用户名: 密码: 验证码:
中孔金属氧化物(氧化铝、氧化镍等)的合成、表征及催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1992年,M41S系列中孔氧化硅基材料的问世以来,不同化学组成的中孔材料作为一种新型材料引起了众多研究者的关注。而随着我国社会和经济的发展,石油资源结构和化工原料结构向重碳、大分子方向发展,要求使用具有大孔容、大表面积的催化剂来消除因原料结构大分子化带来的影响。作为使用最为广泛的催化剂和载体,制备具有大比表面积的中孔氧化铝材料具有极其重要的应用价值。在本论文中,采用两种不同的合成路线合成出了中孔氧化铝,并采用XRD、TG-DTA、TEM、SEM、N_2吸附、FTIR等表征手段对所合成的中孔氧化铝材料及其晶化过程和合成规律进行了考察。
     以阴离子表面活性剂十二烷基磺酸钠(SDS)作为模板剂,我们首次得到了表面活性剂复合的氧化铝纳米管,直径在6-8nm,长度达到200nm以上。纳米管焙烧后就得到了中孔氧化铝AMA(Anionic,Mesoporous,Alumina)样品,500℃焙烧后AMA样品的比表面积为287.0m~2·g~(-1),孔容为0.44cm~3·g~(-1)。
     以中性的嵌段共聚物为模板剂,我们首次采用异丙醇铝为铝源替代常用的仲丁氧基铝制备了具有高热稳定性的中孔氧化铝NMA(Neutral,Mesoporous,Alumina)样品,在800℃焙烧后NMA样品仍保持了208.2m~2·g~(-1)的比表面积,孔容为0.44cm~3·g~(-1)。
     在此基础上,制备了中孔Al_2O_3-NiO复合氧化物及中孔氧化铝为载体的Ni的催化剂,并采用XRF、TPR、H_2-TPD和H_2脉冲化学吸附等手段对催化剂进行了表征,并以1,2-二氯丙烷加氢脱氯制丙烯的反应对催化剂的催化性能进行了评价。中孔Al_2O_3-NiO复合氧化物中可以含有更高的Ni的含量,由此而具有了更好的活性和选择性。经过30h实验后,转化率仍保持在94%以上,丙烯的选择性保持在70%左右。
     我们还以SDS为模板剂,对其他的过渡金属进行了中孔氧化物合成的尝试,得到了一种表面活性剂复合氧化铜的微米级管状结构,并对其形成的规律进行了考察,对其形成的机理进行了初步的讨论。
Since the successful synthesis of M41S mesoporous silica materials in 1992, considerable efforts have been directed towards the preparation of mesoporous materials with different chemical compositions. Along with the social and economic developments of our country, the energy-structure and raw materials of chemical industry develop towards heavy carbon and larger molecule, which request to use catalysts with larger surface areas and pore volumes to overcome the negative influence caused by the changes of raw materials structure. As the mostly used supports and catalysts, the synthesis of mesoporous alumina with large surface areas possesses huge values of economy and applications. In the present work, mesoporous alumina has been successfully prepared through two synthesis routes. The structures and properties of these materials have been studied by various techniques such as XRD, TG-DTA, TEM, SEM, physical adsorption and FTIR.
    The alumina nanotubes have been prepared by using the anionic surfactant, sodium dodecyl sulfonate (SDS), as structure-directing template for the first time via a hydrothermal method. The obtained nanotubes are found having outer diameters from 6 to 8 nm with length up to 200 nm. After calcined at 500℃, the AMA (anionic, mesoporous, alumina) samples are obtained, with surface area of 287.0 m2·g~(-1) and pore volume of 0.44 cm3·g~(-1).
    On the other hand, NMA (neutral, mesoporous, alumina) samples have also
引文
[1] Soler-Illia G. J. de A. A., Sanchez C., Lebeau B., Patarin J. Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 2002, 102: 4093-4138.
    [2] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359: 710-712.
    [3] Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., Mccullen S. B., Higgins J. B., Schlenker J. L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 1992, 114:10834-10843
    [4] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97: 2373-2419.
    [5] 朱洪法.催化剂载体,北京:化学工业出版社,1980.p.259.
    [6] Misra C. American Chemical Society Monography, Vol. 184: Industrial Alumina Chemicals, 1986.
    [7] Wefers K., Misra C. Oxide and Hydroxides of Aluminium, Alcoa Laboratories, 1987.
    [8] 赵镶.催化剂,北京:中国物资出版社,2001,p.562.
    [9] 李大东.控制氧化铝孔径的途径.石油化工.1989,18:488-494
    [10] Trimm D. L., Stanislaus A. The control of pore size in alumina catalysts supports: A review. Applied Catalysis 1986, 21: 215-238.
    [11] Yanagisawa Y., Shimozu T., Kuroda K., Kato C. The preparation of alkyltrimethylammonium kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63: 988-992.
    [12] Tanev P. T., Pinnavaia T. J. A neutral templating route to mesoporous molecular-sieves. Science 1995, 267: 865-867.
    [13] Tanev P. T., Chibwe M., Pinnavaia T. J. Titanium-containing mesoporous molecular-sieves for catalytic-oxidation of aromatic-compounds. Nature 1994, 368: 321-323.
    [14] Bagshaw S. A., Prouzet E., Pinnavaia T. J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science 1995, 269: 1242-1244.
    [15] Attard G S., Glyde J. C, Goltner C. G Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 1995, 378: 366-368.
    [16] Huo Q. S., Margolese D. I., Ciesla U., Feng P. Y., Gier T. E., Sieger P., Leon R., Petroff P. M., Schuth F., Stucky G. D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368: 317-321.
    [17] Huo Q. S., Margolese D. I., Ciesla U., Demuth D. G, Feng P. Y., Gier T. E., Sieger P., Firouzi A., Chmelka B. F., Schuth F., Stucky G D. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays. Chem.Mater. 1994,6:1176-1191.
    [18] Huo Q. S., Leon R., Petroff P. M., Stucky G D. Mesostructure design with gemini surfactants - supercage formation in a 3-dimensional hexagonal array. Science 1995,268: 1324-1327.
    [19] Bagshaw S. A. , Pinnavaia T. J. Mesoporous alumina molecular sieves. Angew. Chem., Int. Ed. Engl. 1996, 35: 1102-1105.
    [20] Cabrera S., El Haskouri J., Alamo J., Beltran A., Beltran D., Mendioroz S., Marcos M. D., Amoros P. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes. Adv. Mater. 1999, 11: 379-381.
    [21] Vaudry F., Khodabandeh S., Davis M. E. Synthesis of pure alumina mesoporous materials. Chem. Mater. 1996, 8: 1451-1464.
    [22] Yada M., Machida M., Kijima T. Synthesis and deorganization of an aluminium-based dodecyl sulfate mesophase with a hexagonal structure. Chem. Commun. 1996, 769-770.
    [23] Yada M., Ohya M., Machida M., Kijima T. Synthesis of porous yttrium aluminium oxide templated by dodecyl sulfate assemblies. Chem. Commun. 1998, 1941-1942.
    [24] Yada M., Hiyoshi H., Ohe K., Machida M., Kijima T. Synthesis of aluminum-based surfactant mesophases morphologically controlled through a layer to hexagonal transition. Inorg. Chem. 1997, 36: 5565-5569.
    [25] Yada M., Kitamura H., Machida M., Kijima T. Biomimetic surface patterns of layered aluminum oxide mesophases templated by mixed surfactant assemblies. Langmuir 1997,13: 5252-5257.
    [26] Yada M, Hiyoshi H., Machida M., Kijima T. Aluminium-based surfactant mesophases structurally and morphologically controlled by anions. J. Porous Mater. 1998, 5:133-138.
    [27] Yada M., Ohya M., Ohe K., Machida M., Kijima T. Porous yttrium aluminum oxide templated by alkyl sulfate assemblies. Langmuir 2000, 16: 1535-1541.
    [28] Yada M., Ohya M., Machida M., Kijima T. Mesoporous gallium oxide structurally stabilized by yttrium oxide. Langmuir 2000, 16: 4752-4755.
    [29] Valange S., Guth J. L., Kolenda F., Lacombe S., Gabelica Z. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Micropor. and Mesopor. Mater. 2000, 35-6: 597-607.
    [30] Zhao D. Y, Goldfarb D. Synthesis of lamellar mesostructures with nonamphiphilic mesogens as templates. Chem. Mater. 1996, 8: 2571-2578.
    [31] Hatayama K., Misono M., Taguchi A., Mizuno N. Hydrothermal synthesis of cubic mesostructured vanadium-phosphorus oxide. Chem. Lett. 2000, 884-885.
    [32] Yang P. D., Zhao D. Y, Margolese D. I., Chmelka B. F., Stucky G D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396: 152-155.
    [33] Yang P. D., Zhao D. Y, Margolese D. I., Chmelka B. F., Stucky G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11: 2813-2826.
    [34] Blanchard J., Schuth F., Trens P., Hudson M. Synthesis of hexagonally packed porous titanium oxo-phosphate. Micropor. and Mesopor. Mater. 2000, 39: 163-170.
    [35] Romannikov V. N., Fenelonov V. B., Paukshtis E. A., Derevyankin A. Y, Zaikovskii V. I. Mesoporous basic zirconium sulfate: structure, acidic properties and catalytic behaviour. Micropor. and Mesopor. Mater. 1998, 21: 411-419.
    [36] Antonelli D. M., Ying J. Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves. Chem. Mater. 1996, 8: 874-881.
    [37] Luo J., Suib S. L. Formation and transformation of mesoporous and layered-manganese oxides in the presence of long-chain ammonium hydroxides. Chem. Commun. 1997,1031-1032.
    [38] Tian Z. R., Tong W., Wang J. Y, Duan N. G, Krishnan V. V., Suib S. L. Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science 1997,276: 926-930.
    [39] Sayari A., Karra V. R., Reddy J. S., Moudrakovski I. L. Synthesis of mesostructured lamellar aluminophosphates. Chem. Commun. 1996, 411-412.
    [40] Kimura T., Sugahara Y, Kuroda K. Synthesis of a hexagonal mesostructured aluminophosphate. Chem. Lett. 1997,983-984.
    [41] Feng P. Y, Xia Y, Feng J. L., Bu X. H., Stucky G D. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route. Chem. Commun. 1997,949-950.
    [42] Tiemann M., Froba M., Rapp G, Funari S. S. Nonaqueous synthesis of mesostructured aluminophosphate/surfactant composites: Synthesis, characterization, and in-situ SAXS studies. Chem. Mater. 2000, 12: 1342-1348.
    [43] Chakraborty B., Pulikottil A. C, Das S., Viswanathan B. Synthesis and characterization of mesoporous SAPO. Chem. Commun. 1997,911-912.
    [44] Zhao D. Y, Luan Z. H., Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves. Chem. Commun. 1997, 1009-1010.
    [45] Khimyak Y. Z., Klinowski J. Synthesis of mesostructured aluminophosphates using cationic templating. Phys. Chem. Chem. Phys. 2000, 2: 5275-5285.
    [46] Kimura T., Sugahara Y, Kuroda K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents. Chem. Mater. 1999, 11:508-518.
    [47] Holland B. T., Isbester P. K., Blanford C. F., Munson E. J., Stein A. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors. J. Am. Chem. Soc. 1997, 119: 6796-6803.
    [48] Braun P. V., Osenar P., Stupp S. I. Semiconducting superlattices templated by molecular assemblies. Nature 1996, 380: 325-328.
    [49] Osenar P., Braun P. V., Stupp S. I. Lamellar semiconductor-organic nanostructures from self-assembled templates. Adv. Mater. 1996, 8: 1022-1025.
    [50] Tohver V., Braun P. V., Pralle M. U., Stupp S. I. Counterion effects in liquid crystal templating of nanostructured CdS. Chem. Mater. 1997, 9: 1495-1498.
    [51] Braun P. V., Osenar P., Tohver V., Kennedy S. B., Stupp S. I. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals. J. Am. Chem. Soc. 1999,121: 7302-7309.
    [52] Bonhomme F. , Kanatzidis M. G Structurally characterized mesostructured hybrid surfactant-inorganic lamellar phases containing the adamantane [Ge4Sio](4-) anion: Synthesis and properties. Chem. Mater. 1998, 10: 1153-1159.
    [53] Wachhold M., Rangan K. K., Lei M., Thorpe M. F., Billinge S. J. L., Petkov V., Heising J., Kanatzidis M. G Mesostructured metal germanium sulfide and selenide materials based on the tetrahedral [Ge4S10](4-) and [Ge4Se10](4-) units: Surfactant templated three-dimensional disordered frameworks perforated with worm holes. J. Solid State Chem. 2000, 152: 21-36.
    [54] Rangan K. K., Trikalitis P. N., Kanatzidis M. G Light-emitting meso-structured sulfides with hexagonal symmetry: Supramolecular assembly of [Ge4S10](4-) clusters with trivalent metal ions and cetylpyridinium surfactant. J. Am. Chem. Soc. 2000, 122: 10230-10231.
    [55] Rangan K. K., Billinge S. J. L., Petkov V., Heising J., Kanatzidis M. G. Aqueous mediated synthesis of mesostructured manganese germanium sulfide with hexagonal order. Chem. Mater. 1999,11: 2629-2632.
    [56] MacLachlan M. J., Coombs N., Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)(4-) clusters. Nature 1999, 397: 681-684.
    [57] MacLachlan M. J., Coombs N., Bedard R. L., White S., Thompson L. K., Ozin G A. Mesostructured metal germanium sulfides. J. Am. Chem. Soc. 1999,121: 12005-12017.
    [58] Warnheim T., Jonsson A. Phase diagrams of alkyltrimethylammonium surfactants in some polar solvents. J. Colloid Interface Sci. 1988, 125: 627-633.
    [59] Trikalitis P. N., Bakas T., Papaefthymiou V., Kanatzidis M. G. Supramolecular assembly of hexagonal mesostructured germanium sulfide and selenide nanocomposites incorporating the biologically relevant Fe4S4 cluster. Angew. Chem. Int. Ed. 2000, 39:4558-4562.
    [60] Attard G S., Goltner C. G, Corker J. M., Henke S., Templer R. H. Liquid-crystal templates for nanostructured metals. Angew. Chem., Int. Ed. Engl. 1997,36:1315-1317.
    [61] Goltner C. G, Antonietti M. Mesoporous materials by templating of liquid crystalline phases. Adv. Mater. 1997,9: 431-436.
    [62] Attard G S., Bartlett P. N., Coleman N. R. B., Elliott J. M., Owen J. R., Wang J. H. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 1997, 278: 838-840.
    [63] Whitehead A. H., Elliott J. M., Owen J. R., Attard G S. Electrodeposition of mesoporous tin films. Chem. Commun. 1999, 331-332.
    [64] Attard G S., Bartlett P. N., Coleman N. R. B., Elliott J. M., Owen J. R. Lyotropic liquid crystalline properties of nonionic surfactant/H2O/hexachloroplatinic acid ternary mixtures used for the production of nanostructured platinum. Langmuir 1998,14: 7340-7342.
    [65] Ryoo R., Joo S. H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 1999, 103: 7743-7746.
    [66] Kim Y., Kim P., Kim C, Yi J. H. Comparison of mesoporous aluminas synthesized using stearic acid and its salts. Korean J. Chem. Eng. 2005, 22: 321-327.
    [67] Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412: 169-170.
    [68] Jun S., Joo S. H., Ryoo R., Kruk M., Jaroniec M., Liu Z., Ohsuna T., Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000,122: 10712-10713.
    [69] Lee J., Yoon S., Hyeon T., Oh S. M., Kim K. B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 1999,2177-2178.
    [70] Joo S. H., Jun S., Ryoo R. Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Micropo. and Mesopor. Mater. 2001,44: 153-158.
    [71] Lukens W. W., Stucky G. D. Synthesis of mesoporous carbon foams templated by organic colloids. Chem. Mater. 2002, 14: 1665-1670.
    [72] Kim S. S., Pinnavaia T. J. A low cost route to hexagonal mesostructured carbon molecular sieves. Chem. Commun. 2001,2418-2419.
    [73] Yang H. F., Shi Q. H., Liu X. Y., Xie S. H, Jiang D. C., Zhang F. Q., Yu C. Z., Tu B., Zhao D. Y. Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chem. Commun. 2002, 2842-2843.
    
    [74]张兆荣,索继栓,张小明,李树本.介孔硅基分子筛研究新进展.化学进展1999,11:11-20.
    [75] Casci J. L. The preparation and potential applications of ultra-large pore molecular-sieves - a review. Stud. Surf. Sci. Cata. 1994,85: 329-356.
    [76] Sayari A. Catalysis by crystalline mesoporous molecular sieves. Chem. Mater. 1996,8: 1840-1852.
    [77] Sayari A. Periodic mesoporous materials: Synthesis, characterization and potential applications. Stud. Surf. Sci. Cata. 1996,102: 1-46.
    [78] Chen C. Y, Burkett S. L., Li H. X., Davis M. E. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41. Microporous Mater. 1993, 2: 27-34.
    [79] Firouzi A., Kumar D., Bull L. M., Besier T., Sieger P., Huo Q., Walker S. A., Zasadzinski J. A., Glinka C., Nicol J., Margolese D., Stucky G. D., Chmelka B. F. Cooperative organization of inorganic-surfactant and biomimetie assemblies. Science 1995, 267:1138-1143.
    [80] Schuth F. Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 2001, 13: 3184-3195.
    [81] Janauer G. G., Dobley A. , Guo J. Novel tungsten , molybdenum , and vanadium oxides containing surfactant irons. Chem. Mater 1996, 8: 2096-2101.
    [82] Victor F., Stone J., Davis R. J. Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chem. Mater. 1998, 10:1468-1474.
    [83] Antonelli D. M., Ying J. Y. Synthesis of hexagonally packed mesoporous TiO_2 by a modified sol-gel method. Angew. Chem. Int. Ed. Engl. 1995, 34: 2014-2017.
    [84] Jiang T., Ozin G. A. Tin (Ⅳ) sulfide-alkylamine composite mesophase: a new class of thermotropie liquid crystals. J. Mater. Chem. 1997, 7:2213-2222.
    [85] Thieme M, Schuth F. Preparation of a mesoporous high surface area titanium oxo phosphate via a non-ionic surfactant route. Micropor. Mesopor. Mater. 1999, 27:193-200.
    [86] Kaskel S., Farrusseng D., Schlichte K. Synthesis ofmesoporous silicon imido nitride with high surface area and narrow pore size distribution. Chem. Commun. 2000, 2481-2482.
    [87] Tian B., Liu X., Tu B., Yu C., Fan J., Wang L., Xie S., Stucky G. D., Zhao D. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Materials 2003, 2:159-163.
    [88] Zhang W. Z., Pinnavaia T. J. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N~lO pathway. Chem. Commun. 1998, 1185-1186.
    [89] Cejka J., Zilkova N., Rathousky J., Zukal A. Nitrogen adsorption study of organised mesoporous alumina. Phys. Chem. Chem. Phys. 2001, 3: 5076-5081.
    [90] Cejka J., Zilkova N., Rathousky J., Zukal A. Adsorption of nitrogen on organized mesoporous alumina. Stud. Surf. Sci. Cata. 2002,141:429-436.
    [91] Kim C, Kim Y., Kim P., Yi J. Synthesis of mesoporous alumina by using a cost-effective template. Korean J. Chem. Eng. 2003, 20: 1142-1144.
    [92] Acosta S., Ayral A., Guizard C, Cot L. Synthesis of alumina gels in amphiphilic media. J. Sol-Gel Sci. Technol. 1997, 8: 195-199.
    [93] Cabrera S., El Haskouri J., Guillem C, Latorre J., Beltran-Porter A., Beltran-Porter D., Marcos M. D., Amoros P. Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid Stat. Sci. 2000, 2: 405-420.
    [94] Liu X. H., Wei Y, Jin D. L., Shih W. H. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid. Mater. Lett. 2000, 42: 143-149.
    [95] Kim H. J., Lee H. C, Choo D. H., Lee H. C, Chung S. H., Lee K. H., Lee J. S. Synthesis and characterization of mesoporous alumina molecular sieves using cationic surfactants. Stud. Surf. Sci. Cata. 2003,146: 213-216.
    [96] Lee H. C, Kim H. J., Choo D. H., Lee H. C, Chung S. H., Lee K. H., Lee J. S. Synthesis and characterization of mesoporous alumina molecular sieves with cationic surfactants in the presence of formamide. Stud. Surf. Sci. Cata. 2003,146:217-220.
    [97] Zhang Z. R., Pinnavaia T. J. Mesostructured gamma-Al2O3 with a lathlike framework morphology. J. Am. Chem. Soc. 2002, 124: 12294-12301.
    [98] Luo Q., Li L., Xue Z. Y, Zhao D. Y. Synthesis of nanometer-sized mesoporous oxide spheres. Chem. Res. Chinese U. 2001, 17: 143-147.
    [99] Neeraj, Eswaramoorthy M. Mesoporous alumina. P. Indian As-Chem. Sci. 1998,110:143-149.
    [100] Yada M., Kuroki S., Kuroki M., Ohe K., Kijima T. Effect of coexisting anions on the stabilization of porous alumina templated by dodecyl sulfate assemblies. Langmuir 2002, 18: 8714-8718.
    [101] Deng W., Bodart P., Pruski M., Shanks B. H. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating. Micropor. and Mesopor. Mater. 2002, 52:169-177.
    [102] Gonzalez-Pefta V., Marquez-Alvarez C, Sastre E., Perez-Pariente J. Synthesis of ordered mesoporous and microporous aluminas: strategies for tailoring texture and aluminum coordination. Stud. Surf. Sci. Cata. 2002, 142: 1283-1290.
    [103] Gonzalez-Pefla V., Diaz I., Marquez-Alvarez C, Sastre E., Perez-Pariente J. Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines. Micropor. and Mesopor. Mater. 2001,44: 203-210.
    [104] Cejka J. Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl. Catal. A 2003,254:327-338.
    [105] Sicard L., Llewellyn P. L., Patarin J., Kolenda F. Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Micropor. and Mesopor. Mater. 2001, 44: 195-201.
    [106] Sicard L., Frasch J., Soulard M., Lebeau B., Patarin J., Davey T., Zana R., Kolenda F. Investigations by fluorescence techniques of the mechanism of formation of silica- and alumina-based MCM-41-type materials. Micropor. and Mesopor. Mater. 2001,44-45:25-31.
    [107] Sicard L., Lebeau B., Patarin J., Zana R. Study of the mechanism of formation of a mesostructured hexagonal alumina by means of fluorescence probing techniques. Langmuir 2002, 18: 74-82.
    [108] Angelescu D., Khan A., Caldararu H. Viscoelastic properties of sodium dodecyl sulfate with aluminum salt in aqueous solution. Langmuir 2003, 19: 9155-9161.
    [109] Yao N., Xiong G X., Zhang Y. H., He M. Y, Yang W. S. Preparation of novel uniform mesoporous alumina catalysts by the sol-gel method. Catal. Today 2001, 68: 97-109.
    [110] Onaka M., Oikawa T. Olefin metathesis over mesoporous alumina-supported rhenium oxide catalyst. Chem. Lett. 2002, 850-851.
    [111] Balcar H., Hamtil R., Zilkova N., Cejka J. Rhenium oxide supported on mesoporous organized alumina as a catalyst for metathesis of 1-alkenes. Catal. Lett. 2004, 97: 25-29.
    [112] Aguado J., Escola J. M, Castro M. C, Paredes B. Metathesis of 1-hexene over rhenium oxide supported on ordered mesoporous aluminas: comparison with Re2O7/gamma-Al2O3. Appl. Catal. A 2005, 284: 47-57.
    [113] Cabrera S., El Haskouri J., Guillem C, Latorre J., Beltran-Porter A., Beltran-Porter D., Marcos M. D., Amoros P. Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sci. 2000, 2: 405-420.
    [114] Gonzalez-Pena V., Marquez-Alvarez C, Dfaz I., Grande M., Blasco T., Perez-Pariente J. Sol-gel synthesis of mesostructured aluminas from chemically modified aluminum sec-butoxide using non-ionic surfactant templating. Micropor. and Mesopor. Mater. 2005, 80: 173-182.
    [115] Cejka J., Zilkova N., Kaluza L., Zdrazil M. Mesoporous alumina as a support for hydrodesulfurization catalysts. Stud. Surf. Sci. Cata. 2002, 141: 243-250.
    [116] Kaluza L., Zdrazil M., Zilkova N., Cejka J. High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organised mesoporous alumina. Catal. Commun. 2002, 3: 151-157.
    [117] Valange S., Barrault J., Derouault A., Gabelica Z. Binary Cu-Al mesophases precursors to uniformly sized copper particles highly dispersed on mesoporous alumina. Micropor. and Mesopor. Mater. 2001,44-45: 211-220.
    [118] Valange S., Derouault A., Barrault J., Gabelica Z. One-step generation of highly selective hydrogenation catalysts involving sub-nanometric Cu2O supported on mesoporous alumina: strategies to control their size and dispersion. J. Mol. Catal. A 2005,228: 255-266.
    [119] Kim P., Kim Y., Kim C, Kim H., Park Y., Lee J. H., Song I. K., Yi J. Synthesis and characterization of mesoporous alumina as a catalyst support for hydrodechlorination of 1,2-dichloropropane: effect of catalyst preparation method. Catal. Lett. 2003, 89: 185-192.
    [120] Kim P., Kim Y., Kim H., Song I. K., Yi J. Synthesis and characterization of mesoporous alumina for use as a catalyst support in the hydrodechlorination of 1,2-dichloropropane: effect of preparation condition of mesoporous alumina. J. Mol. Catal. A 2004, 219: 87-95.
    [121] Kim P., Kim Y, Kim H., Song I. K., Yi J. Preparation, characterization, and catalytic activity of NiMg catalysts supported on mesoporous alumina for hydrodechlorination of o-dichlorobenzene. J. Mol. Catal. A 2005, 231: 247-254.
    [122] Wieland W. S., Davis R. J., Garces J. M. Side-chain alkylation of toluene with methanol over alkali-exchanged zeolites X, Y, L, and beta. J. Catal. 1998,173:490-500.
    [123] Seki T., Onaka M. Strong base catalysis of sulfated mesoporous alumina for the Tishchenko reaction in supercritical carbon dioxide. Chem. Lett. 2005, 34: 262-263.
    [124] Buelna G, Lin Y. S. Characteristics and desulfurization-regeneration properties of sol-gel-derived copper oxide on alumina sorbents. Sep. Purif. Technol. 2004, 39: 167-179.
    [125] Wang Y, Lin Y. S. Sol-gel synthesis and gas adsorption properties of CuCl modified mesoporous alumina. J.Sol-Gel Sci. Technol. 1998,11:185-195.
    [126] Goyne K. W., Chorover J., Kubicki J. D., Zimmerman A. R., Brantley S. L. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. J. Colloid Interface Sci. 2005, 283: 160-170.
    
    [127] Iijima S. Helical microtubeles of graphitic carbon. Nature 1991, 354: 56-58.
    [128] Thess A., Lee R., Nikolaev P., Dai H. J., Petit P., Robert J., Xu Ch. H., Lee Y. H., Kim S. G, Rinzler A. G, Colbert D. T., Scuseria G E., Tomanek D., Fischer J. E., Smalley R. E. Crystalline ropes of metallic carbon nanotubes. Science 1996,273: 483-487.
    [129] Charlier J. C, Vita A. D., Blase B., Car R. Microscopic growth mechanisms for carbon nanotube. Science 1997, 275: 646-650.
    [130] Ajayan P. M., Stephan O., Redlich P., Colliex C. Carbon nanotubes as removable templates for metal-oxide nanocompositcs and nanostructurcs. Nature 1995, 375: 564-567.
    [131] 刘小畅,丛洪涛,成会明.氢等离子电弧法版连续制备单壁纳米碳管.新型碳材料,2000,15:1-4.
    [132] Hirsch A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41: 1853-1859.
    [133] Star A., Steuerman D. W., Heath J. R., Stoddart J. F. Starched carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41: 2508-2512.
    [134] Ebbesen T. W. Cones and tubes: Geometry in the chemistry of carbon. Ace. Chem. Res. 1998, 31: 558-566.
    [135] Hu J. Q., Deng B., Lu Q. Y., Tang K. B., Jiang R. R., Qian Y. T., Zhou G. E., Cheng A. Hydrothermal growth of [3-Ag2Se tubular crystals. Chem. Commun. 2000, 715-716.
    [136] Remskar M., Mrzel A., Skraba Z., Jesih A., Ceh M., Demsar J., Stadelmann P., Levy F., Mihailovic D. Self-assembly of subnanometer-diameter single-wall MoS_2 nanotubes. Science 2001, 292:479-481.
    [137] Rothschild A., Sloan J., Tenne R. Growth of WS_2 nanotubes phases. J. Am. Chem. Soc. 2000, 122:5169-5179.
    [138] Hacohen Y. R., Grunbaum E., Tenne R., Sloan J., Hutchison J. L. Cage structures and nanotubes of NiCl_2. Nature 1998, 395: 336-337.
    [139] Chopra N. G., Luyken R. J, Cherrey K., Crespi V. H., Cohen M. L., Louie S. G., Zettl A. Boron-nitride nanotubes. Science 1995, 269: 966-967.
    [140] Goldberger J., He R. R., Zhang Y. F., Lee S. W., Yan H. Q., Choi H. J., Yang P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422: 599-602.
    [141] Li Y. B., Bando Y., Goldberg D. Quasi-aligned single-crystalline W_(18)O_(49) nanotubes and nanowires. Adv. Mater. 2003, 15: 1294-1296.
    [142] Spahr M. E., Bitterli P. S. Nesper R., Haas O., Novdk P. Vanadium oxide nanotubes: a new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electronchem. Soc. 1999, 146: 2780-2783.
    [143] Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Formation of titanium oxide nanotube. Langmuir 1998, 14:3160-3163.
    [144] Vayssieres L., Keis K., Hagfeldt A., Lindquist S. E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13: 4395-4398.
    [145] Lauterbach R., Schniek W. Single-crystalline hexagonal Sr-Er- and Sr-Dy-sialon microtubes. J. Mater. Sci. 2000, 35: 3793-3797.
    [146] "Issues in nanotechnology", Science 2000, 290:1523.
    [147] Ajayan P. M., Ebbessen T. W. Nanometre-size tubes of carbon. Rep. Prog. Phys. 60 (1997) 1025.
    [148] Baughman R. H., Zakhidov A. A., de Heer W. A. Carbon nanotubes: the route toward applications. Science 2002, 297: 787-792.
    [149] Satishkumar B. C., Govindaraj A., Vogl E. M., Basumallick L., Rao C. N. R. Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 1997, 12: 604-606.
    [150] Pu L., Bao X., Zou J., Feng D. Individual alumina nanotubes. Angew. Chem. Int. Ed. 2001, 141: 1490-1493.
    [151] Zou J., Pu L., Bao X., Feng D. Branchy alumina nanotubes. Appl. Phys. Lett. 2002, 80: 1079-1081.
    [152] Lee H. C., Kim H. J., Chung S. H., Lee K. H., Lee H. C., Lee J. S. Synthesis of unidirectional alumina nanostructures without added organic solvents. J. Am. Chem. Soc. 2003, 125: 2882-2883.
    [153] Kim H. J., Lee H. C., Rhee C. H., Chung S. H., Lee H. C., Lee K. H., Lee J. S. Alumina nanotubes containing lithium of high ion mobility. J. Am. Chem. Soc. 2003, 125: 13354-13355.
    [154] Kuang D. B., Fang Y. P., Liu H. Q., Frommenb C., Fenskeb D. Fabrication of boehmite AIOOH and γ-Al2O3 nanotubes via a soft solution route. J. Mater. Chem. 2003, 13: 660-662.
    [155] Yada M., Mihara M., Mouri S., Kuroki M., Kijima T. Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 2002, 14: 309-313.
    [156] Knowles J. A., Hudson M. J. Preparation and characterisation of mesoporous, high surface area zirconium(IV) oxides. J. Chem. Soc., Chem. Commun. 1995: 2083-2084.
    [157] Trens P., Hudson M. J., Denoyel R. Formation of mesoporous, zirconium(Ⅳ) oxides of controlled surface areas. J. Mater. Chem. 1998, 8.' 2147-2152.
    [158] Larsen G., Lotero E., Nabity M., Petkovic L. M., Shobe D. S. Surfactant-assisted synthesis of mesoporous zirconia powders with high surface areas. J. Catal. 1996, 164: 246-248.
    [159] Wong M. S., Ying J. Y. Amphiphilic Templating of Mesostructured Zirconium Oxide. Chem. Mater. 1998, 10: 2067-2077.
    [160] Reddy J. S., Sayari A. Nanoporous zirconium oxide prepared using the supramolecular templating approach. Catal. Lett. 1996, 38:219-223.
    [161] Zhao J., Gao F., Fu Y., Jin W., Yang P., Zhao D. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chem. Commun. 2002: 752-753.
    [162] Dai Q., He N., Guo Y., Yuan C. High photocatalytic activity of pure TiO_2 mesoporous molecular sieves for the degradation of 2,4,6-trichlorophenol. Chem. Lett. 1998, 11: 1113-1114.
    [163] 乐英红,马臻,华伟明,高滋.二氧化钛介孔分子筛的合成和表征.化学学报,2000,58:777-780.
    [164] Tian Z., Tong W., Wang J., Duan N., Krishnan V. V., Suib S. L. Manganese oxide mesoporous structures: mixed-valent semieonducting catalysts. Science 1997, 276: 926-930.
    [165] Panjok G.. M. Aerogel catalysts. Appl. Catai. 1991, 72:217-266.
    [166] Liu X., Chun C.-M., Aksay I. A., Shih W.-H. Synthesis of mesostructured nickel oxide with silica. Ind. Eng. Chem. Res. 2000, 39: 684-692.
    [1] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C, Beck J. S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359: 710-712.
    [2] Beck J. S., Vartuli J. C, Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., Mccullen S. B., Higgins J. B., Schlenker J. L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 1992, 114: 10834-10843.
    [3] Huo Q. S., Margolese D. I., Ciesla U., Feng P. Y., Gier T. E., Sieger P., Leon R., Petroff P. M., Schuth F., Stucky G. D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368: 317-321.
    [4] Huo Q. S., Margolese D. I., Ciesla U., Demuth D. G, Feng P. Y., Gier T. E., Sieger P., Firouzi A., Chmelka B. F., Schuth F., Stucky G D. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays. Chem .Mater. 1994,6: 1176-1191.
    [5] Bagshaw S. A., Pinnavaia T. J. Mesoporous alumina molecular sieves. Angew. Chem., Int. Ed. Engl. 1996, 35: 1102-1105.
    [6] Zhang W. Z., Pinnavaia T. J. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N°I° pathway. Chem. Commun. 1998, 1185-1186.
    [7] Vaudry F., Khodabandeh S., Davis M. E. Synthesis of pure alumina mesoporous materials. Chem. Mater. 1996, 8: 1451-1464.
    [8] Cejka J., Zilkova N., Rathousky J., Zukal A. Nitrogen adsorption study of organised mesoporous alumina. Phys. Chem. Chem. Phys. 2001, 3: 5076-5081.
    [9] Cejka J., Zilkova N., Rathousky J., Zukal A. Adsorption of nitrogen on organized mesoporous alumina. Stud. Surf. Sci. Cata. 2002,141: 429-436.
    [10] Valange S., Guth J. L., Kolenda F., Lacombe S., Gabelica Z. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Micropor. and Mesopor. Mater. 2000, 35-36: 597-607.
    [11] Kim C., Kim Y., Kim P., Yi J. Synthesis of mesoporous alumina by using a cost-effective template. Korean J. Chem. Eng. 2003, 20:1142-1144.
    [12] Cabrera S., El Haskouri J., Alamo J., Beltran A., Beltran D., Mendioroz S., Marcos M. D., Amoros P. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes. Adv. Mater. 1999, 11: 379-351.
    [13] Acosta S., Ayral A., Guizard C., Cot L. Synthesis of alumina gels in amphiphilic media. J. Sol-Gel Sci. Techngl. 1997, 8: 195-199.
    [14] Cabrera S., El Haskouri J., Guillem C., Latorre J., Beltran-Porter A., Beltran-Porter D., Marcos M. D., Amoros P. Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid Stat. Sci. 2000, 2: 405-420.
    [15] Liu X. H., Wei Y., Jin D. L., Shih W. H. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid. Mater. Lett. 2000, 42: 143-149.
    [16] Kim H. J., Lee H. C., Choo D. H., Lee H. C., Chung S. H., Lee K. H., Lee J. S. Synthesis and characterization of mesoporous alumina molecular sieves using cationic surfactants. Stud. Surf. Sci. Cata. 2003, 146: 213-216.
    [17] Lee H. C., Kim H. J., Choo D. H., Lee H. C., Chung S. H., Lee K. H., Lee J. S. Synthesis and characterization of mesoporous alumina molecular sieves with cationic surfactants in the presence of formamide. Stud. Surf. Sci. Cata. 2003, 146: 217-220.
    [18] Zhang Z. R., Pinnavaia T. J. Mesostructured gamma-Al_2O_3 with a lathlike framework morphology. J. Am. Chem. Soc. 2002, 124: 12294-12301.
    [19] Luo Q., Li L., Xue Z. Y., Zhao D. Y. Synthesis of nanometer-sized mesoporous oxide spheres. Chem. Res. Chinese U. 2001, 17: 143-147.
    [20] Yang P. D., Zhao D. Y., Margolese D. I., Chmelka B. F., Stucky G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11: 2813-2826.
    [21] Neeraj, Eswaramoorthy M. Mesoporous alumina. P. Indian As-Chem. Sci. 1998, 110: 143-149.
    [22] Yada M., Machida M., Kijima T. Synthesis and deorganization of an aluminium-based dodecyl sulfate mesophase with a hexagonal structure. Chem. Commun. 1996, 769-770.
    [23] Yada M., Hiyoshi H., Ohe K., Machida M., Kijima T. Synthesis of aluminum-based surfactant mesophases morphologically controlled through a layer to hexagonal transition. Inorg. Chem. 1997, 36: 5565-5569.
    [24] Yada M., Hiyoshi H., Machida M., Kijima T. Aluminium-based surfactant mesophases structurally and morphologically controlled by anions. J. Porous Mater. 1998, 5: 133-138.
    [25] Yada M., Kitamura H., Machida M., Kijima T. Biomimetic surface patterns of layered aluminum oxide mesophases templated by mixed surfactant assemblies. Langmuir 1997,13: 5252-5257.
    [26] Yada M., Kuroki S., Kuroki M., Ohe K., Kijima T. Effect of coexisting anions on the stabilization of porous alumina templated by dodecyl sulfate assemblies. Langmuir 2002, 18: 8714-8718.
    [27] Satishkumar B. C, Govindaraj A., Vogl E. M., Basumallick L., Rao C. N. R. Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 1997, 12: 604-606.
    [28] Pu L., Bao X. M., Zou J. P., Feng D. Individual alumina nanotubes. Angew. Chem., Int. Ed. Engl. 2001, 40: 1490-1493.
    [29] Zou J. P., Pu L., Bao X. M., Feng D. Branchy alumina nanotubes. Appl. Phys. Lett. 2002, 80:1079-1081.
    [30] Lee H. C, Kim H. J., Chung S. H., Lee K. H., Lee H. C, Lee J. S. Synthesis of unidirectional alumina nanostructures without added organic solvents. J. Am. Chem. Soc. 2003, 125: 2882-2883.
    [31] Kim H. J., Lee H. C, Rhee C. H., Chung S. H., Lee H. C, Lee K. H., Lee J. S. Alumina nanotubes containing lithium of high ion mobility. J. Am. Chem. Soc. 2003, 125:13354-13355.
    [32] Kuang D. B., Fang Y. P., Liu H. Q., Frommen C, Fenske D. Fabrication of boehmite AlOOH and gamma-Al2O3 nanotubes via a soft solution route. J. Mater. Chem. 2003, 13: 660-662.
    [33] Yada M., Mihara M., Mouri S., Kuroki M., Kijima T. Rare earth (Er, Tin, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 2002, 14: 309-313.
    [34] 赵镶.催化剂,北京:中国物资出版社,2001,p.562.
    [35] Morterra C., Magnacca G. A case study: Surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catalysis Today 1996, 27: 497-532.
    [36] Sicard L., Llewellyn P. L., Patarin J., Kolenda F. Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Micropor. Mesopor. Mater. 2001, 44-45:195-201.
    [37] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pietotti R. A., Rouqueroi J., Siemienieska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57: 603-619.
    [1] 徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学.北京:科学出版社,2004,p.612.
    [2] Kolenda F., Guth J.L., Valange S., Gabelica Z., Lacombe S. A new process for the synthesis of alumina of controlled porosity. French Patent Application FR 199715450, 1997
    [3] Kolenda F., Guth J.L. Valange S., Gabelica Z., Lacombe S. Hydrated alumina derivatives containing surfactant. French Patent Application FR 199715451, 1997
    [4] Baes C. F., Mesmer R. E. The Hydrolysis of Cations, Wiley, New York, 1976
    [5] Brinker C. J., Scherer G. W. Sol-gel Science: the Physicals and Chemistry of Sol-gel Processing, Academic Press, Harcourt Brace Jovanovich, 1990
    [6] Sillen L.G., Martell A.E. Stability Constants of Metal-Ion Complexes. The Chemical Society, London, 1964, Vol. 17
    [7] Sillen L.G., Martell A.E. Stability Constants of Metal-Ion Complexes. The Chemical Society, London, 1971, Vol. 25
    [8] Nagai H. Ph.D. Thesis, Kyushu University, 1993.
    [9] Wefers K., Misra C. Oxides and Hydroxides of Aluminum. Alcoa Laboratories, 1987
    [10] Zakharchenya R. I., Vasilevskaya T. N. Influence of hydrolysis temperature on the hydrolysis products of aluminum alkoxides. J. Mater. Sci. 1994, 29: 2806-2812
    [11] Zhang J. L., Chen J. G., Ren J., Sun Y. H. Chemical treatment of gamma-Al_2O_3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Appl. Catal. A 2003, 243: 121-133
    [12] Inui T., Miyake T., Fukuda K., Takegami Y. Control of pore struct ures of γ-alumina by the calcination of boehmite prepared from gibbsite under specific conditions. Appl. Catal. 1983, 6: 165-173
    [13] Inoue M., Kitamura K., Inui T. Synthesis of wide-pore alumina support from gibbsite. J. Chem. Tech. Biotechnol. 1989,46:233-247
    [14] Lippens B.C., Steggerda J.J. in: B.G Linsen (Editor), Physical and Chemical Aspects of Adsorbents and Catalysts, Academic Press, New York, 1970, p.171
    [15] Frank J. P., Freund E., Quemere E. Textural and structural changes in transition alumina supports. J. Chem. Soc, Chem. Commun. 1984, 10: 629-630.
    [1] Cejka J. Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl. Catal. A 2003, 254: 327-338.
    [2] Yang P. D., Zhao D. Y., Margolese D. I., Chmelka B. F., Stucky G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11: 2813-2826.
    [3] Bagshaw S. A., Pinnavaia T. J. Mesoporous alumina molecular sieves. Angew. Chem., Int. Ed. Engl. 1996, 35: 1102-1105.
    [4] Luo Q., Li L., Xue Z. Y., Zhao D. Y. Synthesis of nanometer-sized mesoporous oxide spheres. Chem. Res. Chinese U. 2001, 17: 143-147.
    [5] Deng W., Bodart P., Pruski M., Shanks B. H. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating. Micropor. and Mesopor. Mater. 2002, 52: 169-177.
    [6] Zhang W. Z., Pinnavaia T. J. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N~0I~0 pathway. Chem. Commun. 1998, 1185-1186.
    [7] Zhang Z. R., Pinnavaia T. J. Mesostructured gamma-Al203 with a lathlike framework morphology. J. Am. Chem. Soc. 2002, 124: 12294-12301.
    [8] Neeraj, Eswaramoorthy M. Mesoporous alumina. P. Indian As-Chem. Sci. 1998, 110: 143-149.
    [9] Gonzalez-Pena V., Marquez-Alvarez C., Sastre E., Perez-Pariente J. Synthesis of ordered mesoporous and microporous aluminas: strategies for tailoring texture and aluminum coordination. Stud. Surf. Sci. Cata. 2002, 142: 1283-1290.
    [10] Gonzalez-Pena V., Diaz I., Marquez-Alvarez C., Sastre E., Perez-Pariente J. Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines. Micropor. and Mesopor. Mater. 2001, 44: 203-210.
    [11] Soler-lllia Galo J. de A. A., Sanchez C. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic-inorganic composites. New J. Chem. 2000, 24: 493-499.
    [12] Wanka G., Hoffmann H., Ulbricht W. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 1994, 27:4145-4159.
    [1] Panjok G. M. Aerogel catalysts. Appl. Catal. 1991, 72: 217-266.
    [2] Tavoularis G., Keane M. A. Gas phase catalytic dehydrochlorination and hydrodechlorination of aliphatic and aromatic systems. J. Mol. Catal. A 1999, 141: 187-199.
    [3] Shin E. J., Spiller A., Tavoularis G., Keane M.A. Chlorine.nickel interactions in gas phase catalytic hydrodechlorination: catalyst deactivation and the nature of reactive hydrogen. Phys. Chem. Chem. Phys. 1999, 1: 3173-3181.
    [4] Choi Y.H., Lee W.Y. Effect of Ni loading and calcination temperature on catalyst performance and catalyst deactivation of Ni/SiO_2 in the hydrodechlorination of 1,2-dichloropropane into propylene. Catal. Lett. 2000, 67: 155-161.
    [5] Choi Y.H., Lee W.Y. Effect of second metals and Cu content on catalyst performance of Ni-Cu/SiO_2 in the hydrodechlorination of 1,1,2-trichloroethane into vinyl chloride monomer. J. Mol. Catal. A 2001, 174: 193-204.
    [6] Tavoularis G., Keane M. A. Direct formation of cyelohexene via the gas phase catalytic dehydrohalogenation ofcyelohexyl halides. Appl. Catal. A 1999, 182: 309-316.
    [7] Cesteros Y., Salagre P., Medina F., Sueiras J. E. Effect of the alumina phase and its modification on Ni/Al_2O_3 catalysts for the hydrodechlorination of 1,2,4-triehlorobenzene. Appl. Catal. B 1999, 22:135-147.
    [8] Morato A., Alonso L., Medina F., Salagre P., Sueiras J. E., Ten'ado R., Giralt A. Conversion under hydrogen of dichlorodifluoromethane and chlorodifluoromethane over nickel catalysts. Appl. Catal. B 1999, 23: 175-185.
    [9] Liu X., Chun C.-M., Aksay I. A., Shih W.-H. Synthesis of Mesostructured Nickel Oxide with Silica. Ind. Eng. Chem. Res. 2000, 39: 684-692.
    [1] Staeh J., Pekarek V., Endrst R., Hetflejs J. Dechlorination of hexachlorobenzene on MWI fly ash. Chemosphere 1999, 39: 2391-2399.
    [2] Coute N., Ortego J. D., Richardson J. T., Twigg M. V. Catalytic steam reforming of ehlorocarbons: trichloroethane, trichloroethylene and perehloroethylene. Appl. Catal. B 1998, 19: 175-187.
    [3] D. Barriault, M. Sylvestre. Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms. Can. J. Microbiol. 1993, 39: 594-602.
    [4] M. Trillas, J. Peral, X. Domenech, J. Chem. Tech. Bioteehnol. 67 (1996) 237.
    [5] Garnpine A., Eyman D. P. Catalytic Hydrodechlorination of Chlorocarbons. 2. ternary oxide supports for catalytic conversions of 1, 2-Dichlorobenzene. J. Catal. 1998, 179: 315-325.
    [6] Moon D. J., Chung M.H., Park K. Y., Hong S. I. DeactiVation of Pd catalysts in the hydrodechlorination of chloropentafluoroethane. Appl. Catal. A 1998, 168: 159-170.
    [7] 顾修君,钟顺和.Ni/活性炭催化剂上1,2-二氯丙烷加氢脱氯制丙烯.石油化工 2000,29:326-329.
    [8] Tavoularis G., Keane M. A. Gas phase catalytic dehydrochlorination and hydrodechlorination of aliphatie and aromatic systems. J. Mol. Catal. A 1999, 141: 187-199.
    [9] Shin E. J., Spiller A., Tavoularis G., Keane M.A. Chlorine.nickel interactions in gas phase catalytic hydrodechlorination: catalyst deactivation and the nature of reactive hydrogen. Phys. Chem. Chem. Phys. 1999, 1: 3173-3181.
    [10] Choi Y.H., Lee W.Y. Effect of Ni loading and calcination temperature on catalyst performance and catalyst deactivation of Ni/SiO_2 in the hydrodechlorination of 1,2-dichloropropane into propylene. Catal. Lett. 2000, 67: 155-161.
    [11] Choi Y.H., Lee W.Y. Effect of second metals and Cu content on catalyst performance of Ni-Cu/SiO_2 in the hydrodechlorination of 1,1,2-trichloroethane into vinyl chloride monomer. J. Mol. Catal. A 2001, 174: 193-204.
    [12] Tavoularis G., Keane M. A. Direct formation of cyclohexene via the gas phase catalytic dehydrohalogenation of cyclohexyl halides. Appl. Catal. A 1999, 182: 309-316.
    [13] Cesteros Y., Salagre P., Medina F., Sueiras J. E. Effect of the alumina phase and its modification on Ni/Al_2O_3 catalysts for the hydrodechlorination of 1,2,4-trichlorobenzene. Appl. Catal. B 1999, 22: 135-147.
    [14] Morato A., Alonso L., Medina F., Salagre P., Sueiras J. E., Terrado R., Giralt A. Conversion under hydrogen of dichlorodifluoromethane and chlorodifluoromethane over nickel catalysts. Appl. Catal. B 1999, 23: 175-185.
    [15] Kim P., Kim Y., Kim C., Kim H., Park Y., Lee J. H., Song I. K., Yi J. Synthesis and characterization of mesoporous alumina as a catalyst support for hydrodechlorination of 1,2-dichloropropane: effect of catalyst preparation method. Catal. Lett. 2003, 89:185-192.
    [16] Molina R., Poncelet G. a-Alumina-Supported Nickel Catalysts Prepared from Nickel Acetylacetonate: A TPR Study. J. Catal. 1998, 173: 257-267.
    [17] Cesteros Y., Salagre E, Medina F., Sueiras J. E. Synthesis and characterization of several Ni/NiAl_2O_4 catalysts active for the 1,2,4-trichlorobenzene hydrodechlorination. Appl. Catal. B 1999, 25: 213-227.
    [18] Cesteros Y., Salagre P., Medina F., Sueiras J. E. Tichit D., Coq B. Hydrodechlorination of 1,2,4-trichlorobenzene on nickel-based catalysts prepared from several Ni/Mg/Al hydrotaicite-like precursors. Appl. Catal. B 2001, 32: 25-35.
    [1] 陈航榕,施剑林,禹剑,严东生.非硅组成有序介孔材料合成及应用,硅酸盐学报,2000,3:259-263.
    [2] Marek K. A literature survey of the differences between the reported isoelectric points and their discussion, Colloids and Surfaces A: Physicochem. Eng. Aspects. 2003, 22:113-118.
    [3] Kallay, N., Torbic, Z., Golic, M., Matijevic, E. Determination of the isoelectric points of several metals by an adhesion method. J. Phys. Chem. 1991, 95: 7028-7032.
    
    [4] Sun Z.X., Skold R.O. A Multi-parameter titration method for the determination of formation pH for metal hydroxides. Materials Engineering. 2001, 14: 1429-1443.
    [5] McKenzie R.M., The surface charge on manganese dioxides. J. Soil Res. 1981, 19:41-50.
    
    [6]化学分析手册,科学出版社,p457.
    
    [7] Jonas A., John R. Interfacial chemistry and particle interactions and their impact upon the dewatering behaviour of iron oxide dispersions. Hydrometallurgy, 2004, 74: 221-231.
    
    [8] Hu J. Q., Deng B., Lu Q.Y., Tang L. B., Jiang R. R., Qian Y. T, Zhou G En., Cheng H. Hydrothermal growth of β-Ag2Se tubular crystals. Chem. Commun. 2000, 715-716.
    [9] Shen R. F., Wang F. Y., Xiong Zh. X., Xue R., Bi-Ba-Fe-Cl micro-nanotube of tetragonal prosm crystal, Acta Phys.-Chem. Sin. 2001,17: 824-827.
    [10] Lauterbach R., Schnick W. Single-crystalline hexagonal Sr-Er- and Sr-Dy-Sialon microtubes. J. Mater. Sci. 2000, 35: 3793-3797.
    [11] Lin H. P., Mou Ch. Y. "Tubules-within-a tubule" hierarchical order of mesoporous molecular sieves in MCM-41. Science 1996, 276: 765-768.
    [12] Zheng X. W., Xie Y, Zhu L. Y, Jiang X. Ch., Jia Y. B., Song W. H., Sun Y. P. Growth of Sb2E3 (E = S, Se) polygonal tubular crystals via a novel solvent-relief-self-seeding process. Inorg. Chem. 2002,41: 455-461.
    [13] Herrero A. G.Canovas A. R. L., Sen S. H., Diaz L. C. Q. Electron microscopy study of tubular crystals (BiS)1+δ(NbS2)n. Micron 2000, 31: 587-595.
    
    [14] Kong J., Soh H., T., Cassell A. M., Quate C. F., Dai H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998,395: 878-881.
    
    [15] Amelinckx S., Zhang X. B., Bernaerts D., Zhang X. F., Ivanov V., Nagy J. B. Science 1994, 265: 635-639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700