用户名: 密码: 验证码:
基于煤储层特征的新安煤矿二_1煤深部瓦斯涌出量预测模型构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新安煤矿属于高瓦斯高突矿井,主采煤层二1煤主要为构造煤,经过近30多年的煤矿开采,浅部开采任务已基本完成,近年来,随着开采深度的增加和新区的开发,矿井瓦斯涌出量急剧上升,储层特征各向异性更加明显,对瓦斯地质资料的要求越来越严格。以往提供的瓦斯资料缺乏对影响瓦斯涌出量相关因素的综合分析和研究,尤其缺乏针对储层特征参数所作出的瓦斯地质分析,难免造成新采区设计工作的盲目性,迫切需要采用新思路和新方法并从储层特征的非均质性出发,对新安煤矿二水平的瓦斯涌出量情况进行精细的研究。
     论文将以新安矿二1煤层为研究对象,在资料的收集、整理和对已有成果消化吸收的基础上,综合钻井、井下观察、测试数据,结合瓦斯地质因素的平面分布特征,查明瓦斯地质因素(埋深、煤厚、20米砂岩比、40米砂岩比、大占砂岩厚度、灰分产率、水分、挥发份、全硫、煤岩显微组份、镜质组射率、断层落差、构造复杂程度等)对储层特征参数(瓦斯压力、孔隙裂隙、等温吸附、瓦斯含量、比表面积)的控制作用,结合数量化理论Ⅰ数学建模工具,对储层特征参数未采区定量化,重点重建了基于储层特征参数的瓦斯涌出量多变量数学模型,结合瓦斯地质理论,分析了储层特征对瓦斯涌出量的控制作用。
     论文首先选取合适的控制因素指标,综合判别新安煤矿二1煤储层特征的主要控制因素,定性定量分析埋深、煤厚、20米砂岩比、40米砂岩比、大占砂岩厚度、灰分产率、水分、挥发份、全硫、煤岩显微组份、镜质组射率、断层落差、构造复杂程度等对煤储层特征参数的影响,建立各地质因素与煤储层特征参数的对应关系,探讨各地质因素对储层特征的控制作用;研究已采区宏观煤岩类型,观察其裂隙特征,研究煤的微观孔隙裂隙特征,包括孔隙大小及其连通性,对裂隙研究包括裂隙长度、裂口宽度、裂隙类型及其发育程度等;分析煤的等温吸附特征、煤的储层渗透率特征、煤储层的瓦斯含量特征、煤储层的比表面积特征和煤储层瓦斯压力特征;分析煤储层特征对瓦斯的吸附能力以及解吸特性等;对己采区划分统计单元,选择己采区变量并取值,运用瓦斯地质理论和方法,分析已采区孔隙裂隙、等温吸附、渗透性、瓦斯含量、比表面积、瓦斯压力与埋深、煤厚、20米砂岩比、40米砂岩比、大占砂岩厚度、灰分产率、水分、挥发份、全硫、煤岩显微组份、镜质组射率、断层落差、构造复杂程度等等控制参数关系,筛选出主导控制参数,建立多元分析数学地质模型,对未采区煤储层特征参数定量化;分析已采区瓦斯涌出量特征,对已采区统计单元储层特征参数取值,建立已采区统计单元储层特征参数与瓦斯涌出量定量函数表达式;利用未采区煤储层特征的量化值,预测未采区瓦斯涌出量,构建基于储层特征参数的深部煤瓦斯涌出量预测模型,分析未采区储层特征对瓦斯涌出量的控制作用。
     取得的主要认识与结论如下:
     1、二1煤坚固性系数值都很低,在0.17-0.22之间,平均为0.19,是典型的构造软煤,是脆性剪裂变形的结果,碎粒煤、糜棱煤全面发育,严重破坏的煤岩可能以小颗粒或者粉末的形式随瓦斯运移,堵塞运移通道,从而降低了储层渗透性;
     2、二1煤孔隙十分发育,以变质孔偏多,原生孔多为丝质体、半丝质体空腔,部分孔隙被矿物充填,裂隙以构造裂隙为主,是瓦斯大量赋存的物质基础;比表面积测试结果显示,该区孔隙形态既有封闭型孔,也有开放型孔,封闭型孔居多。
     3、储层等温吸附常数a、b值均偏大,储层煤岩对瓦斯具有较强的吸附能力,当瓦斯压力由5Mpa降到1Mpa时,解吸瓦斯量较少,表明瓦斯总体解吸比较困难,当瓦斯压力小于1Mpa时,降压瓦斯解吸速率突然大增,成为瓦斯突出或煤与瓦斯突出的隐患,应成为瓦斯涌出量预测的重点区。
     4、储层平均渗透率为0.42mD,其中15061工作面煤层渗透率最大,为0.57mD,12201工作面煤层渗透率最低,仅为0.29mD。
     5、煤比表面积与断层落差、埋深和构造复杂程度成正相关;与Ro、镜质组含量、灰分产率、水分含量、惰质组含量成负相关;镜质组含量、埋深、水分含量、构造复杂程度的t统计量大于0.01显著性水平下的t临界值2.660;Ro、灰分产率、惰质组含量、断层落差的t统计量略小于0.1显著性水平下的t临界值1.671;t统计量检验说明镜质组含量、埋深、水分含量和构造复杂程度4个自变量对比表面积影响大,Ro、灰分产率、惰质组含量和断层落差4个自变量对比表面积影响相对较小。全区比表面积整体由矿区东北向西南呈现增加、减小,次增加的趋势,已采区高比表面积区域主要位于13采区和16采区,比表面积值大于0.8m2/g,低值区位于12采区,低于0.4m飞。
     6、等温吸附常数VL与Ro、比表面积、镜质组含量、断层落差、埋深、惰质组含量和构造复杂程度成正相关;与灰分产率、水分含量成负相关,埋深的t统计量大于0.01显著性水平下的t临界值2.660;镜质组含量、水分含量的t统计量介于0.1显著性水平下的t临界值1.671和0.01显著性水平下的t临界值2.660之间;Ro、比表面积、灰分产率、断层落差、惰质组含量、构造复杂程度的t统计量小于0.1显著性水平下的t临界值1.671,其中Ro、惰质组含量和构造复杂程度的t统计量略小于t临界值;t统计量检验说明埋深、镜质组含量、水分含量3个自变量对等温吸附常数VL影响大,Ro、比表面积、灰分产率、断层落差、惰质组含量、构造复杂程度6个自变量对等温吸附常数VL影响相对较小。全区等温吸附常数VL分布具有非均质性,变化幅度大,高值可达到35m3/t,低值则低于23m3/t,已采区11采区大部分区域等温吸附常数VL值高,大于32m3/t,其它采区VL值则分布不均。
     7、瓦斯含量与煤厚、瓦斯压力、镜质组含量、埋深、等温吸附常数VL、水分含量、惰质组含量成正相关;与20m砂岩比、40m砂岩比、比表面积、断层落差、灰分产率、Ro、大占砂岩厚度、构造复杂程度挥发分产率成负相关,瓦斯压力、比表面积、大占砂岩厚度的t统计量大于0.01显著性水平下的t临界值2.660;20m砂岩比、Ro、镜质组含量、水分含量和等温吸附常数VL的t统计量介于0.1显著性水平下的t临界值1.671和0.01显著性水平下的t临界值2.660之间;40m砂岩比、断层落差、煤厚、灰分产率、埋深、惰质组含量和构造复杂程度的t统计量小于0.1显著性水平下的t临界值1.671;t统计量检验说明瓦斯压力、比表面积、大占砂岩厚度、20m砂岩比、Ro、镜质组含量、水分含量和等温吸附常数VL8个自变量对瓦斯含量影响大,40m砂岩比、断层落差、煤厚、灰分产率、埋深、惰质组含量和构造复杂程度7个自变量对瓦斯含量影响相对较小。
     全区瓦斯含量值变化范围较大,可由3m3/t增加至16m3/t,瓦斯含量整体趋势由西北向东南逐渐增加,增加梯度大,瓦斯含量高值区出现在未采区的西南部,相对低值区主要位于未采区东北部大部分区域及中部部分区域,瓦斯含量小于10m3/t。
     8、瓦斯压力与煤厚、比表面积、瓦斯含量、埋深、大占砂岩厚度和构造复杂程度成正相关;与断层落差成负相关。埋深、大占砂岩厚度、比表面积的t统计量大于0.01显著性水平下的t临界值2.660;煤厚、瓦斯含量、构造复杂程度的t统计量介于0.1显著性水平下的t临界值1.671和0.01显著性水平下的t临界值2.660之间;断层落差的t统计量小于0.1显著性水平下的t临界值1.671;t统计量检验说明煤厚、比表面积、瓦斯含量、埋深、大占砂岩厚度和构造复杂程度6个自变量对瓦斯压力影响大,自变量断层落差对瓦斯压力影响相对较小。全区瓦斯压力整体由矿区西北部到东南部呈现先减小后增大的趋势,大致呈条带状,矿区东南部瓦斯压力高值区呈团块状,己采区高瓦斯压力区域主要位于14采区和16采区,瓦斯压力超过0.6MPa。
     9、瓦斯涌出量与瓦斯压力、瓦斯含量成正相关;与比表面积、等温吸附常数VL成负相关。瓦斯压力的t统计量大于0.01显著性水平下的t临界值2.660;瓦斯含量、比表面积的t统计量介于0.1显著性水平下的t临界值1.671和0.01显著性水平下的t临界值2.660之间;等温吸附常数VL的t统计量小于0.1显著性水平下的t临界值1.671;t统计量检验说明瓦斯压力、瓦斯含量、比表面积3个自变量对瓦斯涌出量影响大,等温吸附常数VL对瓦斯涌出量影响相对较小。矿区瓦斯涌出量整体呈现由东北到西南增加的趋势,局部区域分布具有非均质性。已采区高瓦斯涌出量主要位于12采、14采区和16采区,其它采区较小
     10、瓦斯涌出量主要受瓦斯压力的控制,瓦斯压力在本研究区内受埋深、大占砂岩厚度主导因素的控制,由此可以得出,在矿区内埋深对瓦斯涌出量起关键控制作用;该矿区构造不发育,瓦斯保存条件好,煤岩破碎,瓦斯渗流通道缺失,大占砂岩厚度在研究区没有起到逸散介质的作用,其厚度大小只起到增大瓦斯压力的作用。
     该矿区瓦斯涌出量与比表面积和最大吸附常数VL两参数呈负相关,但相关系数小,说明瓦斯压力和瓦斯含量影响了比表面积和最大吸附常数VL在该矿区对瓦斯涌出量的作用,因此,未采区开采二水平时,矿井瓦斯防治工作应重点放在分析瓦斯压力和瓦斯含量两个参数的特征及规律,未采区瓦斯防治指导方针应该从分析瓦斯压力着手,搞清未采区煤层的赋存情况。由于该区小构造主要发育在己采区的采掘工作面内,并不能说明未采区没有断层,只是未揭露,将来的瓦斯防治工作要做好提前探测小断层,分析其对瓦斯压力的控制作用,进一步指导瓦斯涌出量的预测工作。
     11、矿区张性小断层发育,使得煤大中孔增加,小微孔变化不大,游离气增加,吸附气减小,游离气体变化会影响瓦斯涌出量变化;另外,小断层可使次生孔隙增多,可使原有残留孔隙扩大,都将会引起瓦斯涌出量变大;小构造使煤的破坏程度变严重,连通性变差,瓦斯被封堵,当煤矿开采时,会引起瓦斯涌出量变大。
     12、矿区开放性小断层处应力释放,增大有效裂隙,瓦斯运移形成异地高瓦斯聚积区,此类断裂较远处瓦斯涌出量异常区;矿区小构造使煤显微组分混杂,渗透性变差,引起瓦斯涌出量的异常;矿区顶底板起伏,厚度变化非常大,厚煤带处裂隙网络连通性差,厚煤带易发生瓦斯涌出量的异常;开采过程应力集中带,裂隙受压闭合,渗透力降低,瓦斯涌出量变大;在卸压带内,裂隙张开及新裂隙的形成,渗透率提高,瓦斯涌出量变小。
     13、瓦斯含量越高,煤中吸附瓦斯多,含气饱和度高,瓦斯易解吸,瓦斯涌出量越高。新安煤矿二1煤层受走滑断裂控制,煤体破坏严重,储层渗透性降低,煤的吸附能力增加,沿着滑动构造形成糜棱煤带,有效地阻止了瓦斯的扩散,导致瓦斯涌出量变大;新安煤矿顶底板起伏引起的厚煤带更易生成裂隙,甲烷能得到充分的吸附和解吸,厚煤层处易出瓦斯涌出量异常。
     14、瓦斯的运移首先以扩散为主,扩散的主要动力是浓度差,浓度差主要由含气量决定,瓦斯含量越小,煤层厚度越大的地方,瓦斯向顶底板运移的路径越长,阻力越大,越有利于煤层瓦斯的富集,容易导致瓦斯涌出量的异常。
     15、矿区煤厚变化大,由厚变薄时,瓦斯压力减小,水平地应力增大,瓦斯涌出量异常;由薄变厚时,地应力水平分量指向巷道里端,瓦斯压力增大,瓦斯涌出量变大;矿区张性断层使孔隙压力减小,游离气体易进入此处,瓦斯压力变大,原裂隙扩展,与邻近岩层连通,气体不断移出,可在一定程度上使瓦斯涌出量变小;逆断层使煤层始终保持较高瓦斯压力,使有效应力减小,煤抵抗破坏能力增大,可在一定程度上使瓦斯涌出量变小。
After nearly30years' mining, seam in shallower areas(belonging to the first level), within Xin'an Coalmine, which is of high gas/coal-outburst mine for the principle coalseam-Ⅱ1Coal is tectonic coal, has been mined out. During mining down, gas emission increases dramatically, while the high heterogeneity in reservoir properties makes it more difficult to design new panel reasonably. However, available geology reports lack comprehensive analysis or researches on factors that control gas emission. Accordingly, it is more important to characterize and predict gas emission in deeper areas (belonging to the second level) on the base of reservoir heterogeneity for reasonable design.
     This thesis studied the Ⅱ1Coal in Xin'an mine, clarified relationship between gas-geology parameters(i.e. coal seam depth (D), seam thickness (T),20m-sandstone ratio (20m-SR),40m-sandstone ratio (40m-SR), ash content (A), moisture content (M), total sulfur (S) and tectonic indicator (TI) et al.) and reservoir parameters (including gas pressure (GP), ⅤL, gas content (GC) and fracture in seam), based on available drilling reports, field observation results and in-situ test data; constructed numerical model for gas emission prediction, combined with theories both Numerical Theory I and gas geology; and concluded how reservoir properties influence gas emission. The steps are as belows:
     1)screen out control factors for qualitative and quantitative research, including depth, thickness, floor lithology, ash content, moisture content, total sulfur, coal rank, maceral groups and tectonic indicator et al.;2) characterize each parameter for further analysis:observe fracture in coal under mine and microscope, measure fracture length and width, research micropores type and there connectivity, describe reservoir isothermal constants, permeability, gas content, specific surface and gas pressure by experiment and in-situ test;3) divide recovered area into smaller blocks, distribute every parameter selected to small grid, compare and screen the main control factors and establish multivariate function on gas emission and its influential factors;4) divide un-mined area into smaller blocks, distribute every parameter selected in step3to small grid, predict gas emission combined with function established in step3and factors characterized in step4. After analysis about reservoir properties influence on gas emission, it's concluded that:
     1) coal in this area has been strongly destroyed so the Protodyakonov's coefficient of coal in studied area is too low, between0.17to0.22, indicating low permeability of reservoir because coal fine is easy to block fracture which is the migration pathway;
     2) specific surface test results depict that there are both open and blind hole, while mainly blind hole; and observations under microscope confirm that micropore, which methane is desorbed on, is well developed;
     3) The values of isotherm constant a, b are a little bit large, which indicates coal has strong adsorption capacity. The desorption gas volume is low when the gas pressure declines from5MPa to1MPa, which depicts that gas cannot release from coal easily. When the gas pressure is lower than IMPa, the gas desorption rate ascends dramatically, and the coal and gas emission is more likely to happen, thus this pressure interval becomes the pretty significant part of gas prediction.
     4) The average permeability of target seam is0.42md. Coal in15061face and12201face individually have highest and lowest permeability which is0.57md and0.29md respectively.
     5) there is negative relationship between specific surface and fault displacement, coalseam depth and tectonic indicator, while positive relationship with coal rank (Ro), vitrinite content (VC), ash content (A), moisture content (M) and inertinite content (IC); significance test result indicate that the T-statistic of VC, D, M and TI is greater than the critical value (2.660) at0.01level; that of Ro, A, IC and fault displacement is greater than the critical value (1.671) at0.1level; This indicates that those parameters including VC, D, M and TI have significant influence on specific area, while Ro, A, IC and fault displacement have little effect on specific area. Specific area in the whole mine is lower in the middle part, while the higher value locates at13and16mining district, in which the specific value is greater than0.8m2/g, and the lower value lies in12district, where the specific value is0.4m2/g.
     6) The isothermal adsorption constant is proportional to the Ro, specific surface, vitrinite content, throw of the fault, burial depth, inertinite content and the tectonic complexity, while it is inversely proportional to ash content as well as water content, significance test result indicates that the T-statistic of D is greater than the critical value (2.660) at0.01level; that of VC and M is greater than the critical value (1.671) at0.1level; The T-statistics test illustrates that the burial depth, vitrinite content and water content are the3main independent variables that have profound effect to isothermal adsorption content(VL), whilst the influence of other6independent variables including Ro, specific surface, ash content, fault throw, inertinite content and the complexity of fault is quite inferior. In this paper, it has been predicted that the value of VL diffuses variably in the whole field with high heterogeneity and the maximum value might be35m3/t, while the minimum is only23m3/t. The value of VL in most area of the11panel could be as high as32m3/t, whereas in other panels, the VL is not constant.
     7) The gas content is proportional to coalbed thickness, gas pressure, vitrinite content, burial depth, isothermal adsorption constant(VL), water content and inertinite content, while the relationship between the gas content with the20m sandstone ratio,40m sandstone ratio, specific surface, the throw of fault, ash content, Ro, Dazhan sandstone thickness, the tectonic complexity is inversely proportional, significance test result indicate that the T-statistic of GP, specific surface, and Dazhan Sandstone (DS) is greater than the critical value (2.660) at0.01level; that of20m-SR, Ro, A, D, M and VL is greater than the critical value (1.671) at0.1level; that of40m-SR, fault displacement, T, A, D, IC and TI is greater than the critical value (1.671) at0.1level; The T-statistics test indicates that the8main factors (gas pressure, specific surface, the thickness of Dazhan sandstone,20m sandstone ratio, Ro, vitrinite content, water content, VL) are more likely to affect gas content than other7independent variables(40m sand stone ratio, fault throw, coalbed thickness, ash content, burial depth, inertinite content and tectonic complexity).
     Gas content in the whole field changes dramatically, ranging from3m3/t to16m3/t. From the northwest to the southeast of the field, gas content increase gradually, with a high gradient. Gas content is high in the southwest of the unmined area, while relatively low in northeast as well as partial area in the middle, with gas content less than10m3/t.
     8) Gas pressure is proportional to the coalbed thickness, specific surface, gas content, burial depth, Dazhan sandstone thickness and tectonic complexity, while is inversely proportional to the throw of faults, significance test result indicate that the T-statistic of D, DS, and specific surface is greater than the critical value (2.660) at0.01level; that of T, GC and TI is greater than the critical value (1.671) at0.1level; that of fault displacement is greater than the critical value (1.671) at0.1level; The T-statistics test demonstrates that the coalbed thickness, specific surface, burial depth, Dazhan sandstone thickness and tectonic complexity influence the gas pressure to some great extent, while the effect of fault throw on the gas pressure is not that apparent.
     9) The gas emission is proportional to gas content as well as gas pressure, which is inverse with the relationship between the gas emission and specific surface and VL. significance test result indicate that the T-statistic of GP and GC is greater than the critical value (2.660) at0.01level; that of VL is greater than the critical value (1.671) at0.1level; The T-statistics test shows that the gas pressure, gas content and specific surface have large effect on gas emission while the effect of VL is small. Gas emission shows an upward trend from northeast to southwest, and distributes heterogeneously in some areas. Gas emission tends to be quite higher in12panel,14panel,16panel than in others.
     10) Gas emission is primarily controlled by gas pressure which is dominantly influenced by burial depth and Dazhan sandstone thickness. Therefore, coalbed burial depth is the most critical factor which controls the gas emission. Due to the low level of tectonic degree, the gas was preserved quite well in the coalbed, and the fragile coal contributes to the lack of gas flowing path, In this study area, Dazhan sandstone prefer to make the gas pressure increase rather than make the gas escape.
     There is an unconspicuous negative relationship between gas emission and specific surface&Langmuir volume which indicates gas pressure and gas content weaken the effect of specific surface and Langmuir volume on gas emission. The above analysis provides evidence from the other side that the characters of gas pressure and gas content should be the two key parameter for gas prevention in non-mining areas. In order to give effective gas prevention rules in non-mining areas, gas pressure analysis for non-mining areas should be put on the first place. At present, there are only minor structures found in extracting face in known areas, however it does not mean there is no fault in unknown areas. Detecting minor faults, investigating the effect of faults on gas pressure and predicting gas emission based on relationship between faults and gas pressure should be the first job for further gas emission prevention.
引文
[1]张广洋,胡耀华,姜德义.煤的瓦斯渗透性影响因素的探讨.重庆大学学报(自然科学版),1995,18(3):27-30.
    [2]于不凡.煤与瓦斯突出机理.北京:煤炭工业出版社,1985:164-168.
    [3]瑞群,叶宗之.预抽煤层瓦斯防止突出问题的探讨.煤矿安全,1978,5:119-126.
    [4]刘玄恭.预防煤与瓦斯突出的区域性措施的原理和应用.煤炭学报,1989,9:1-9.
    [5]余申翰.煤层内瓦斯赋存状态.煤炭学报,1981,2:1-4.
    [6]郭德勇,韩德馨,冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究.煤田地质与勘,1998,26(4):31-34.
    [7]Bodden W.R., Ehrlich R.. Permeability of coals and characteristics of desorption tests: Implications for coalbed methane production. International Journal of Coal Gology,1998,35: 333-347.
    [8]Mavor, M.J.. Expert Opinion of Matthew J. Mavor Concerning Coalbed Methane Reservoir Behavior. Technology Report,2006,23.
    [9]Mavor, M.J., Gunter, W.D.. Secondary Porosity and Permeability of Coal vs. Gas Composition and Pressure. SPE Reservoir Evaluation & Engineering,2006:114-125.
    [10]Gunter, W.D., Mavor, M.J.. Process for Predicting Porosity and Permeability of a Coalbed. United States Patent No.6,860,147,2005.
    [11]Byrnes A.P.. Reservoir Characteristics of Low-Permeability Sandstones in the Rocky Mountains. The Mountain Geologist,1997,34(1):39-51.
    [12]李晓泉,尹光志.不同性质煤的微观特性及渗透特性对比试验研究.岩石力学与工程学报,2011,30(3):500-508.
    [13]张国华,梁冰.煤岩渗透率与煤与瓦斯突出关系理论探讨.辽宁工程技术大学学报.2002,21(4):414-417.
    [14]张天军,李树刚,陈占清.突出矿煤岩微孔隙特征及其渗透特性.西安科技大学学报,2008,28(2):310-313.
    [15]谭学术,鲜学福,张广洋等.煤的渗透性研究,西安矿业学院学报,1994,1,22-25.
    [16]孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999.
    [17]李世平.岩石全程应力应变过程对应的渗透率一应变方程.岩土工程学报,1995,3:13-19.
    [18]杨永杰,宋扬,陈绍杰.煤岩全应力应变过程渗透性特征试验研究.岩土力学,2007,28(2):381-385.
    [19]孙明贵,黄先伍,李天珍等.石灰岩应力一应变全过程的非Darcy流渗透特性.岩石力学与工程学报,2006,25(3):484-491.
    [20]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究.岩土工程学报纸,2001,23(1): 68-70.
    [21]胡耀青,赵阳升,魏锦平等.三维应力作用下煤体瓦斯渗透规律实验研究.西安科技学院学报,1996,16(4):308-311.
    [22]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [23]候三中,刘德民,李金岭.掘进工作面煤层渗透率变化对瓦斯涌出量的影响分析.矿业安全与环保,2010,37(5):1-10.
    [24]陈瑞君,王东安.南桐矿区煤的微孔隙与瓦斯储集、运移关系.煤田地质与勘探,1995,23(2):29-31.
    [25]梁红侠,陈萍,童柳华等.淮南煤田深部煤的孔隙特征及其意义.中国煤炭地质,2010,22(6):5-8.
    [26]Brooks R.H., Corey, A.T.. Properties of Porous Media Affecting Fluid Flow. Proc, J. Irrigation & Drainage Div., ASCE,1966,2.
    [27]Koval, E., Pope, J.. Seeing a reservoir's character from solution gas. Raman spectroscopy provides early insight into Wyoming coal bed reservoir heterogeneity. World Oil,2006:144-146.
    [28]Iva'n Dimitri Marroqun, Bruce, S. Hart. Seismic attribute-based characterization of coalbed methane reservoirs:An example from the Fruitland Formation, San Juan basin, New Mexico. AAPG Bulletin,2004,88:1603-1621.
    [29]屈争辉.构造煤结构及其对瓦斯特性的控制机理研究.煤炭学报,2011,36(3):534-535.
    [30]张天军,李树刚,陈占清.突出矿煤岩微孔隙特征及其渗透特性.西安科技大学学报,2008,28(2):310-313.
    [31]朱连山等.突出危险煤层与非突出危险煤层比表面积测定.煤与瓦斯突出机理和预测预报论文集,1983,50.
    [32]罗志明.煤比表面和煤与瓦斯突出关系的研究.煤炭学报.1989,1:44-54.
    [33]胡广青,姜波,陈飞等.不同类型构造煤特性及其对瓦斯突出的控制研究.煤炭科学技术,2012,40(2):111-115.
    [34]徐龙君,鲜学福,刘成伦等.突出区煤吸附甲烷特性的差异.煤炭转化,1998,21(4):44-47.
    [35]Faiz M.M., Cook A.C.. Influence of coal type, rank and depth on the gas retention capacity of coals in the southern coalfield, NSW. Bamberry W.J., Depers A.M.. Gas in Australian Coals. Sydney:Geol. Soc. of Aust.,1991:19-29.
    [36]PRINZD, PYCIaHOUT-HINTZENW, LITTIaER. Development of the meso-and macro-porous struchme of coals with rank as analyzed with small angle neutron scattering and adsorption experiments. Fuel,2004,83(4/5):547-556.
    [37]CLARSON C R, BUSTIN B M. Binary gas adsorption/desorption isotbenn:effect of moishme and coal composition upon carbon dioxide selectivity over methane. International Journal of Coal Geology,2000,42(4):241-271.
    [38]LAXABNARA C H, CROSDAE P J. Role of coal type and rank on methane sorption characteristics of Bower Basin, Australia coals. International Journal of Coal Geology,1999,40(4): 309-325.
    [39]Bustin R.M., Qarkson C.R.. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of oal Geology,1998,38:3-26.
    [40]Scott, S., Anderson, B., Crosdale, P.. Coal Petrology and coal seam gas contents of the Walloon Subgroup-Surat Basin, Queensland, Australia. International Journal of Coal Geology, 2007,70:209-222.
    [41]Hemza, P., Sivek, M., Jira'sek, J.. Factors influencing the methane content of coal beds of the Czech part of the Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology,2009,79:29-39;
    [42]Clarkson, C.R., Bustin, R.M.. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology,1998,38:3-26;
    [43]Mastalerz, M., Drobniak, A., Stripo, D. et al.. Variations in pore characteristics in high volatile bituminous coals:Implications for coal bed gas content. International Journal of Coal Geology, 2008,76:205-216.
    [44]Lamarre, R.A., Pope, J.. Critical-gas-content technology provides coalbed methane reservoir data. Journal of Petroleum Technology,2007,59:108-113.
    [45]王少丰.煤层巷道瓦斯动态涌出与瓦斯压力藕合关系的研究.现代矿业,2012,9:127-130.
    [46]高建良,候三中.掘进工作面动态瓦斯压力分布及涌出规律.煤炭学报,2007,32(11):1127-1131.
    [47]Puri, R., Volz, R.F.. Temporary Storage of Natural Gas in Coal Wells, paper 9385. Proceedings of the 1993 International Coalbed Methane Symposium. The University of Alabama/ Tuscaloosa,1993, May 17-21.
    [48]Mavor, M. J., Close J.c.. Formation Evaluation of Exploration Coalbed-Methane Wells, paper SPE 21589, presented the SPE/CIM Joint Intl. Technical Meeting held in Calgary,1990, June 10-13.
    [49]Mavor, M.J., Close J.C., McBane R.A.. Formation Evaluation of Exploration Coalbed Methane Wells. Coalbed Methane, Reprint Series, SPE, Richardson, TX,1992,35(27).
    [50]Wei, C., Qin, Y., Wang, G.X. et al.. Simulation study on evolution of coalbed methane reservoir in Qinshui basin, China. International Journal of Coal Geology,2007,72(1):53-69.
    [51]Su, X., Lin, X., Liu, S. et al.. The Classification and Model of Coalbed Methane Reservoir. Acta Geologica Sinica,2004,78(3):662-666.
    [52]张了戌,袁崇孚.瓦斯地质数学模型法预测矿井瓦斯涌出量研究.煤炭学报,1999,24,4:368-372.
    [53]王兆丰.矿井瓦斯涌出量分源预测法及其应用.煤矿安全,1991:8-13.
    [54]袁东升,郝天轩.二维灰趋势面分析法在瓦斯涌出量预测中的应用.中州煤炭,2004,127(1):44-45.
    [55]哀东升,杨运良,孙方川.二维灰趋势面分析法在瓦斯涌出量预测中应用.辽宁工程技 术大学学报,2003,22(4):478-479.
    [56]张克树,苏利波.趋势面分析法在瓦斯涌出量预测中的应用.焦作矿业学院学报,1995,14(2):89-95.
    [57]夏红春,程远平,李顺峰.基于最小二乘法的矿井深部区域瓦斯涌出量预测.矿业安全与环保,2002,29(4):13-16.
    [58]陈富勇.数值分析在矿井未开采区瓦斯涌出量预测中的应用.矿业安全与环保,2004,31(1):44-45.
    [59]C. Ozgen Karacan. Development and application of reservoir models and artificial neural networks for optimizing ventilation air requirements in development mining of coal seams.
    [60]CO. Karacan, W.P. Diamond, S. J. Schatzel & F. Garcia et al. Development and application of reservoir models for the evaluation and optimization of longwall methane control systems.
    [61]C.O. Karacan, J.P. Ulery, G.V.R. Goodman. A numerical evaluation on the effects of impermeable faults on degasification efficiency and methane emissions during underground coal mining. International Journal of Coal Geology,2008,75:195-203.
    [62]钟勇,吴则芳.矿井瓦斯涌出量预测的模糊分形神经网络研究.煤炭科学技术,2004,32(2):62-65.
    [63]刘新喜,木合塔尔扎日,土鹏飞等.基于BP人工神经网络的矿井瓦斯涌出量预测.安全与环境工程,2002,9(1):34-36.
    [64]朱川曲.采煤工作面瓦斯涌出量预测的神经网络模型.中国安全科学学报,1999,9(2):42-45.
    [65]熊永强,刘新喜,廖巍等.基于人工神经网络的工作面煤与瓦斯突出预侧方法.安全与环境工程,2002,9(4):27-29.
    [66]袁曾任.人工神经元网络及其应用[M].清华大学出版社,1999:66-121.
    [67]楼顺天等.基于MATLAB中系统分析与设计一神经网络[M].西安:西安电子科技大学出版社,1999:9-143.
    [68]邵良杉,杨善元.工程造价估算模型的发展及神经网络估算模型.煤炭报,1996,21(2):134-138.
    [69]高洪深,陶有德.BP神经网络模型的改进.系统工程理论与实践,1996,16(1):67-71.
    [70]赵朝义,袁修干,孙金镖.遗传规划在采煤工作面瓦斯涌出量预测中的应用.应用基础与工程科学学报,1999,7(4):387-392.
    [71]张军,孙炳兴,梁运培等.工作面瓦斯涌出量预测数值模拟方法应用.煤炭安全,2007,03:15-17:
    [72]李曲,蔡之华,朱莉等.基因表达式程序设计方法在采煤工作面瓦斯涌出量预测中的应用.应用基础与工程科学学报,2004,12(1):49-54.
    [73]施式亮,伍爱友.GM(1,1)模型与线性回归组合方法在矿井瓦斯涌出量预测中的应用.煤炭学报,2008,33(04):415-418.
    [74]谢生荣,赵耀江等.综采工作面的瓦斯涌出规律及涌出量的预测.太原理工大学学报,2005,36(5):554-556.
    [75]戴广龙,储方健等.综采放顶煤工作面瓦斯涌出规律的分析.煤矿安全,2005,36(8):55-57.
    [76]俞启香,王凯,杨胜.中国采煤工作面瓦斯涌出规律及其控制研究.中国矿业大学学报,2000,29(1):09-14.
    [77]张瑞林,刘晓,郑立军.基于灰色动态建模的瓦斯涌出量预测方法研究.中国矿业,2006,15(12):110-112.
    [78]伍爱友,田云丽,宋译等.灰色系统理论在矿井瓦斯涌出量预测中的应用.煤炭学报,2005,30(5):589-592.
    [79]刘新喜,赵云胜.用灰色建模法预测矿井瓦斯涌出量.中国安全科学学报,2000,10(4):51-54.
    [80]T. Xu, C.A. Tang, T.H. Yang. Numerical investigation of coal and gas outbursts in underground collieries. International Journal of Rock Mechanics & Mining Sciences,2006,43: 905-919.
    [81]潘结南,陈江峰.R/S分析及矿井瓦斯涌出量的分形预测.煤田地质与勘探,2001,29(3):14-15.
    [82]姚晋宝.新集一矿煤储层特征及煤层气资源评价.安徽理工大学硕士学位论文,2012.
    [83]Thomas Gentzis, Dale Bolen. The use of numerical simulation in predicting coalbed methane producibility from the Gates coals, Alberta Inner Foothills, Canada:Comparison with Mannville coal CBM production in the Alberta Syncline. International Journal of Coal Geology,2008,74: 215-236.
    [84]刘英学.矿井瓦斯涌出量预测方法的研究.湘潭矿业学院学报,1995,10(03):9-13.
    [85]牛森营.豫西煤厚变化控制煤与瓦斯突出的机理分析,煤矿安全,2011,7:127-128.
    [86]邵强,王恩营,王红卫等.构造煤分布规律对煤与瓦斯突出的控制.煤炭学,2010,35(2):250-254.
    [87]米利华.新安煤田中东部二1煤层厚度变化原因探讨.能源技术与管理,2012,4:33-35.
    [88]陈龙.新安煤矿二1煤层构造软煤厚度及分布特征.中州煤炭,2008,4:31-33.
    [89]潘少杰.新安煤田瓦斯赋存规律与突出区域预测指标研究.河南理工大学硕士学位论文,2010.
    [90]魏建平,温志辉,陈永超.新安煤田煤与瓦斯突出特征及控制因素分析.河南理工大学学报(自然科学版),2007,26(6):613-617.
    [91]雷振亚,郭元欣.新安煤矿二1煤层瓦斯赋存特征浅析.煤矿现代化,2004,5:42-44.
    [92]赵发军,李波,魏建平等.新安矿煤与瓦斯突出规律及主控因素分析.现代矿业,2010,3:119-122.
    [93]罗锐,李宏伟,陈江峰.新安煤田煤层气地质特征研究.煤炭技术,2008,27(2):125-127.
    [94]朱德胜,朱立杰.新安煤田二1煤层地质特征.中州煤炭,2009,11:36-37.
    [95]中国煤炭志编纂委员会,中国煤炭志:河南卷[M].北京:煤炭工业出版社,1996:121-122.
    [96]Close J.C. Natural fractlure in coal In Hydrocarbons from coal [J].Law B.E. and Rice D.D eds AAPG,1993,38:119-132.
    [97]Gam son P, Beamish B. Johnson David Effect of coal microstructure and secondary mineralization on methane recorvey [J].Geological Special Publication,1998,199,165-179.
    [98]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003:19-31.
    [99]陶云奇,许江,程明俊等.含瓦斯煤渗透率理论分析与试验研究.岩石力学与工程学报,2009.28.
    [100]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展.地质科技情报,1995,14(1):53-59.
    [101]高红梅,梁冰,兰永伟.煤的渗透率与应变变化关系的实验研究.中国科学技术大学学报,2004,34(增刊):417-422.
    [102]姜德义.有效应力对煤层气渗透率影响的研究.重庆大学学报,1997,20(5):22-26.
    [103]孙培德.三轴应力作用下煤的渗透率变化规律的实验.重庆大学学报,2000,23(增):29-31.
    [104]孙培德.变形过程中煤样渗透率变化规律的实验研究.岩石力学与工程学报,2001,20(增刊):1801-1804.
    [105]梁冰.煤和瓦斯突出固流偶合失稳理论[M].北京:地质出版社,2000.
    [106]Somerton, W.H.. Effect of Stress on Permeability of Coal. Int.J Rock Mech Min Sci,1974, 12:129-145.
    [107]罗新荣.煤层瓦斯运移物理与数值模拟分析.煤炭学报,1992,17(2):49-55.
    [108]张广洋.煤层瓦斯运移的数学模型.重庆大学学报,1994,17(4):53-57.
    [109]Luke D.C., Zhejun Pan, Meng Lu. Coal permeability and its behavior with gas desorption, pressure and stress. SPE 133915.pp.1-9.
    [110]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素.煤炭学报,1999,24(2):118-122.
    [111]张虹,胥菊珍,杨宏斌等.华北地区煤储层渗透率的外在影响因素分析.大庆石油地质与开发,2002,21(3):18-21.
    [112]傅雪海,秦勇,李贵中.沁水盆地中—南部煤储层渗透率主控因素分析.煤田地质与勘探,2001,29(3):16-19.
    [113]De Boer J.H.. The shape of capillaries. In:Everett D.H, Stone F. S. eds The structure and properties of porous materials London:Butteiworth,1958, pp.68.
    [114]Gregg, S.J., Sing, K.S.. Adsorption, surface, area and porosity (second edition). New York: Academic Press Tnc,1982:32-150,290-330.
    [115]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报,2001,26(6):552-556.
    [116]刘洪林.王红岩煤层气吸附时间计算及其影响因素分析.石油实验地质,2000,22(4):365-367.
    [117]骆祖江.付延玲煤层气解吸时间的确定.煤田地质与勘探,1999,27(4):28-29.
    [118]李小彦.解光新煤储层吸附时间特征及影响因素.天然气地球科学,2003,14(6): 502-504.
    [119]梁红侠,陈萍,童柳华等.淮南煤田深部煤的孔隙特征及其意义.中国煤炭地质,2010,22(6):5-8.
    [120]石彪,林晓英,郭红玉.上覆地层对煤层气含量的控制机理.中国煤田地质,2007,19(4): 31-33.
    [121]刘新荣,姜德义,鲜学福等.矿井煤层瓦斯涌出量及其与煤质关系.煤炭科学技术,2000,28(10):27-30.
    [122]Ettinger, I.L.. Methane saturation of coal strata as methane-coal solid solution. Journal of Mining Scicncc,1990,26(2):159-161.
    [123]Ettinger, I.L.. Diffusion field in coal stratum. Journal of Mining Science,1991,27 (4): 368-370.
    [124]Pashin, J.C., Groshong Jr, R.H.. Structural control of coalbed methane production in Alabama. International Journal of Coal Geology,1998,38:89-113.
    [125]Groshong Jr, R.H., Pashin, J.C., McIntyre,M.R.. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin. International Journal of Coal Geology,2008,31:874-886.
    [126]Yunxing Cao, Dingdong He, David C. Glick.. Coal and gas outbursts in footwalls of reverse faults. International Journal of Coal Geology,2001,48:47-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700