用户名: 密码: 验证码:
三江—穆棱河含煤区煤层气富集规律及开发潜力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三江-穆棱河含煤层区煤层气资源量丰富,是中国低阶煤层气开发的前景区之一。但由于构造演化复杂、含煤层系沉积环境多变、煤层层数较多、煤层厚度较薄且不稳定,导致煤层气富集成藏及控制机理难以准确把握,为寻找煤层气勘探开发区增加了难度。本文以4个主要含煤盆地(鹤岗、鸡西、虎林和勃利)和1个拗陷(绥滨)为例,研究了含煤区地质条件、含煤层系沉积环境、煤储层发育特征以及煤层气富集规律,为煤层气资源评价及有利区优选提供依据。主要成果和认识如下:
     (1)研究区经历了多期构造升、降作用。在城子河组时期,勃利、鸡西盆地和绥滨拗陷均经历了较大强度的断陷作用,沉积了巨厚的含煤沉积建造。虎林盆地在古近纪再次拉张裂陷,发育了巨厚的含煤地层。在城子河组时期,绥滨拗陷主要为湖泊相沉积环境,有利聚煤带位于三角洲前缘和滨浅湖相;勃利盆地主要以河流和河控三角洲聚煤为主;鸡西盆地主体环境为三角洲平原和河流洪泛平原沉积,有利于成煤。古近系虎林组是虎林盆地主要含煤地层,其沉积环境为河流相和湖泊相。
     (2)采用压汞法、低温氮法、等温吸附测试、显微组分和显微裂隙统计分析等实验研究了含煤区煤储层物性特征。结果表明:①煤岩显微组分以镜质组为主(34.0-95.1%),其次为惰质组(0.6-62.7%)以及少量的壳质组(0.7-18.2%)。②煤岩以微小孔为主(平均55.9%),大孔和中孔含量中等(平均22.3%和21.8%)。其中,微孔比小孔含量高,两者比值为0.4-4.2(平均1.9),孔隙结构以墨水瓶状和平板状为主。③煤中显微裂隙以C型和D型为主,B型较少,几乎不含A型裂隙。④区内煤的兰氏体积普遍较高,空气干燥基范围为14.32-21.79m3/t,平均达17.18m~3/t。
     (3)根据18块煤样品压汞曲线特征,定量标定了进汞曲线的4个“转折端”,发现四个转折端分别对应反映了煤中不同尺度的孔裂隙(即:微小孔、中孔、大孔和裂隙)。引入分形几何理论方法,定量计算了各个孔隙阶段的煤的分形维数。分析表明,自相似理论印证了4类孔-裂隙的存在。通过研究实现了不同级别孔裂隙的分段定量表征,初步确立了应用压汞曲线定量评价煤储层有利开发类型的方法。
     (4)采用低场核磁共振和CT无损检测技术,精细定量表征了煤的孔-裂隙结构特征。采用低场核磁共振方法计算了煤的总孔隙度、有效(可动流体)孔隙度和渗透率。首次开展了变温条件下的低场核磁共振实验,结果表明煤的孔隙结构受温度的影响,同一煤样在不同温度下的核磁共振T_2谱形态发生变化;而且不同煤阶煤具有不同的变化特征。利用CT无损检测分析技术定量分析了煤的孔裂隙发育、矿物质分布,并计算了煤的面孔隙率和矿物质含量。
     (5)研究区中新生代含煤盆地以气煤—瘦煤为主,变质程度相对偏高,仍以寻找热成因煤层气为主,生物成因气为辅。对于热成因气来讲,由于研究区经历了多期断陷作用,煤层气后期逸散严重,因此煤层气有利区主要分布于煤层较厚、顶板具备有效封盖层且具备有效的构造或水力封堵的区域。
     (6)在上述研究的基础上,优选了构造分区、煤级、沉积相、煤层累积厚度、含气量、埋深和渗透率七个主要地质因素,采用多层次模糊数学评价理论,在地理信息系统平台下,对五个重点含煤盆地的的煤层气有利区进行了评价。结果表明,煤层气有利目标区主要包括鸡西盆地的鸡东拗陷南部和鹤岗盆地的南山、峻德地区。采用容积法计算了各个盆地内的煤层气资源量和资源丰度,为该区煤层气的后续勘探开发提供了有利依据。
Sanjiang-Mulinghe coal-bearing zone is rich in coalbed methane (CBM) resource, and isone of the most prospective low-rank CBM development districts in China. However, it isdifficult to ascertain CBM enrichment and its geological controls due to complicated tectonicevolution, various depositional environments of the coal-bearing strata, multiple and thin coalseams in the zone. In this paper,4basins (Hegang, Jixi, Hulin and Boli) and1depression(Suibin) were studied on geological setting, depositional environment, coal reservoir propertyand CBM enrichment. They were also evaluated comprehensively for favorable CBMdevelopment district. Results are as follows.
     (1) The study area underwent multiple tectonic uplift and subsidence. At ChengziheFormation stage, Boli and Jixi basins and Suibin depression underwent intensely tectonicsubsidence leading to the deposition of thick coal-bearing sedimentary system. In Hulin basin,thick coal-bearing strata were formed resulting from the Paleogene taphrogeny. At ChengziheFormation stage, the depositional environment is dominated by lacustrine facies in Suibindepression. Favorable coal-accumulation zone is located at delta front and shore-shallow lakeenvironment. Coal-accumulated environment is mainly composed of fluvial facies andfluvial-dominated delta in Boli basin, while delta plain and fluvial alluvial plain in Jixi basin.For Hulin basin, Paleogene Hulin Formation is the main coal-bearing strata, and itsdepositional environments are dominated by fluvial facies and lacustrine facies.
     (2) Many methods (mercury porosimetry, low-temperature N2, nuclear magneticresonance, X-CT, isothermal adsorption, proximate and ultimate analyses, etc.) were used forinvestigating coal reservoir physical properties. Results show that:(a) Coal macerals arecomposed of abundant vitrinite (34.0-95.1%), moderate inertinite (0.6-62.7%) and a few ofexinite (0.7-18.2%);(b) Coal pores are mainly dominated by micropore (mean55.9%),secondly by mesopore and macrpore (mean22.3%and21.8%). Volume content is higher forthe micropores (<10nm, in diameter) than that for the micropores with a diameter of10-100nm. Additionally, structural morphology of micropores is usually like ink-bottle andparallel-plate;(c) Types C and D are main microfractures in coals, while Type A is notexistent in coals;(d) Langmuir volume is relatively high in the zone ranging from14.32to21.79m3/t (mean17.18m3/t, in air-drying basis).
     (3) Based on mercury porosimetry analyses of18coal samples, micro-, meso-,macropores and fractures were distinguished by the4“turning points” of mercury intrusioncurves. The method was verified by the fractal geometry theory used for calculating fractal dimensions of differently sized pore-fractures. Thus, the pore-fractures of coals werecharacterizated quantitively by mercury intrusion curves. Furthermore, concerning CBMexploitation, a new method evaluating favorable coal reservoirs was established by usingmercury porosimetry based on achievements above.
     (4) The pore-fractures of coals were studied by low-field nuclear magnetic resonance(NMR) and CT techniques in this paper. The porosity, effective porosity (mobile fluid) andpermeability of coals were evaluated by using NMR technique. T_2spectral distribution ofcoal will change resulting from the change of pore structure with increasing temperature. Thechange is different for coals with different rank. Coal pore-fractures and mineral matterdistribution can be quantitively analyzed by CT technique. Based on that, planar porosity andmineral matter content of coals were evaluated.
     (5) In the study area, the Mesozoic-Cenozoic coals are characterized by gas-lean coalswith relatively high metamorphic grade. Coalbed methane is mainly thermogenic, secondlybiogenic. However, thermogenic methane scattered and escaped seriously during multipletaphrogeny in the study area. Thus, favorable CBM development districts are alwayscharacterized by thick coalbed, good sealing-capping of roof and effective tectonic orhydrodynamic sealing.
     (6) Based on above-mentioned achievements, geological structure, coal rank, sedimentaryfacies, accumulated coal thickness, gas content, burial depth and permeability were selectedfor evaluating favorable CBM development districts by combining fuzzy mathematic theorywith GIS software on five primary coal-bearing basins. Results show that favorable districtsprimarily locate at southern Jidong depression, and Nanshan and Junde mines in Hegangbasin. Additionally, CBM resource and its abundance were calculated using volumetricmethod, which providing the foundation of the exploration and development of CBM.
引文
Al-Mahrooqi S. H., Grattoni C. A., Moss A. K., et al. An investigation of the effect of wettability on NMRcharacteristics of sandstone rock and fluid systems. Journal of Petroleum Science and Engineering,2003,39,389-398.
    Antonio C. B. Ramos等著,朱海龙译.在煤层甲烷储层中应用三维AVO分析和模拟作裂缝探测.石油物探译丛,1998,6:59-72.
    Arnold J., Clauser C., Pechnig R., et al. Porosity and permeability from mobile NMR core-scanning.Petrophysics,2006,47:306-314.
    Cary P. W., Eaton D. W. S., A simple method for resolving large converted-wave (P-SV) statics.Geophysics,1993,58(3):429-433.
    Coates G. R., Xiao L. Z., Prammer M. G. NMR Logging Principles&Applications. Houston: GulfPublishing Company,1999.
    Gayer R. and Harris L. Coalbed methane and coal geology [M]. London: Geological Socity,1996:1-38.
    Gray D. Seismic Anisotropy in Coal Beds. CSPG-CSEG-CWLS Convention,2006:519-524.
    Hall S. A., Kendall M. J. Fracture characterization at Valhall: application of P-wave amplitude variationwith offset and azimuth (AVOA) analysis to a3D ocean-bottom data set. Geophysics,2003,68(4):1150-1160.
    Hodgkins M. A., Howard J. J. Application of NMR logging to reservoir characterization of low-resistivitysands in the gulf of Mexico. AAPG Bulletin,1999,83:114-127.
    Johnson W. E. Direct detection of gas in pre-Tertiary sediments. The Leading Edge,1995,14(2):119-122.
    Jones J. M., Pourkashanian M., Rena C. D., et al. Modelling the relation of coal structure to char porosity.Fuel,1999,78(14):1737-1744.
    Karacan C. O. Swelling-induced volumetric strains internal to a stressed coal associated with CO2sorption.International Journal of Coal Geology,2007,72:209-220.
    Karl-Heinz A. A. W. Frank van Bergen, Ephraim R et al. Determination of the cleat angle distribution ofthe RECOPOL coal seams, using CT-scans and image analysis on drilling cuttings and coal blocks.International Journal of Coal Geology,2008,73:259-272.
    Kevin M., Douglas M., Smith A. NMR technique for the analysis of pore structure: numerical inversion ofrelaxation measurements. Journal of Colloid and Interface Science,1987,19(1):117-126.
    Kleinberg R. L. Utility of NMR T2distributions, connection with capillary pressure, clay effect, anddetermination of the surface relaxivity parameter ρ2. Magnetic Resonance Imaging,1996,14:761-767.
    Liu D. M., Yao Y. B., Tang D. Z., et al., Coal reservoir characteristics and coalbed methane resourceassessment in Huainan and Huaibei coal-fields, Southern North China. International Journal of CoalGeology,2009,79:97-112.
    Lynn H. B., Simon K. M. Azimuthal anisotropy in P-wave3D multiazimuth data. The Leading Edge,1996,15(8):923-928.
    Mark P. H. and Robert R. S. Post stack migration of P-SV seismic data, Geophysics,1993,58(8):1127-1135.
    Mazumder S., Wolf K. H. A. A., Elewaut K., et al. Application of X-ray computed tomography foranalyzing cleat spacing and cleat aperture in coal samples. International Journal of Coal Geology,2006,68:205-222.
    Prinz D., Pyckhout H. W., Littke R. Development of the meso-and macroporous structure of coals withrank as analysed with small angle neutron scattering and adsorption experiments. Fuel,2004,83(4/5):547-556.
    Sedgwick G. E., Miles2dixon E. Application of X-ray imaging techniques to oil sands experiments. JCPT,1988,27(2):104-110.
    Shen F., Sierra J., Burns D. R., etal. Azimuthal offset-dependent attributes applied to fracture detection in acarbonate reservoir. Geophysics,2002,67(2):355-364.
    Shevkoplyas V. N. and Saranchuk V. I. The impregnation effect on low and middle rank coals structurereorganization and their behavior during pyrolysis. Fuel,2000,79(5):557-565.
    Soto-Acosta W., Schimmelmann A., Mastalerz M., et al. Diagenetic mineralization in Pennsylvanian coalsfrom Indiana, USA:13C/12C and18O/16O implications for cleat origin and coalbed methane generation.International Journal of Coal Geology,2008,73,(3-4):219-236.
    Straley C., Rossini D., Vinegar H., et al. Core analysis by low field NMR. The Log Analyst,1997,38:84-93.
    Sun W., Qu Z., Tang G. Characterization of water injection in low permeability rock using sandstone micromobles. Journal of Petroleum Technology,2004,56(5):71-72.
    Timur A. Nuclear magnetic resonance study of carbonates rocks, The Log Analyst,1972,13:3–11.
    Timur A. Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability ofsandstones. Journal of Petroleum Technology,1969,21(6):775-786.
    Wang S. Y. Reconstruction of oil saturation distribution histories during immiscible liquid2liquiddisplacement by computer-assisted tomography. AIChE Jour,1984,30(4):642-646.
    Wertz D. L. and Bissell M. One-dimensional description of the average polycyclic aromatic unit inPocahontas No.3coal: an X-ray scatting study. Fuel,1995,74(10):1431-1435.
    Westphal H., Surholt I., Kiesl C., et al. Nmur measurement in carbonate rocks: problems and an approachto solution. Pure and Applied Geophysics,2005,162:549-570.
    Wójtowicz M. A., Pels J. R., Moulijn J. A. The fate of nitrogen functionalities in coal during pyrolysis andcombustion. Fuel,1995,74(4):507-516.
    Yao Y. B., Liu D. M., Cai Y. D., et al. Advanced characterization of pores and fractures in coals by nuclearmagnetic resonance and X-ray computed tomography. Science China: Earth Sciences,2010a.53(6):854-862.
    Yao Y. B., Liu D. M., Che Y., et al. Petrophysical characterization of coals by low-field nuclear magneticresonance (NMR). Fuel,2010b,89(7):1371-1380.
    Yao Y. B., Liu D. M., Tang D. Z., et al. A comprehensive model for evaluating coalbed methane reservoirsin China. Acta Geologica Sinica,2008,82(6):1253-1270.
    Yao Y. B., Liu D.M., Tang D. Z., et al. Coal reservoir characteristics and favorable zones of coalbedmethane from the Weibei coalfield, Southeastern Ordos basin, China. International Journal of CoalGeology,2009,78:1-15.
    Yao, Y. B., Liu, D. M., Tang, D. Z., et al. Fractal characterization of adsorption-pores of coals from NorthChina: an investigation on CH4adsorption capacity of coals. International Journal of Coal Geology,2008,73(1):27-42.
    包宏亮,陈宗念.鸡西盆地煤层赋存的构造控制机理.能源技术与管理,2010,4:16-20.
    陈德玉,胡建治,叶朝辉.中国煤的高分辨13C NMR谱研究.中国科学,D辑,1996,26(6):525-530.
    方爱民,侯泉林,琚宜文.不同层次构造活动对煤层气成藏的控制作用.中国煤田地质,2005,17(4):15-20.
    傅雪海,秦勇,韦重韬,等.沁水盆地水文地质条件对煤层含气量的控制作用.煤层气勘探开发理论与实践,2007:61-69.
    高迪.泛三江早白垩世层序古地理与聚煤作用研究:[博士学位论文].北京:中国矿业大学,2010.
    关德师.煤层甲烷资源评价.天然气勘探与开发,1994,3:27-30.
    韩春花.勃利盆地中生界地质特征及油气资源潜力分析:[硕士学位论文].吉林:吉林大学,2004.
    胡殿明,林柏泉.煤层气瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006.
    黄乔松,赵文杰,杨济全,等.核磁共振渗透率模型研究与应用.青岛大学学报,2004,17(4):37-40.
    黄婷婷,贾福成.水文地质评价及鸡西煤田水文地质特征分析.工业技术,2009,9:21-23.
    姜剑虹.鹤岗盆地沉积模式与聚煤规律.东北煤炭技术,1996(3):2-6.
    李艳.复杂储层岩石核磁共振特性实验分析与应用研究:[硕士学位论文].中国石油大学,2007.
    李志强.重庆沥鼻峡背斜煤层气富集成藏规律及有利区带预测研究:[博士学位论文].重庆:重庆大学,2008.
    刘洪林,汪则成,冉启贵,等.煤层气藏保存条件评价.石油天然气勘探开发,1998,3:1-5.
    刘洪林,赵国良,门相勇.煤层气富集成藏类型初探.辽宁工程技术大学学报,2005,24(2):165-168.
    刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998.
    钱凯,赵庆波,汪泽成,等著.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996.
    秦勇.中国煤层气地质研究进展与述评.高校地质学报,2003,9(3):339-352.
    曲希玉,刘立,刘剑营,等.鸡西盆地煤层顶板露头砂岩物性特征及成因探讨.石油天然气学报(江汉石油学院学报),2007,29(3):367-369.
    饶孟余,杨陆武,冯三利,等.中国煤层气产业化开发的技术选择.特种油气藏,2005,12(4):1-4.
    石彪,林晓英,郭红玉.上覆地层对煤层气含量的控制机理.中国煤田地质,2007,19(4):31-32.
    苏付义.煤层气储集层评价参数及其组合.天然气工业,1998,18(4):16-21.
    苏现波,陈江峰,孙俊民.煤层气地质学与勘探开发[M].北京:科学出版社,2001.
    孙茂远,杨陆武.开发中国煤层气资源的地质可能性与技术可行性.煤炭科学技术,2001,29(11):45-46.
    孙平.煤层气成藏条件与成藏过程分析:[博士学位论文].成都:成都理工大学,2007.
    孙伟.勃利煤田地质特征及找煤方向.煤炭技术,2006,25(3):93-95.
    谭茂金,赵文杰.用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层.地球物理学进展,2006,21(2):489-493.
    王红岩,刘洪林,赵庆波.煤层气富集成藏规律[M].北京:石油工业出版社,2005.
    王红岩,张建博,李景明,等.中国煤层气富集成藏规律.天然气工业,2004,(5):11-13.
    王建军.东北三江地区绥滨拗陷上侏罗统-下白垩统沉积相研究:[硕士学位论文].北京:中国地质大学,2007.
    王金山.黑龙江省鸡西盆地南、北两带城子河组精细地层对比.中国煤炭地质,2008,8:6-9.
    王瑞飞,陈军斌,孙卫.特低渗透砂岩储层水驱油C T成像技术研究.地球物理学进展,2008,23(3):864-870.
    王生维,段连秀,陈钟惠,等.煤层气勘探开发中的煤储层评价.天然气工业,2004,5:82-84.
    王生维,侯光久,张明,等.晋城成庄矿煤层大裂隙系统研究.科学通报,2005,50增刊I:38-44.
    王双明,王晓刚,范立民.韩城矿区煤层气地质条件及赋存规律.北京:地质出版社,2009,46-49.
    王伟涛,刘招君,陈秀艳.虎林盆地北部坳陷中、新生代碎屑岩源区构造背景与物源区分析.世界地质,2007,26(1):15-18.
    王筱文,肖立志,谢然红,等.中国陆相地层核磁共振孔隙度研究.中国科学,G辑,2006,36(4):366-374.
    肖立志.我国核磁共振测井应用中的若干重要问题.测井技术,2007,31(5):401-407.
    杨保联,冯继文,周建威,等.煤的固体高分辨核磁共振研究.中国科学,A辑,1998,28(11):1009-1012.
    杨起,刘大锰,黄文辉,等.中国西北煤层气地质与资源综合评价.北京:地质出版社,2005.
    杨永国,王贵梁,秦勇,等.煤层气项目经济评价方法及应用研究.中国矿业大学学报,2001,30(2):126-129.
    姚艳斌,刘大锰,胡宝林,等.地理信息系统在煤层气资源综合评价中的应用.煤炭科学技术,2005,33(12):1-4.
    姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究.煤炭学报,2006,31(2):163-168.
    姚艳斌,刘大锰,汤达祯,等.华北地区煤层气储集与产出性能.石油勘探与开发,2007a,34(6):664-668.
    姚艳斌,刘大锰.华北重点矿区煤储层吸附特征及其影响因素.中国矿业大学学报,2007b,36(3):308-314.
    叶朝辉, Wind R, Maciel G.中国煤的磁共振研究.中国科学,A辑,1988,18(2):163-172.
    叶建平,武强,王子和.水文地质条件对煤层气赋存的控制作用.煤炭学报,2001,26(5):459-462.
    于恩君.黑龙江省鸡西-勃利含煤盆地层序地层学讨论.吉林地质,2008,27(2):8-12.
    张凤旭,张兴洲,张凤琴,等.黑龙江省虎林盆地单元结构的地质-地球物理研究.吉林大学学报(地球科学版),2010,40(5):1171-1176.
    张培河,张群,王宝玉,等.煤层气可采性综合评价方法研究.煤田地质与勘探,2006,34(1):21-25.
    张亚明,赵明鹏,周立岱.鸡西盆地煤层气资源赋存规律研究.辽宁工程技术大学学报,2003,22(1):45-46.
    赵德海,苏循新.鹤岗盆地构造特征及其演化.煤炭技术,2008,27(6):136-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700