用户名: 密码: 验证码:
海带EST-SSR标记开发及TPS基因的克隆和比较遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海带是重要大型经济海藻,也是我国人工栽培历史最长和产量最高的海藻,我国海带养殖面积、养殖产量均居世界首位。海带广泛应用于食品保健、海洋药物、化工原料、农业肥料等方面,具有较高的经济价值,是我国海水养殖的支柱产业之一。另外海带生物量巨大,是近海潮下带的重要初级生产力之一,对调节优化养殖环境具有重要的生态作用,其综合利用和可持续发展越来越受重视。
     海带生活史中典型的异型世代交替现象以及孤雌生殖和无配生殖现象,也使之成为藻类学和遗传学研究的良好模式生物。自海带引入我国后,经过几十年的发展,其遗传育种、育苗及栽培技术取得了很多进展。与海带栽培技术研究相比,目前有关海带遗传多样性分析、经济性状遗传等应用基础研究还相对落后。
     由于海带中多糖和酚类物质含量较高、染色体数目众多且基因组较大,海带的分子遗传学、基因研究及分子标记工作进展较为缓慢。目前,已公布的可直接应用于遗传性状研究的分子标记数量有限。在开发利用海带资源的过程中,种质问题也是是困扰其生产的一个重大问题,本研究利用海带EST数据,进行EST-SSR筛选、引物设计和验证应用,进行种质遗传多样性分析。从4099条海带属EST中(其中971条来自我们构建的两个cDNA文库,3128条从NCBI网站下载)筛选微卫星位点,设计合成63对引物,优化反应体系后,应用于12个海带属材料分析,最终开发出23对EST-SSR引物,用这23对EST-SSR引物对12个海带属材料进行了遗传多样性分析,并能较好的将不同来源的样品区分开来。这23对EST-SSR引物具有很好的实用性,可以用于海带的分子生物学研究,特别是功能基因的研究。
     海藻糖是一种广泛存在于自然界中的非还原性双糖,研究表明它能提高植物抵抗温度、pH等变化的能力,是一种前景广阔的食品药品稳定剂、添加剂和植物抗逆保护剂。分离有关海藻糖合成酶的基因,应用生物工程的手段引入植物,可以提高植物抗干旱、抗盐碱的能力。本研究用同源克隆的方法,通过优化PCR反应体系,从海带、裙带菜、亨氏马尾藻等海藻中克隆了海藻糖合成酶基因TPS,其保守域长度为2727bp,并用生物信息学方法对已得到的海藻TPS基因的cDNA序列进行了比较研究,发现它们之间的同源性都高于94.4%,海带的TPS蛋白与其它各种海藻TPS蛋白的氨基酸序列同源性则都高于96.6%。将这些海藻TPS基因的DNA序列与已报道的其它几种生物(大肠杆菌、酿酒酵母、拟南芥、水稻)的TPS基因的序列(EcOtsAB, ScTPS2、AtTPS5、OsTPS)进行了比对,发现十种海藻TPS基因的序列是相对保守的,这说明他们的功能应该是相似的;其它几种生物的TPS基因中,与海藻同源性最高的是水稻和拟南芥的TPS基因,它们之间的同源性达到40%以上,同源性次之的是酵母的TPS基因,它们之间的同源性只有27%左右;最低的是与大肠杆菌之间的同源性,它们的同源性仅仅只有20%左右。这与它们的进化的等级是相同的。大肠杆菌为原核生物,在进化树的最低层,稍早于酵母的位置,所以与酵母的同源性最高,它们都在进化树的低层。而藻类和其他的高等植物在进化树的高层,所以它们之间同一个基因会出现这么大差别。由于海洋生存环境的原因,海带TPS基因(LjTPS)和其他海藻TPS基因可能是农作物抗旱耐盐遗传改良的优良基因源。将海藻TPS基因转入农作物有望在一定程度上提高作物的抗干旱、耐盐碱的能力,在农作物改良中具有良好的应用前景。
Laminaria is one of the most important seaweeds, which is the earliest cultivatedand and high-yielding algae in china. Its farming area and yield-production rank first of seaweed in the world. The main producing area of Laminaria is concentrated in northwest Pacific and Atlantic, especially in China and Japan.
     Laminaria can be widely used as food, marine drugs, chemical materials and agricultural fertilizers, so it plays an important role in our aquaculture industries. In addition, with huge biomass, Laminaria contributes a large proportion of the primary productivity of the subtidal area, and improves the culture environment and prevent red tide correspondingly, therefore utilization and sustainable development research of Laminaria should be given more and more attention. Heterogenesis, parthenogenesis and apogamy in the life history of Laminaria make it a favourable model organism for genetics and algology, both academically and practically. After introduced to our country, the genetic breeding, propagation and cultivation techniques of Laminaria have made great progress. Compared with cultivation of seaweed, the researches in molecular biological levele are delayed relatively. Rich in polysaccharides and phenolic compounds, numerous chromosomes, and a huge genome, makes the progress in researches for Laminaria genes and new molecular markers more slowly. Nowadays, there are not enough recearches for molecular markers for Laminaria. Through the sequence analysis of 4099 ESTs from Laminaria (971 ESTs were generated from our two constructed cDNA libraries and 3128 ESTs were downloaded from NCBI databases) with SSRIT software (www.gramene.org/db/searches/ssrtool), we found 254 SSRs in 201 ESTs, from which 63 SSR primer-pairs were designed and then tested in optimized SSR reaction conditions using 12 Laminara DNA samples as templates. Results showed that 23 SSR primer-pairs gave good amplification patterns on most (more than 80%) of the testing samples and can be used as SSR markers. The developed 23 SSR markers were used in genetic diversity analysis of 12 selected seaweed species, which belong to red, brown and green algae respectively; the obtained result is basically similar to that from traditional classifications. The developed EST-SSR markers showed a good practicability. They will be useful in molecular biological research in Laminaria, especially for functional gene research.
     Trehalose is a non-reducing disaccharide sugar, composed of two glucose units, and can be found in many organisms. It could serve as a protective agent against heat, and saline-alkali stresses. And this character makes trehalose synthase gene as the target gene for plant gene transformation to improve its drought-salinity tolerance and adverse resistance. In this study, the trehalose-6-phosphate synthase gene (TPS) was isolated by homologous cloning method from Laminaria japonica and other 9 seaweed species. The obtained ORF (open reading frame) contained 2727bp. Sequences of the obtained TPS genes from seaweeds were deposited in GenBank. All of the ten seaweed TPS genes encoded peptides of 908 amino acids and the sequences were highly conservative both in nucleotide composition (>94.4%) and in amino acid composition (>96.6%). Homology alignment for seaweed TPS and the TPS proteins from bacteria, yeast and higher plants indicated that, unlike the TPS genes from some other plants, there was no intron existed in all of the ten isolated seaweed TPS genes. And the most closely related sequences to seaweed TPS gene were those from higher plants (OsTPS and AtTPS5, about 40% similarity), whereas the most distant sequence was the one from bacteria (EcOtsAB, about 20% similarity). Based on the living environment, LyTPS and other seaweed TPS genes are considered as good candidate gene resources for genetic improvement of the drought- and salt-resitance in crops. If the seaweed TPS genes are transformed into crops, the transgenic plants are expected to increase salt/ drought resistance. That will be useful in crop improvement and with bright application furture.
引文
[1]Jensen A. Present and future needs for algae and algal products. Hydrobiologia.1993, 260/261:13-23
    [2]曾呈奎,吴超元等.海带养殖学.北京:科学出版社,1962
    [3]李宏基等.“海带筏式全人工养殖法”与大规的海带养殖技术.海洋科学消息.1991,4:42-44
    [4]中国人民共和国农业部渔业局.中国渔业统计年鉴.北京:中国农业出版社,2009
    [5]金振辉,刘岩,张静等.中国海带养殖现状与发展趋势.海洋湖沼通报.2009,1:141-150
    [6]Gupta P K, Balyan H S, sharma P C,et al. Microsatellite in plants:A new class of molecular markers.Current Science,1996,70:45-54
    [7]Squirrel] J, Hollingsworth P M, Woodhead M, et al.How much effort is required to isolate nuclear microsatellites from plants? Molecular Ecology,2003,12:1339-1348
    [8]Elbein A. The metabolism of a,a-trehalose. Adv. Carbohydr.Chem.Biochem.1974,30: 227-256
    [9]钱树本,刘东艳,孙军等.海藻学.青岛:中国海洋大学出版社,2005
    [10]曾呈奎.海带和海底森林.生物学通报,1953,9:320~325
    [11]丛季珠,陈国治.海藻养殖.北京:中国农业出版社,1995
    [12]曾呈奎.海藻栽培学.上海:上海科学技术出版社,1985.55-121
    [13]方宗熙,欧毓麟,崔竞进等.海带配子体无性繁殖系培育成功.科学通报,1978,2:115-116
    [14]崔竞进,欧毓麟.弱光保存海带配子体的初步实验.山东海洋学院学报,1979,1:133-137
    [15]崔竞进,欧毓麟,戴继勋.海带杂种优势的初步实验.遗传学报,1979,6(1)
    [16]欧毓麟,崔竞进,刘启顺.中国和日本几个海带物种的远缘杂交.植物遗传理论与应用研讨会论文集,中国遗传学会,南京,1990
    [17]欧毓麟,崔竞进,刘启顺.大西洋和太平洋海带物种间杂交及在育种中的应用.植物遗传理论与应用研讨会论文集,中国遗传学会,南京,1990
    [18]李家俊,彭作圣,张京普等.两种海带的引进与培养的初步观察.海洋科学.1984,(5):51~54
    [19]周延清,杨清香,张改娜等.生物遗传标记与应用.北京:化学工业出版社,2008
    [20]Botstein D, White RL, Skolnick M et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics,1980, 32(3):314-331
    [21]Mullis KB, Faloona F. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in enzymology,1987,155:335-350
    [22]Saiki RK, Gelfand DH, Stoffel S et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science,1988,239:487-491
    [23]Williams JK, Kubelik AR, Livak KJ et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990,18(22):6531-6535
    [24]Welsh J, Mc Clell M. Fingerprinting genomes using PCR with arbitrary. Nucleic Acids Research,1990,18(24):7213-7218
    [25]Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvr4 locus:A tool for pyramiding potyvirus resistance genes in pepper. Genome,1999,42(6):1111-1116
    [26]Botstein D, White RL, Skolnick M et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics,1980,32(3): 314-331
    [27]Vos P, Hogers R, Bleeker M, et al. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Research,1995,23(21):4407-4414
    [28]Zhu J, Gale MD, Quarrie S. AFLP markers for the study of rice biodiversity. Theoretical and Applied. Genetics,1998,96(5):602-611
    [29]Cervera MT, Cabezas JC, Sancha JC. Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic rescource. A case study with accessions from Rioja (Spain). Theoretical and Applied. Genetics,1998,97(1-2):51-59
    [30]Angiolillo A, Mencuccini M, Baldoni L. Olive genetic diversity assessed using amplified fragment length polymorphism. Theoretical and Applied. Genetics,1999,98(3-4):411-421
    [31]Segovia-Lerma A, Cantrell RG, Conway JM, et al. AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates. Genome,2003,46(1): 51-58
    [32]Lin JJ. Identification of molecular markers in soybean comparing RFLP,RAPD and AFLP DNA mapping techniques. Plant Molecular Biology Reporter.1996,14(2):156-169
    [33]Hartl L, Seefelder S. Diversity of selected hop cultivars detected by fluorescent AFLPs. Theoretical and Applied. Genetics,1998,96(1):112-116
    [34]Zhou CJ, Song HZ, Li JH, et al. Evaluation of genetic diversity and germplasm identification of 44 species, clones and cultivars from five sections of the genus Populus based on Amplified Fragment Length Polymorphism analysis. Plant Molecular Biology Reporter, 2005,23(1):39-51
    [35]张增翠,侯喜林.SSR分子标记开发策略及评价.遗传,2004,26(5):763~768
    [36]李明芳,郑学勤.开发SSR引物之研究动态.遗传,2004,26(5):769~776
    [37]Kantety RV, Rota ML, Matthews DE. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology, 2002,48(5-6):501-510
    [38]Yu JK, Dake TM, Singh S et al. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome,2004,47(5):805-818
    [39]Naqvi NI, Chattoo BB. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome, 1996,39(1):26-30
    [40]Hudson TJ, Stein LD, Gerety SS, et al. An STS-based map of the human genome. Science, 1995,270(5244):1945-1954
    [41]Li G, Quiros CF. Sequence-related amplified polymorphism. (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics,2001,103(2-3):455-461
    [42]HU J and BRADY A. Target region amplification polymorphism:A novel marker technique for plant genotyping. Plant Molecular Biology Reporter,2003,21:289-294
    [43]Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million singlenucleotide polymorphisms. Nature,2001,409: 928-933
    [44]尚书,石嫒嫄,杨官品.我国引种海带(Laminaria japonica)和长海带(Laminaria longissima)配子体克隆的随机扩增多态性DNA分析.海洋湖沼通报,2007,(增刊):142-145
    [45]Lars E, Niels D, Poul M P. Nucleotide diversity within and between four species of Laminaria (Phaeophyceae) analysed using partial LSU and ITS rDNA sequences and AFLP. European Journal of Phycology.2004,39:243-256
    [46]张全胜,石媛嫄,丛义周等.中国引种海带和栽培品种(系)来源配子体克隆的AFLP分析.中国海洋大学学报,2008,28(3):429~435
    [47]李世国,单体锋,侯和胜等.9个海带栽培品种自交系后代遗传多样性和亲缘关系的AFLP分析.中国水产科学,2009,16(2):214~220
    [48]Billot C, Rousvoal S, Estoup A et al. Isolation and characterization of microsatellite markers in nuclear genome of the brown alga Laminaria digitata (Phaeophyceae). Molecular Ecology, 1998,7:1771-1788
    [49]石媛嫄,杨官品,刘永健等.海带和长海带配子体无性繁殖系微卫星DNA多态性比较分析.中国海洋大学学报,2008,38(2):303~308
    [50]王秀良.RAPD和ISSR标记在海带种质及其遗传多样性研究中的应用:[博士学位论文].青岛:中国科学院研究生院(海洋研究所),2004
    [51]Ti Feng Shan, Shao Jun Pang. Assessing genetic identity of sporophytic offspring of the brown alga Undaria pinnatifida derived from mono-crossing of gametophyte clones by use of amplified fragment length polymorphism and microsatellite markers. Phycological Research 2009,57:36-44
    [52]Liu FL,Shao ZR,Duan DL. QTL Mapping for Frond Length and Width in Laminaria japonica Aresch (Laminarales, Phaeophyta) Using AFLP and SSR Markers. Mar Biotechnol, 2009, DOI 10.1007/s10126-009-9229-7
    [53]Brown G R, Kadel E E, Bassoni D L, et al. Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics,2001,159 (2):799-809
    [54]Lan T H, Del Monte T A, Reischmann K P, et al. An EST-enriched comparative map of brassica oleracea and arabidopsis thaliana. Genome Res,2000,10 (6):776-788
    [55]Cordeiro G M, Casu R, McIntyre C L, et al. Microsatellite markers from sugarcane (Saccharum spp.) ESTs crosstransferable to erianthus and sorghum. Plant Sci,2001,160 (6): 1115-1123
    [56]Varshney R K, Sigmund R, Borner A, et al. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice [J]. Plant Sci,2005,168: 195-202
    [57]Schubert R, Starck G M, Riegel R. Development of EST-PCR markers and monitoring t heir int ra populational genetic variation in Picea abies (L.) Karst. Theor Applied Genet,2001, 103(8):1223-1231
    [58]Bozhko M, Riegel R, Schubert R, et al. A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity. Mol Ecol,2003,12 (1):3147-3155
    [59]Pulst S M, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic t rinucleotide repeat in spinocere-bellar ataxia type 2. Nat genet,1996,14 (3):269-276
    [60]Ayers N M, McClung A M, Larkin P D, et al. Microsatellites and a single nucleotide polymorphism differentiate apparent amylase classes in an extended pedigree of US rice germplasm. Theor Applied Genet,1997,94 (6-7):773-781
    [61]Kantety R V, Rota M L, Matt hews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol,2002, 48(5-6):501-510
    [62]Liu FL, Wang XL, Yao JT. et al. Development of expressed sequence tag-derived microsatellite markers for Saccharina(Laminaria)japonica. J Appl Phycol.2010,2:109-111
    [63]Elbein A. The metabolism of α,α-trehalose. Adv. Carbohydr.Chem.Biochem.1974,30: 227-256
    [64]Drennan P.M., Smith M.T., Goldsworthy D., et al. The occurrence of trehalose in the leaves of the desiccation tolerrant angiosperm Myrothamnus flabellifolius Welw. Plant Physiol., 1993,142:493-496
    [65]Crowe J. Preservation of membranes in anhydrobiotic organism:the role of trehalose. Science,1984,223:701-703
    [66]Oscar J.M., Goddijn Kees Van Dun. Trehalose Metabolism in Plants. Trends Plant Sci.,1999, 4 (8):315-319
    [67]Colaco C. and Sen S. Extraordinary stability of enzymes dried in trehalose:simplified molecular biology. Bio/Technology, 1992,10:1007-1011
    [68]Devirgilio C. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Ⅰ. Genetic evidence that trehalose is a thermoprotectant. Eur. J. Biochem.1994,219:179-186
    [69]Goddijn O., and van Dun, K. Trehalose metabolism in plants. Trends in Plant Sci.1999,4: 315-19
    [70]Garcia A.and Engler J. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol.1997,155:159-169
    [71]Goddijn O., Verwoerd T. et al. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol.1997,113:181-190
    [72]Holmstrom K., Mantyla E. et al. Drought tolerance in tobacco. Nature,1996,379:683-684
    [73]Pilon-Smits E., Terry N. et al. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J. Plant Physiol.1998,152:525-532
    [74]Muller J., Boller T. et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants:pleiotropic phenotypes include drought tolerance. Planta,1997, 201:293-297
    [75]Muller, J., Boller, T. et al. Trehalose metabolism in higher plants:recent developments. Plant Sci.1995,112,1-9
    [76]Zhang SZ, Yang BP, Feng CL, Tang HL. Genetic transformation of tobacoo with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacoo. Journal of Integrative Plant Biology Formerly Acta Botanica Sinica,2005,47(5): 579-587
    [77]Goddijn O. and Smeekens S. Sensing trehalose biosynthesis in plants. Plant J.1998,14: 143-146
    [78]Vogel G. and Aeschbacher R. Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J.1998,13: 673-683
    [79]Wingler A. and Fritzius T. Trehalose induced the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol.2000,124:105-14
    [80]Muller J. and Aeschbacher R. Trehalose and trehalase in Arabidopsis. Plant Physiol.2001, 125:1086-1093
    [81]Eastmond P. and van Dijken A. Trehalose-6-phosphate synthase1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J.2002,29: 225-235
    [82]Cabib E. and Leloir L. The biosynthesis of trehalose phosphate. J. Biol. Chem.1958,231: 259-275
    [83]Kaasen I., Falkenberg P., Styrvold O.B., et al. Molecular cloning and physical mapping of the otsBA genes, which encode the osmaregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR). J. Bacteriol.1992,174 (3):889-898
    [84]Arguelles J.C. Physiological roles of trehalose in bacteria and yeasts:a comparative analysis. Arch Microbiol.,2000,174 (4):217-224
    [85]Andersson U., Levander F. and Radstrom P. Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. J.Biol.Chem.2001, 276 (46):42707-41713
    [86]Blazquez M. and Santos E. Isolation and molecular characterization of the Arabidopsis TPS1 gene encoding trehalose-6-phosphate synthase. Plant J.1998,13:685-690
    [87]Leyman B. and Van Dijck, P. An unexpected plethora of trehalose synthesizing genes in Arabidopsis thaliana. Trends Plant Sci.2001,6:5110-5113
    [88]Thaller M. and Schippa S. Conserved sequence motifs among bacterial, eukaryotic and archaeal phosphatases that define a new phosphohydrolase superfamily. Protein Sci.1998,7: 1647-1652
    [89]Bell W., Sun W., and Hohmann S. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem.1998,273 (50):33311-33319
    [90]张冰君,宣劲松.条斑紫菜6-磷酸海藻糖合成酶基因全长cDNA的电子克隆.生物信息学,2007,6(1):6-8
    [91]Holmstrom K.O., Mantyla E., Welin B., et al. Drought tolerance in tobacco. Nature,1996, 379:683-684
    [92]郑仲承.寡聚核苷酸的优化设计.生命的化学,2001,21(3):254~256
    [93]Yeh FC, Yang R, Boyle TJ, et al. POPGENE 32, Microsoft Windows-based freeware for population genetic analysis. Molecular Biotechnology Centre, University of Alberta, Edmonton, Canada.2000
    [94]刘必谦,曾庆国,骆其君等.条斑紫菜(Porphyra yezoensis) dbEST中筛选微卫星位点及引物种间转移扩增.海洋与湖沼.2005,36(3):248~254
    [95]Enrique A. M, Leyla C, Billot C et al. Microsatellites of Laminaria digitata tested in Lessonia nigrescens:Evaluation and improvement of cross amplification between kelps of two different families. Journal of Applied Phycology,2005,17: 245-253
    [96]萨姆布鲁克.分子克隆实验指南第二版(金冬雁等译).北京:科学出版社,1999.19~24,55~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700