保玲,史春建,丁毅.2004.对精确农业中变量喷雾控制的研究.中国农机化,25(3):25~27
    李志臣,饶洪辉,王勇,姬长英.2007.除草剂变量施药技术的研究现状与进展.东北农业大学学报,38(4):563~567
    李娟,叶若红,尚书旗.2008.远程控制时滞系统的故障诊断和容错控制.农业工程学报,24(11):145~149
    林明远,赵刚.1996.国外植保机械安全施药技术.农业机械学报,27(10):149~154
    刘建,吕新民,党革荣,贺喜莹.2003.植保机械的研究现状与发展趋势.西北农林科技大学学报,31:202~204
    刘志壮,洪添胜,李震,宋淑然,岳学军,樊志平.基于模糊控制的流量控制阀仿真.农业工程学报,25(2):83~86
    倪汉祥,成卓敏.2001.面向21世纪植物保护发展战略研讨会论文集.北京:中国科学技术出版社
    邱白晶,李会芳,吴春笃,史春建,周宁.2004.变量喷雾装备及关键技术的探讨.江苏大学学报(自然科学版),25(2):97~101
    石海东.2000.单片机数据通信技术从入门到精通.西安:西安电子科技大学出版社
    史岩.2004.压力式变量施药系统研究.[博士学位论文].北京:中国农业大学
    史岩,祁力钧,傅泽田,张小栓.2004.压力式变量喷雾系统建模与仿真.农业工程学报,20(5):118~121
    沈齐英.2003.农药的使用现状及发展趋势.北京石油化工学院学报,11(1):56~59
    沈成杰.2009.变量喷雾系统设计及喷雾流量控制特性试验研究.[硕士学位论文].杭州:江苏大学
    宋戈,黄鹤松,员玉良,蒋海峰.2010.51单片机应用开发范例大全.北京:人民邮电出版社:332
    随顺涛.2009.车载式变量施药机控制系统研究.[硕士学位论文].咸阳:西北农林科技大学
    谭建军.2004.一款基于LM324集成运放廉价高性能仪用放大器.电讯技术,160~162
    田耀华.2008.制药生产中数据采集及电子记录系统的方案与特点.中国制药装备,47(8):16~19
    唐涛,黄良骥.2003.列车自动驾驶系统控制算法综述.铁道学报,25(2):98~102
    陶永华.1998.新型PID控制及其应用.北京:机械工业出版社:5~41
    王亮.2001.MATLAB语言与控制系统仿真.北京:北京工业大学出版社
    王立新.2003.模糊系统与模糊控制教程.北京:清华大学出版社
    王玉琳.2004.二线串行8位数模转换器MAX517的特性与应用.今日电子,(12):66~72
    王锦江.2007.农药变量施药控制系统研究.[硕士学位论文].北京:中国农业机械化科学研究院
    王真,朱月琼,王征.2009.Visual C# 2008程序设计.北京:电子工业出版社:223~260
    王利霞,张书慧,马成林,徐岩,齐江涛,王薇.2010.基于ARM的变量喷药控制系统设计.农业工程学报,26(4):113~118
    肖力.2006.植保机械发展与趋势略谈.农药市场信息,5(1):8
    玄子玉,杨方,刘立意.2009.基于单片机的变量喷雾控制系统的设计.东北农业大学学报,40(8):110~112
    杨学军,严荷荣,徐赛章,刘仲.2002.植保机械的研究现状及发展趋势.农业机械学报, 33(6):129~131
    杨莉.2008.基于ARM7的自动变量喷药系统设计及算法研究.[硕士学位论文].长春:吉林大学
    杨锦.2009.基于LINUX的自动变量喷药系统设计. [硕士学位论文].长春:吉林大学
    于永,戴佳,常江.2007.51单片机C语言常用模块与综合系统设计实例精讲.北京:电子工业出版社:74~131
    赵江苏.2009.植保机械发展与趋势略谈.农业机械,37(2):66~67
    赵茂程,郑加强.2003.树形识别与精确对靶施药的模拟研究.农业工程学报,26(7):150~153
    邵陆寿,戴之祥,崔怀雷,韦韫,朱德泉,李兵.2005.基于模糊控制的变量施药控制系统.农业机械学报,36(11):110~112
    翟长远,朱瑞祥,随顺涛,薛少平,上官周平.2009.车载式变量施药机控制系统设计与试验.农业工程学报,25(8):105~109
    郑加强,周宏平,赵茂程.2001.21世纪精确农药使用方法展望.北京:科学技术出版社
    郑加强.2004.农药精确使用原理与实施原则研究.科学技术与工程,4(7),566~570
    郑建荣.2003.流化床喷雾制粒若干机理的研究.华东理工大学学报,29(2):104~108
    张国良.2002.模糊控制及其MATLAB应用.西安:西安交通大学出版社:41~112
    张玲,戴奋奋.2002.我国植保机械及施药技术现状与发展趋势.中国农机化,(6):34~35
    诸静.2005.模糊控制理论与系统原理.北京:机械工业出版社:6~92
    皱伯敏.2007.自动控制理论(第三版).北京:机械工业出版社:17~98
    张发军,柴苍修.2007.智能车载喷雾的模糊控制方法.农业工程学报,23(7):104~108
    张春梅,史岩,张小楠.2007.基于模糊控制的施药控制系统的研究.机电工程技术,36(9):45~47
    Alvin R.Womac, Quy D Bui.2001. Development of a variable flow rate fan spray nozzle for precision chemical application. ASAE Annual International Meeting, 112~121
    Brivot R, Marchant J A. 1996. Segmentation of plants and weeds for a precision crop protection robot using infrared images.IEE Proc-Vis.Image Signal Process,143(2):124~129
    Bai L S, Tian Z H, Shi S J. 2007. Robust fault detection for a class of nonlinear time-delay systems. Journal of the Franklin Institute, 344(6):873~888
    Browna D L,Gilesb D K,Oliver M N.2008.Targeted spray technology to reduce pesticide in run off from dormant orchards. (27):545~552
    Dickinson Aaron R, Jonnson Donald M, Wardlow Georgew. 2007. A compact variable rate sprayer for teaching precision agriculture. Applied Engineering in Ariculture, 23(3):267~272
    Ghate S R, Perry C D. 1994. Ground speed control of pesticide application rates in a compressed air direct injection sprayer. Transacions of the ASAE, 37(1):33~38
    Giles D K, Slaughter D C. 1997. Precision band spraying with machine-vision guidance and adjustable yaw nozzles. Transaction of ASAE, 40(1):132~140
    Gerhards R, Sokefeld M, Timmermann C. 2002. Site-specific weed control in maize, sugar beet, winter wheat and winter barley. Precision Agriculture, 3(1):25~35
    Gerhards R, Oebel H. 2006. Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Research, 46(3):185~193
    King B A, Kincaid D C. 1996. Variable flow sprinkler for site-specific water and nutrient management. ASAE Annual International Meeting, 126~131
    Lee W S, Slaughter D C, Giles D K. 1999. Robotic weed control system for tomatoes. Precision Agriculture, 11(2):95~133
    Paice M E R, Miller P C, Bodle J D.1998. An Experimental Sprayer for Spatially Selective Application of Herbicides. Agricultural Engineering Research, 60(5):107~116
    Qiu W, Watkins G A, Sobolik C J. 1998. A feasibility study of direct injection for variable-rate herbicide application. Transactions of the ASAE, 41(2):291~299
    Salyani M, Serdynski J W. 1993. A device and method for sprayer calibration. Applied Engineering in Agriculture, 9(1):29~32
    Stark J C, Mccann I R, King B A.1993. A two-dimensional irrigation control system for site-specific application of water and chemical. Agronomy Abstracts
    Sudduth K A, Borgelt S C, Hou J. 1995. Performance of a chemical injection sprayer system.Applied Engineering in Agriculture, 11(3):343~348
    Solanelles F, Planas S, Escola A. 2002. Spray application efficiency of an electronic control system for proportional application to the canopy volume. Aspects Appl. Biol. Int. Adv. Pestic. Appl., 66:139~146
    Tian L, Reid J R, Hummel J W. 1999. Development of precision sprayer for sit-specific weed management. Transaction of ASAE, 42(4):893~900
    Tian L. 2002. Development of a sensor-based precision herbicide application system. Computers and Electronics in agriculture, 36(5):133~149
    Tian Lei.2002. Sensor-based precision chemical application systems. World Congress of Computers in Agriculture and Nature Resources, 279~289
    Tompkins F D, Howard K D, Mote C R. 1990. Boom flow characteristics with direct chemical injection. Transactions of ASAE, 33(3):737~743
    Tang G Y, Li J. 2008. Optimal fault diagnosis for systems with delayed measurements. Control Theory & Applications, (11):990~998.
    Tang G Y, Zhao Y D, Zhang B L. 2007. Optimal output tracking control for nonliner systems via successive approximation approach. Nonlinear Analysis:Theory, Methods and Applications, 66(6):1365~1377
    Unavul J K, Schueler J K, Mason P A C. 2000. Continuous control of a sprayer pinch valve. Trans of the ASAE, 43(4):829~837
    WalKer J T, Bansal R K. 1999. Development an characterization of variable orifice nozzles for spraying agro-chemical. ASAE Annual international Meeting, 245~249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700