用户名: 密码: 验证码:
三角洲沉积体系地震沉积学及其岩性油气藏成藏特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以现代层序地层学、沉积岩石学、石油地质学和地球物理学为理论基础,利用三维地震资料、钻井资料、测井资料和其他各种化验资料等,通过层序地层、地震属性和沉积相分析,以地震沉积学为主要研究方法,研究美国南德克萨斯地区Maverick盆地Olmos组和中国准噶尔盆地乌夏地区二叠系到侏罗系以海陆相三角洲沉积体系为主的岩石宏观特征、沉积结构、沉积体系、沉积相平面展布以及沉积发育史,并对与三角洲沉积体系相关的油气藏成藏特征和主控因素进行了分析。
     南德克萨斯地区Maverick盆地上白垩统地层和准噶尔盆地乌夏地区二叠系到侏罗系地层发育了多套烃源岩、储集层和盖层的组合,并发育大量的断裂和不整合,为研究区油气生成、运移和储集提供了有利条件。
     南德克萨斯地区Maverick盆地上白垩统地层发育9个三级层序界面和8个三级层序,可以划分为6个准层序组17个准层序,主要发育浪控三角洲沉积体系、浪控三角洲沉积体系、波浪作用三角洲沉积体系和海退临滨沉积体系等4种沉积体系。准噶尔盆地乌夏地区识别出不同级别的层序界面共24个,二叠系-侏罗系地层可以划分为2个一级层序、7个二级层序、23个三级层序。乌夏地区二叠纪早期以较稳定的湖泊相沉积为主,二叠纪中期以扇三角洲沉积为主。整个三叠纪沉积相演化是一个湖侵的过程,侏罗纪气候经历湖平面上升-下降-上升的变化过程,八道湾组沉积时,三级层序JSQ1、JSQ2、JSQ3以冲积扇-辫状河沉积为主,JSQ4开始发生湖侵,发育扇三角洲沉积体系和三角洲-湖泊相沉积体系,之后开始逐渐湖退,JSQ6则以冲积扇和辫状河相沉积为主。
     地震沉积学研究选取的地震工区钻探井较少,通过分析地震属性和岩性的关系,地震岩石学在南德克萨斯地区Maverick盆地和准噶尔盆地乌夏地区都具有合适的应用条件,可以利用90°相位转换对地震资料进行处理,使地震资料同相轴与岩性对应,并利用地层切片技术对地震资料平面属性进行分析,结合测井资料特征,可以清楚地在南德克萨斯地区Olmos组三维地震资料上识别出三角洲沉积体系的沉积特征,在准噶尔盆地乌夏地区三叠系百口泉组和克拉玛依组也可以清晰地识别出三角洲和扇三角洲等沉积体系的沉积特征。利用地层对比和岩心描述等资料,在研究目的层识别出南德克萨斯地区Maverick盆地Olmos组沉积环境包括分流河道、天然堤、决口扇、沼泽、泻湖、分流间湾、陆棚砂岩浅滩、障壁砂坝、障壁岛以及前三角洲等沉积环境。通过连井剖面对比,识别出Olmos组的Catarina三角洲沉积体系、Rocky Creek障壁和河流平原沉积体系和Big Foot三角洲沉积体系,其中主要发育5个进积的旋回,包括沉积单元A、B、C和F、D和G以及E和H。准噶尔盆地乌夏地区发育的陆相三角洲沉积体系主要包括扇三角洲沉积体系和三角洲沉积体系,通过单井分析发现的沉积相有扇三角洲平原分流河道和河道间沉积、扇三角洲前缘亚相分流河道和河道间微相、三角洲前缘砂坝沉积、三角洲分流河道微相、辫状河河道沉积、沼泽沉积、滨浅湖沉积以及半深湖-深湖相沉积等沉积相。
     根据层序地层学、地震沉积学和沉积岩石学的研究结果分析了研究区目的层的沉积模式和沉积过程。Olmos组早期沉积沿着Rio Grande地槽方向沉积,主要集中在Maverick盆地西部沉积中心,形成了Catarina三角洲沉积体系的沉积单元A、B和C,在单元C沉积过程中,沉积物开始进入Maverick盆地的东半部。Olmos组沉积的中后期,东部沉积中心的沉积占主导作用,形成了Big Foot三角洲沉积体系。顺岸往西,海岸作用占优势,同时还发生沉降作用,主要发育Rocky Creek障壁河流平原沉积体系。乌夏地区二叠纪早期为典型的前陆盆地沉积特征,晚期逐渐向坳陷盆地过渡,乌夏地区二叠系广泛发育冲积扇-扇三角洲-湖泊相沉积体系。乌夏地区三叠纪沉积以扇三角洲-冲积扇-三角洲-冲积平原为主。哈拉阿拉特山两侧是最主要的物源区,分别在百口泉地区和夏子街地区形成较大规模的冲积扇扇群。侏罗系沉积期间,乌夏地区广泛发育冲积扇-河流-三角洲-湖泊沉积体系。
     南德克萨斯地区Maverick盆地Olmos组油气藏可以根据沉积相类型、构造特征和圈闭类型分为上倾方向的不整合-地层油气藏、Charlotte断裂断层-地层油藏、上倾方向的构造油气藏、火山丘油气藏、三角洲和海滨带构造地层油气藏、下倾方向三角洲砂岩和陆棚油气藏以及陆棚边缘油气藏等7种与三角洲沉积体系有关的油气藏类型。准噶尔盆地乌夏地区与三角洲沉积体系有关的油气藏类型包括构造油气藏、地层油气藏、岩性油气藏和复合油气藏等。其油气成藏的主控因素包括三角洲沉积体系发育特征、烃源岩发育特征、不整合发育特征、断裂发育特征以及火山侵入作用等。通过对典型含油气圈闭的综合评价认为,有三角洲沉积相发育的储层条件较好,砂体连通性也较高,油气显示较多,可以作为潜在的岩性油气藏进行重点勘探。详细研究了乌夏地区油藏类型、构造样式、输导体系和成藏过程,以油气源、运移方向、运移过程、成藏期等因素为主要依据,将乌夏地区的成藏模式划分为近源侧向砂体-不整合输导早期成藏模式、近源垂向断层输导多期成藏模式、近源混向“Z”字型输导多期成藏模式以及远源混向阶梯状输导晚期成藏模式等四种类型。
Guided by the theories of sequence stratigraphy, sedimentary lithology, petroleum geology and geophysics, the study focused on the seismic sedimentology of Olmos Formation in Maverick Basin, South Texas, USA and the Permian, Triassic and Jurassic strata in Wu-xia Area, Junggar Basin. The lithologic characteristics, sedimentary structures, facies distributions and sedimentary history of deltaic depostional systems were concluded using 3D seismic data, core data, log data and others, consequently, the characterizations and control factors of delta-related lithologic reservoirs were proposed.
     There are several sets of source rocks, reservoirs and seal rocks in up Cretaceous strata of Maverick Basin and Permian, Triassic and Jurassic strata of Wu-xia Area, with numerous faults and unconformity surfaces developing widely. Thus, the conditions of oil and gas generation, migration and accumulation in the study areas were favorable.
     The up Cretaceous strata of Maverick Basin were divided into 8 third-order sequences or 17 parasequences in 6 sequences sets, and the depositional systems in the up Cretaceous strata of Maverick Basin include wave-dominated barrier bar depositional system, wave-dominated delta depositional system, wave-influenced delta depositional system and regressive shoreface depositional system. In Wu-xia Area, 24 sequence boundaries, 23 third-order sequences, 7 second-order sequences and 1 first-order sequences were identified in Permian, Triassic and Jurassic strata. Lacustrine facies depositions were dominant in early Permian, and then fan delta facies in middle Permian. Wu-xia Area was in a lacustrine transgerssive process. The lacustrine surface was in a rise-descend-rise process in Triassic, fluvial fan-braided river depositional system was dominant in JSQ1, JSQ2 and JSQ3, with fan delta and delta-lacustrine depositional system in JSQ4 and fluvial fan-braided river depositional system in JSQ6.
     Seismic sedimentology has a good performance in mapping depositional system in Maverick Basin and Wu-xia Area. Seismic amplitude in 90°-phase data and lithology correlate well in the study strata, and stratal slices made from the 3-D seismic volume reveal high-resolution sediment dispersal patterns and associated systems tracts on relative geologic time surfaces. The Olmos formation is characterized by deltaic systems, from which five types of depositional systems were identified: fluvial plain, deltaic plain, deltaic-front, prodelta and incised valleys. Meanwhile, the Baikouquan formation and Kelamayi formation in Wu-xia Area are characterized by terrestrial deltaic depositional systems and fan deltaic depositional systems.
     With cross correlations and core descriptions, distributary channel, levee, crevasse splay, swale, lagoon, interchannel sediment, shoal, barrier bar, barrier and prodelta were recognized in Olmos Formation of Maverick Basin, and Catarina deltaic depositional system, Rocky Creek barrier and strandplain depositional system, Big Foot depositional system were identified, in which 5 progradation cycles developed: unit A, unit B, unit C and F, unit D and G, unit E and H. In Wu-xia Area, the terrestrial deltaic facies contain fan deltaic facies and deltaic facies. Using cores and logs data, some types of sedimentary facies were identified: fan deltaic plain, distributary channel and interchannel sediment, deltaic front bar, deltaic distributary channel, braided river channel, swale and lacustrine sediment.
     Based on the studies of sequence stratigraphy, seismic sedimentology and sedimentary lithology, the depositional models and sedimentary histories were concluded. Olmos Formation deposited mainly in the western sedimentary center in Maverick Basin along Rio Grande Embayment during the early depositional stage, and the depositional units A, B and C in Catarina Deltaic system were formed. In the period of unit C deposition, sediments entered the eastern sedimentary center, and the deposition in eastern sedimentary center was dominant in Maverick Basin during the middle and late stages of Olmos Formation deposition, while Big Foot depositional system was forming. At the same time, Rocky Creek barrier and strandplain depositional system formed in the the western sedimentary center. Wu-xia Area was a foreland basin in early Permian, and transferred to a depression basin in late Permian. The Permian strata are characterized in fan delta-fluvial fan-lacustrine depositional systems, the Triassic strata are characterized in fan delta-fluvial fan-delta-fluvial plain depositional systems, and the Jurassic trata are characterized in fluvial fan-fluvial plain-delta-lacustrine depositional systems.
     In terms of the sedimentary facies types, structural characteristics and trap types, the reservoirs of Olmos formation in Maverick Basin were divided into 7 delta-related types: updip unconformity-stratigraphic reservoirs, Charlotte Fault Zone fault-stratigraphic reservoirs, updip structural reservoirs, volcanic mound reservoirs, deltaic and shore-zone sandstone structural reservoirs, downdip deltaic and shelf reservoirs, shelf edge reservoirs, etc. In Wu-xia Area, the delta-related reservoir types contain structural reservoirs, stratigraphic reservoirs, thithologic reservoirs and complex reservoirs. The main control factors of oil and gas immigration and accumulation include deltaic depositional system distribution, source rock distribution, unconformity characteristics, fault characteristics and volcanic intrusion. Seeing evaluation of typical traps, the reservoirs where deltaic depositonal systems exist have good accumulation conditions, better sandbody connectivities and good show of oil and gas, and can be the key targets of potential lithologic oil and gas play. According to the sources of oil and gas, migration pathways and directions, and the reservoir-forming periods, four types of oil and gas accumulation models are concluded in Wu-xia area: (1) near source- lateral sand body and unconformity migration-early accumulation models; (2) near source-vertical fault migration-multiple phase accumulation models; (3) long distance migration- multiple migration pathways- multiple phase accumulation models; (4) long distance step-shaped migration- multiple migration pathways- late accumulation models.
引文
1. Brown, A. R., C. G. Dahm, R. J. Graebner. A stratigraphic case history using three- dimensional seismic data in the Gulf of Thailand[J]. Geophysical Prospecting, 1981, 29 (3): 327-349.
    2. Zeng H., Backus M. M., Barrow K. T., Tyler N. Three dimensional seismic modeling and seismic facies imaging[C]. Gulf Coast Association of Geologic Societies Transactions, 1995, 45: 621–628.
    3. Zeng H., Backus M. M., Barrow K. T., Tyler N. Facies mapping from three-dimensional seismic data: Potential and guidelines from a Tertiary sandstone-shale sequence model, Powderhorn field, Calhoun County, Texas[J]. AAPG Bulletin, 1996, 80(1): 16– 46.
    4. Zeng H., Backus M. M., Barrow K. T., Tyler N. Stratal slicing, Part I: Realistic 3-D seismic model[J]. Geophysics, 1998a, 63(2): 502–513.
    5. Zeng H. , Henry S. C., Riola J. P. Stratal slicing, Part II: Real seismic data[J]. Geophysics, 1998b, 63(2): 514–522.
    6. Posamentier H. W. , Dorn G. A., Cole M. J., Beierle C. W., Ross S. P. Imaging elements of depositional systems with3-D seismic data: A case study[C]. Gulf Coast. Section SEPM Foundation, 17th Annual Research Conference, 1996: 213–228.
    7. Posamentier H. W. Seismic stratigraphy into the next millennium; A focus on 3D seismic data (abs.) [C]. AAPG Annual Convention Program, 2000, 9: A 118.
    8. Pennington W. D. Reservoir geophysics[J]. Geophysics, 2001, 66(1): 25–30.
    9. Posamentier H. W. Seismic geomorphology and depositional systems of deep water environments; observations from offshore Nigeria, Gulf of Mexico, and Indonesia (abs.) [C]. AAPG Annual Convention Program, 2001, 10:A160.
    10. Posamentier H. W. Ancient shelf ridges- A potentially significant component of the transgressive systems tract: Case study from offshore northwest Java[J]. AAPG Bulletin, 2002, 86: 75–106.
    11. Kolla V., Bourges Ph., Urruty J. M., Safa P., Evolution of deep-water Tertiary sinuous channels offshore Angola (west Africa) and implications for reservoir architecture[J]. AAPG Bulletin, 2001, 85:1373–1405.
    12. Carter D. C. 3-D seismic geomorphology: Insights into fluvial reservoir deposition and performance, Widuri field, Java Sea [J]. AAPG Bulletin, 2003, 87: 909-934.
    13. Zeng H., Ambrose W. A., Villalta E. Seismic sedimentology and regional depositional systems in the Mioceno Norte Area, Lake Maracaibo, Venezuela[J]. The Leading Edge, 2001a, 20:1260–1269.
    14.董艳蕾,朱筱敏,曾洪流等.黄骅坳陷歧南凹陷古近系沙一层序地震沉积学研究[J].沉积学报, 2008, 26(2): 234-240.
    15. Zeng H., Hentz T. F. High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana[J]. AAPG Bulletin, 2004, 88(2): 153–174.
    16. Zeng Hongliu, Loucks R. G., Brown, L. F., Jr. Mapping sediment-dispersal patterns and associated systems tracts in fourth- and fifth-order sequences using seismic sedimentology: example from Corpus Christi Bay, Texas[J]. AAPG Bulletin, 2007, 91(7): 981–1003.
    17. Zeng Hongliu. Seismic Sedimentology for High-Resolution Reservoir Imaging (Abs.) [C]. Seismic Applications to New Play Identification-2006 AAPG International Conference and Exhibition, 2006.
    18. Galloway W. E., Hobday D. K. Terrigenous clastic depositional systems: Applications to petroleum, coal, and uranium exploration[M]. New York, Springer- Verlag, 1983.
    19. Lindsey, J. P. The Fresnel zone and its interpretive significance[J]. The Leading Edge, 1989, 8(10): 33–39.
    20. Zeng Hongliu, Ambrose William A., Edgar Villalta, Roger Tyler. Seismic sedimentology by stratal slicing: a case history in the Mioceno Norte area, Lake Maracaibo, Venezuela[C]. Report of Investigations- Texas, University, Bureau of Economic Geology, 2002.
    21. Zeng H. From seismic stratigraphy to seismic sedimentology: A sensible transition[C]. Gulf Coast Association of Geologic Societies Transactions, 2001, 51: 413– 420.
    22. Sicking C. J. Windowing and estimation variance in deconvolution [J]. Geophysics, 1982, 47 (7): 1022–1034.
    23. Zeng H., Backus M. M. Interpretive advantages of 90°-phase wavelets: Part I-Modeling[J]. Geophysics, 2005a, 70: C7–C15.
    24. Zeng H., Backus M. M., Interpretive advantages of 90°- wavelets: Part II-Seismic applications[J]. Geophysics, 2005b, 70: C17–C24.
    25. Vail P. R., Mitchum R. M. Jr., Todd R. G. , Widmier J. M., Thompson S. M., Sangree J. B., Bubb J. N., Hatleilid W. G. Seismic stratigraphy and global changes of sea level[C]. In: C. E. Payton (Editor), Seismic Stratigraphy-Applications to Hydrocarbon Exploration. AAPG Memorial, 1977, 26: 49-212.
    26. Posamentier H. W., Vail P. R. Eustatic controls on clastic deposition II–sequence and systems tract models[C]. In: Sea Level Changes–An Integrated Approach ( C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, H. W. Posamentier, C. A. Rossand, J. C. Van Wagoner, Eds. ). SEPM Special Publication, 1988, 42: 125-154.
    27. Galloway W. E. Genetic stratigraphic sequences in basin analysis, I: Architecture and genesis of flooding-surface bounded depositional units[J]. American Association of Petroleum Geologists Bulletin, 1989, 73: 125-142.
    28. Mitchum R. M. Jr. , Vail P. R., Thompson S. M. Seismic stratigraphy and global changes of sea-level, part 2: the depositional sequence as a basic unit for stratigraphic analysis[C]. In Seismic Stratigraphy–Applications to Hydrocarbon Exploration (C. E. Payton, Ed. ). American Association of Petroleum Geologists Memoir, 1977, 26: 53-62.
    29. Mitchum R. M. Jr. , Vail P. R., Thompson S. M. Seismic stratigraphy and global changes of sea-level, part 2: the depositional sequence as a basic unit for stratigraphic analysis[C]. In Seismic Stratigraphy–Applications to Hydrocarbon Exploration (C. E. Payton, Ed. ). American Association of Petroleum Geologists Memoir, 1977, 26: 53-62.
    30. Brown L. F. Jr., Fisher W. L. Seismic stratigraphic interpretation of depositional systems: examples from Brazilian rift and pull apart basins[C]. In Seismic Stratigraphy–Applications to Hydrocarbon Exploration ( C. E. Payton, Ed.). American Association of Petroleum Geologists Memoir, 1977, 26: 213-248.
    31. Cross T. A. Applications of high-resolution sequence stratigraphy to reservoir analysis[J]. The Interstate Oil and Gas Compact Commission 1993 Annual Bulletin, 1994: 24-39.
    32.王冰.松辽盆地上白垩统QYN组成因地层层序的地层格架、沉积类型、烃类分布[J].国外油气勘探, 1994, 6(5): 555-569.
    33.胡见义,徐树宝.非构造油气藏[M].北京:石油工业出版社, 1986, 81-83.
    34. Levorsen A I. The obscure and subtle trap[J]. AAPG Bulletin, 1966, 50: 2058-2067.
    35.李丕龙,陈冬霞,庞雄奇.岩性油气藏成因机理研究现状及展望[J].油气地质与采收率, 2002, 9(5): 1-3.
    36.冯乔,赵一鸣,宋宜平.陕北川口油田低渗透岩性油藏地质特征[J].西北大学学报(自然科学版), 1997, 27(2): 151-154.
    37.曾溅辉,郑和荣,王宁.东营凹陷岩性油气藏成藏动力学特征[J].石油与天然气地质, 1998, 19(4): 326-329.
    38.付广,张云峰,杜春国.松辽盆地北部岩性油藏形成机制及主控因素[J].石油勘探与开发,2002,29(5):22-24.
    39.关德师,李建忠.松辽盆地南部岩性油藏成藏要素及勘探方向[J].石油学报,2003,24(3):24-27.
    40.李丕龙,庞雄奇,等.陆相断陷盆地隐蔽油气藏形成—以济阳坳陷为例[M].北京:石油工业出版社.2004,214-314.
    41.胡辉.江汉盆地潜江凹陷岩性油藏形成条件及分布规律研究[J].地质力学学报,2005,11(1):67-73.
    42.王宁,陈宝宁,翟剑飞.岩性油气藏形成的成藏指数[J].石油勘探与开发,2000,27(6):4-5.
    43.陈冬霞,庞雄奇,翁庆萍,等.岩性油藏三元成因模式及初步应用[J].石油与天然气地质,2003,24(3):228-232.
    44.迟元林,蒙启安,杨玉峰.松辽盆地岩性油藏形成背景与成藏条件分析[J].大庆石油地质与开发, 2004,23(5):10-15.
    45.李丕龙,庞雄奇,陈冬霞,等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学D辑,2004,34(增刊Ⅰ) :143-151.
    46.杨占龙,陈启林,郭精义.胜北洼陷岩性油气藏成藏条件特殊性分析[J].天然气地球科学,2005,16(2):181-189.
    47.付广,张云峰,杜春国.松辽盆地北部岩性油藏形成机制及主控因素[J].石油勘探与开发, 2002,29(2):22-24.
    48.姜振学,陈冬霞,邱桂强,等.应用层次分析法研究透镜状砂体成藏主控因素[J].石油勘探与开发,2003,30(3):44-47.
    49.邱楠生,万晓龙,金之钧,等.渗透率级差对透镜状砂体成藏的控制模式[J].石油勘探与开发,2003,30(3):48-52.
    50.高永进,邱桂强,陈冬霞,等.牛庄洼陷岩性油藏含油气性及主控因素[J].石油与天然气地质,2004,25(3):284-287.
    51.万晓龙,邱楠生,张善文,等.岩性油气藏成藏的微观控制因素探讨—以东营凹陷牛35砂体为例[J].天然气地球科学,2004,15(3):261-265.
    52.易士威.断陷盆地岩性地层油藏分布特征[J].石油学报,2005,26(1):38-41.
    53.隋风贵.浊积砂体油气成藏主控因素的定量研究[J].石油学报, 2005, 26(1): 55-59.
    54. Ewing T.E. Structural framework [C]. IN The Gulf of Mexico Basin: Boulder, Colo. Geological Society of America (In Salvador, A. Ed.). Geology of North America, 1991, J: 31–52.
    55. Condon S. M., Dyman T. S. 2003 geologic assessment of undiscovered conventional oil and gas resources in the Upper Cretaceous Navarro and Taylor Groups, Western Gulf Province, Texas. U.S [R]. Geological Survey Digital Data Series DDS-69-H, Chapter 2, 2006.
    56. Fowler P. Faults and folds of south-central Texas [C]. Gulf Coast Association of Geological Societies Transactions, 1956, 6: 37-42.
    57. Ewing T.E. The Frio River Line in south Texas-Transition from Cordilleran to Northern Gulf tectonic regimes [C]. Gulf Coast Association of Geological Societies Transactions, 1987, 37: 87–94.
    58. Weeks A.W. Balcones, Luling, and Mexia fault zones in Texas[J]. American Association of Petroleum Geologists Bulletin, 1945, 29(12): 1733-1737.
    59. Matthews T.F. The petroleum potential of“serpentine plugs”and associated rocks, central and south Texas [C]. Baylor Geological Studies Bulletin, 1986, 44.
    60. Snedden, J.W., Kersey, D.G. Depositional environments and gas production trends, Olmos Sandstone, Upper Cretaceous, Webb County, Texas [C]. Gulf Coast Association of Geological Societies Transactions, 1982, 32: 497-518.
    61. Salvador, A. Origin and development of the Gulf of Mexico basin[C]. In Salvador, A., ed. The Gulf of Mexico Basin: Boulder, Colo., Geological Society of America. Geology of North America, 1991a, J: 389-444.
    62. Adams R.L. Effects of inherited pre-Jurassic tectonics on the U.S. Gulf Coast[C]. Gulf Coast Association of Geological Societies Transactions, 1993, 43: 1–9.
    63. Dehler C.M. Facies analysis and environmental interpretation of the Middle Chuar Group (Proterozoic)- Implications for the timing of Rodinian breakup [abs.] [C]. American Association of Petroleum Geologists Bulletin, 1998, 82.
    64. Wood M. L., Walper, J. L. The evolution of the Interior Mesozoic basin and the Gulf of Mexico[C]. Gulf Coast Association of Geological Societies Transactions, 1974, 24: 31–41.
    65. Thomas W. A. The Appalachian-Ouachita rifted margin of southeastern North America [J]. Geological Society of America Bulletin, 1991, 103: 415-431.
    66. Salvador A. Late Triassic-Jurassic paleogeography and origin of the Gulf of Mexico basin [J]. American Association of Petroleum Geologists Bulletin, 1987, 71(4): 419–451.
    67. Buffler R.T., Sawyer D.S. Distribution of crust and early history, Gulf of Mexico Basin[C]. Gulf Coast Association of Geological Societies Transactions, 1985, 35: 333–344.
    68. Goldhammer R.K., Johnson, C.A. Middle Jurassic-Upper Cretaceous paleogeographic evolution and sequence-stratigraphic framework of the northwest Gulf of Mexico rim[C]. In Barolini C., Buffler R.T., Cantu-Chapa A. Eds. The western Gulf of Mexico Basin-Tectonics, sedimentary basins, and petroleum systems: American Association of Petroleum Geologists Memoir 75, 2001: 45–81.
    69. Galloway W.E., Ganey-Curry P.E., Xiang L., Buffler R.T. Cenozoic depositional history of the Gulf of Mexico Basin [J]. American Association of Petroleum Geologists Bulletin, 2000, 84 (11): 1743-1774.
    70. Wilson W.F., Wilson, D.H. Meteor impact site, Anacacho asphalt deposits: San Antonio, Tex.-South Texas Geological Society, Field trip guidebook. 1984.
    71. Kosters E.C., Bebout D.G., Seni S.J.等., Atlas of major Texas gas reservoirs: Austin, Tex. [R], University of Texas, Bureau of Economic Geology, 1989.
    72. Tyler N., Ambrose W. A.., Depositional systems and oil and gas plays in the Cretaceous Olmos Formation, south Texas [R]. The University of Texas at Austin, Bureau of Economic Geology Report of Investigations, 1986, 152.
    73. Tyler N., Gholston, J.C., Ambrose, W.A. Oil recov ery in a low-permeability, wave-dominated, Cretaceous, deltaic reservoir, Big Wells (San Miguel) field, south Texas [J]. American Association of Petroleum Geologists Bulletin, 1987, 71(10): 1171–1195.
    74. Lewan M.D. New insights on timing of oil and gas generation in the central Gulf Coast Interior Zone based on hydrous-pyrolysis kinetic parameters[C]. Gulf Coast Association of Geological Societies Transactions, 2002, 52: 607–620.
    75. Mancini E.A., Tew B.H., Mink, R.M. Petroleum source rock potential of Mesozoic condensed section deposits of southwest AlabamaIn Katz B.J., Pratt, L.M., Eds. Source rocks in a sequence stratigraphic framework: American Association of Petroleum Geologists Studies in Geology, 1993, 37: 147-162.
    76. Hood K.C., Wenger L.M., Gross, O.P., Harrison, S.C. Hydrocarbon systems analysis of the northern Gulf of Mexico-Delineation of hydrocarbon migration pathways using seeps and seismic imaging[C]. In Schumacher D., LeSchack L.A., Eds. Surface exploration case histories-Applications of geochemistry, magnetics, and remote sensing: American Association of Petroleum Geologists Studies in Geology no. 48, and SEG Geophysical Reference Series no. 11, 2002: 25-40.
    77. Sassen R., Moore C.H., Meendsen, F.C. Distribution of hydrocarbon source potential in the Jurassic Smack-over Formation [J]. Organic Geochemistry, 1987, 11:379-383.
    78. Dawson W.C. Shale microfacies-Eagle Ford Group (Cenomanian–Turonian), north-central Texas outcrops and subsurface equivalents[C]. Gulf Coast Association of Geological Societies Transactions, 2000, 50: 607-622.
    79. Liro L.M., Dawson W.C., Katz B.J., Robison V.D. Sequence stratigraphic elements and geochemical variability within a“condensed section”-Eagle Ford Group, east-central Texas[C]. Gulf Coast Association of Geological Societies Transactions, 1994, 44: 393-402.
    80. Berg R.R., Gangi A.F. Primary migration by oil-generating microfracturing in low-permeability source rocks—Application to the Austin Chalk, Texas [J]. American Association of Petroleum Geologists Bulletin, 1999, 83(5): 727-756.
    81. Dawson W.C., Katz B., Robison V.D. Austin Chalk (!) petroleum system, Upper Cretaceous, southeastern Texas-A case study[C]. Gulf Coast Association of Geological Societies Transactions, 1995, 45: 157-163.
    82. Grabowski G.J., Jr. Source-rock potential of the Austin Chalk, Upper Cretaceous, southeastern Texas[C]. Gulf Coast Association of Geological Societies Transactions, 1981, 31: 105–113.
    83. Hunt J.M., McNichol A.P. The Cretaceous Austin Chalk of south Texas-A petroleum source rock[C]. In Palacas J.G., Ed. Petroleum geochemistry and source rock potential of carbonate rocks: American Association of Petroleum Geologists Studies in Geology no. 18, 1984: 117–125.
    84. Snyder R.H., Craft M. Evaluation of Austin and Buda Formations from core and fracture analysis[C]. Gulf Coast Association of Geological Societies Transactions, 1977, 27:376–385.
    85. Spencer A.B. Alkalic igneous rocks of the Balcones province, Texas[J]. Journal of Petrology, 1969, 10(2): 272–306.
    86. Ewing T.E., Caran S.C. Late Cretaceous volcanism in south and central Texas-Stratigraphic, structural, and seismic models[C]. Gulf Coast Association of Geological Societies Transactions, 1982, 32: 137-145.
    87. Welder F.A., Reeves R.O. Geology and groundwater resources of Uvalde County, Texas[R].U.S. Geological Survey Water Supply Paper 1584, 1964.
    88. Wittke J.H., Mack, L.E. OIB-like mantle source for continental alkaline rocks of the Balcones province, Texas-Trace-element and isotopic evidence[J]. Journal of Geology, 1993, 101(3): 333–344.
    89. Simmons K.A. A primer on“serpentine plugs”in south Texas[C]. In Ellis W.G., ed. Contributions to the geology of south Texas, 1967: San Antonio, Tex. South Texas Geological Society, 1967:125–132.
    90. Sellards E.H. Oil fields in igneous rocks in coastal plain of Texas[J]. American Association of Petroleum Geologists Bulletin, 1932, 16(8): 741–768.
    91. Martinez P.A., Kushner P.L., Harbaugh J.W., , Exploitation of oil in a volcanic cone by horizontal drilling in the Elaine field, south Texas [abs.][C]. American Association of Petroleum Geologists Bulletin, 1991, 75(3): 630.
    92. Hutchinson P.J. Late Cretaceous (Austin Group) volcanic deposits as a hydrocarbon trap [abs.][C]. American Association of Petroleum Geologists Bulletin, 1994, 78(9): 1461.
    93. Hutchinson P.J. Upper Cretaceous (Austin Group) volcanic deposits as a hydrocarbon trap[C]. Gulf Coast Association of Geological Societies Transactions, 1994, 44: 293–303.
    94. Hartville L.L. Petrology of the Anacacho Limestone of southwest Texas[C]. Gulf Coast Association of Geological Societies Transactions, 1959, 9: 161–165.
    95. Wilson D.H. Paleoenvironments of the Upper Cretaceous Anacacho Formation in southwest Texas[C]. In Stapp W.L., ed. Contributions to the geology of south Texas, 1986: San Antonio, Tex. South Texas Geological Society, 1986: 352–355.
    96. Roy E.C., Jr. Eidelbach M., Trumbly N. A Late Cretaceous calcarenite beach complex associated with submarine volcanism, Wilson County, Texas[C]. Gulf Coast Association of Geological Societies Transactions, 1981, 31: 173-178.
    97. Weise B.R. Wave-dominated delta systems of the Upper Cretaceous San Miguel Formation, Maverick Basin, south Texas: Austin, Tex[R]. The University of Texas, Bureau of Economic Geology Report of Investigations no. 107, 1980: 39 p.
    98. Stephenson L.W. Taylor age of San Miguel Formation of Maverick County, Texas[J]. American Association of Petroleum Geologists Bulletin, 1931, 15(7): 793–800.
    99. Layden R.L. Big Wells field, Dimmit and Zavala Counties, Texas[C]. In Braunstein J., ed. North American oil and gas fields: American Association of Petroleum Geologists Memoir 24, 1976: 145–156.
    100. Dennis J.G.. Depositional environments of A.W.P. Olmos field, McMullen County, Texas[C]. Gulf Coast Association of Geological Societies Transactions, 1987, 37: 55–63.
    101. Merritt L.C. Sandstone diagenesis and porosity development in Olmos, San Miguel, and Upson Formations (Upper Cretaceous), northern Rio Escondido Basin, Coahuila, Mexico[C]. Gulf Coast Association of Geological Societies Transactions, 1980, 30: 459-464.
    102. Pessagno E.A., Jr. Upper Cretaceous stratigraphy of the western Gulf Coast area of Mexico, Texas, and Arkansas[R]. Geological Society of America Memoir 111, 1969.
    103. Cooper J.D. Maestrichtian (Upper Cretaceous) biostratigraphy, Maverick County, Texas and northern Coahuila, Mexico[C]. Gulf Coast Association of Geological Societies Transactions, 1971, 21: 57–65.
    104. Cooper J.D. Cretaceous-Tertiary transition-Rio Grande outcrop section[J]. American Journal of Science, 1973, 273: 431–443.
    105. Snedden J.W. Origin and sequence stratigraphic significance of large dwelling traces in the Escondido Formation (Cretaceous, Texas, USA) [J]. Palaios, 1991, 6(6): 541–552.
    106. McDonald M.A. Escondido sands of the Leming field in Bexar, Atascosa, and Wilson Counties, Texas[C]. In Stapp W.L., ed. Contributions to the geology of south Texas, 1986. South Texas Geological Society, San Antonio, Tex., 1986: 323–329.
    107.张义杰.准噶尔盆地油气聚集规律及勘探方向[R]..新疆石油管理局勘探开发研究院, 1997, (内部报告).
    108.李秀鹏,查明,吴孔友.准噶尔盆地乌夏地区天然气地球化学特征[J].新疆石油地质, 2007, 28 (4): 413-415.
    109.曲江秀,邱贻博,时振峰,等.准噶尔盆地西北缘乌夏断裂带断裂活动与油气运聚[J].新疆石油地质, 2007, 28(4): 403-505.
    110.丘东洲.中国西北石炭纪沉积盆地分析[J].岩相古地理, 1989, 9(4):1-12.
    111.肖序常,汤耀庆.古中亚复合巨型缝合带南缘构造演化[M].北京:科学技术出版社, 1991.
    112.彭希龄,张国俊.准噶尔盆地构造演化与油气聚集[M].石油工业出版社,1990: 196-211.
    113.肖序常,汤耀庆,冯益民.新疆北部及邻区大地构造演化[M].北京:地质出版社, 1992.
    114.贾承造.前陆冲断带油气勘探[M].石油工业出版社,2000.
    115.张弛,黄萱.新疆西准噶尔蛇绿岩形成时代和环境的探讨[J].地质论评, 1992, 38(6): 509-524.
    116.朱宝清.西准噶尔西南地区古海洋地壳与板块构造[J].地球学报, 1984, 6(3).
    117.彭希龄,张国俊.准噶尔盆地构造演化与油气聚集[M].石油工业出版社,1990,196-211.
    118. Sheriff R. E. Inferring stratigraphy fromseismic data[J]. American Association of Petroleum Geologists Bulletin, 1976, 60(4): 528-542.
    119. Van Wagoner J. C. et al. Siliciclastic sequence stratigraphy in well logs, cores and outcrops: concepts for high-resolution correlation of time and facies[C]. AAPG Methods in Exploration Series 7, 1990, 55: 1-240.
    120.张军华,王永刚,杨国权等.地震旋回体的概念及应用[J].石油地球物理勘探, 2003, 38(3): 281-284.
    121. Embry A F. Transgressive-regressive (T-R) sequence analysis of the Jurassic succession of the Sverdurp basin, Canadian Arctic Archipelago[J]. Can J Earth, Sci, 1993, 30: 301-320.
    122. Mahmoud S. E. Integrated palynology and sequence stratigraphy of the Upper Cretaceous (Maastrichtian) strata, Rio Embayment, Texas, using well, outcrop, and seismic data[D]. The University of Texas at Dallas, Dallas, 2004.
    123. Haq B. U., Hardenbol J., Vail P. R. Chronology of fluctuating sea level since the Triassic[J]. Science, 1987, 235: 1156-1166.
    124. Galloway W. E. Genetic stratigraphic sequences in basin analysis: application to north west Gulf of Mexico Cenozoic basin[J]. American Association of Petroleum Geologists Bulletin, 1989, 73: 143-154.
    125. Bhattacharya J., Walker R. G. Deltas[C]. In: Walker R. G., James N. P., eds. Facies models: responses to sea level change. Geological Association of Canada, 1992: 157-177.
    126. Reading H.G., Collinson J.D. Clastic coasts[C]. In: Reading, H.G. ed. Sedimentary Environments: Process, Facies and Stratigraphy (third edition). Blackwell Science, Oxford, 1996: 154-231.
    127. Wood L. C. Imaging the subsurface[C]. In: K. C. Jain, R. J. P., eds. Concepts and techniques in oil and gas exploration, SEG, 1982: 45-90.
    128. Yilmaz O. Seismic data analysis, 2nd ed. [M], SEG, 2001.
    129. Brown A. R. Interpretation of three-dimensional seismic data, 3rd ed[M]. AAPG Memoir, 1991, 42.
    130. Widess M. B. How thin is a thin bed? [J]. Geophysics, 1973, 38(6 ): 1176-1180.
    131. Meckel L. D. Jr., Nath A. K. Geologic considerations for stratigraphic modeling and interpretation[C]. In C. E. Payton, ed. Seismic stratigraphy. AAPG Memoir, 1977, 26: 417-438.
    132. Zeng Hongliu, Kerans Charles. Seismic frequency control on carbonate seismic stratigraphy: a case study of the Kingdom Abo sequence, West Texas[J]. AAPG Bulletin, 2003, 87(2): 273- 293.
    133. Bracewell R. N. The Fourier transform and its applications, 3rd ed. [M], McGraw-Hill Book Company, 1999.
    134. Taner M. T., Sheriff R. E. Application of amplitude, frequency, and other attributes to stratigraphic and hydrocarbon determination[C]. In: Payton C. E., ed. Seismic stratigraphy: AAPG Memoir, 1977, 26: 301-328.
    135. Han D. H., Nur A., Morgan D. Effects of porosity and clay content on wave velocities in sandstone[J]. Geophysics, 1986, 51: 2093-2107.
    136. Hilterman F., Sherwood J. W. C, Schellhorn R., Bankhead B., DeVault B. Identification of lithology in the Gulf of Mexico [J]. The Leading Edge, 1998, 17: 215– 222.
    137. Zeng H., Backus M. M. Interpretive advantages of 90°-phase wavelets: Part I-Modeling[J]. Geophysics, 2005, 70(3): C7-C15.
    138. Li X, Zeng H. Seismic sedimentology and depositional systems in the Upper Cretaceous Olmos Formation, Gold River North Field, Webb County, South Texas [C]. Houston: Gulf Coast Association of Geological Societies Transactions, 2008, 58: 623-634.
    139.国家地质局.《德莱赛公司测井原理》.北京:地质出版社, 1976.
    140. Sengbush R. L., Lawrence P. L., McDonald F. J. Interpretation of synthetic seismograms[J]. Geophysics, 1961, 26 (2): 138-157.
    141. Sheriff R. E. Encyclopedic dictionary of applied geophysics, 4th ed.[C] Society of Exploration Geophysicists Geophysical References, 2002, 13.
    142. Zeng H. Facies-guided 3-D seismic modeling and reservoir characterization[D]. University of Texas at Austin, Austin, 1994.
    143. Zeng H., Wood L. J., Hentz T. F. Seismic sedimentology by stratal slicing of fluvial and shallow-marine depositional system in Pliocene, offshore Louisiana[C]. Annual Meeting Expanded Abstracts- American Association of Petroleum Geologists, 2001: 224.
    144. Zeng H., Wood L. Using quantitative seismic sedimentology to predict reservoir architecture and lithology, a Gulf Coast Miocene-Pliocene example[C]. Annual Meeting Expanded Abstracts- American Association of Petroleum, 2002: 197.
    145. Zeng H., Hentz T. F., Wood L. J. Stratal slicing of Miocene- Pliocene sediments in Vermilion Block 50- Tiger Shoal area, offshore Louisiana[J]. The Leading Edge, 2001b, 20:408–418.
    146. Snedden J. W., Jumper R. S. Shelf and shoreface reservoirs, Tom Walsh-Owen field, Texas [C]. In: Barwis J. H., McPherson J. G., Studlick R. J., eds. Sandstone petroleum reservoirs. New York: Springer-Verlag, 1990: 415-436.
    147. Conrad K. T., Snedden J. W., Cooke J. C. Recognition of fifth-order cycles in a biodestratified shelf sandstone parasequence-Olmos Sandstone, south Texas (abs.) [C]. AAPG Bulletin, 1990, 74 (5): 633.
    148. Trevino R. H., LOUCKS R. G., GALE F. W., et al. Extending facies interpretations by integrating core, image-log, and wireline-log data in the Upper Cretaceous Olmos Formation of South Texas [C]. Gulf Coast Association of Geological Societies Transactions, 2007, 57: 729-736.
    149. Indest D. J., McPherson J. G.. The relationship of volcanic highs to depositional patterns and hydrocarbon emplacement, Olmos Formation (Late Cretaceous), Zavala County, Texas (abs.) [C]. Habitat of oil and gas in the Gulf Coast: Gulf Coast Section. Society of Economic Paleontologists and Mineralogists Foundation fourth annual research conference program and abstracts volume, 1983: 21-22.
    150. Gregorcyk W. A., Pauls R., Holtmeyer M., et al. High frac sand concentration boost production in Texas* Olmos Formation[J]. Oil and Gas Journal, 1984, 82(38): 105-108.
    151.蒋有录,查明.石油天然气地质与勘探[M].北京:石油工业出版社, 2006.
    152.戴金星,李剑,罗霞等.鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比[J].石油学报, 2005, 26(1): 18-26.
    153. Magoon L.B., Dow W.G. The petroleum system[C]. In: Magoon L.B., Dow W.G., eds. The petroleum system-From source to trap: American Association of Petroleum Geologists Memoir 60, 1994: 3–24.
    154.翟光明,王建君.论油气分布的有序性[J].石油学报, 1998, 21(1): 1-9.
    155.吴孔友,查明,柳广弟.准噶尔盆地二叠系不整合面及其油气运聚特征[J].石油勘探与开发, 2002, 29 (2): 53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700