用户名: 密码: 验证码:
靶基相对位置对C/Cr复合镀层性能和组织结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闭合场非平衡磁控溅射镀膜设备真空腔尺寸较大,工位很有可能显著影响镀层的质量。目前,有关这方面的研究主要集中在工位对镀层厚度影响的分析,还有待于对其进行全面和深入的研究。本文在保证其它工艺参数相同的条件下,采用英国Teer的UDP450设备制备了不同工位处M2高速钢基体上的C/Cr复合镀层。使用球痕仪、显微维氏硬度仪、划痕仪、摩擦磨损试验机分别测量了镀层的厚度、硬度、结合力和耐磨减摩性能,并用扫描电子显微镜、透射电子显微镜、X-射线衍射仪、激光拉曼分析仪对镀层组织结构进行了观察和分析,还用高斯仪测量了设备真空腔内的磁场分布。分析了靶基相对位置对镀层性能和组织结构影响的规律,并讨论了靶基相对位置影响镀层性能及组织结构的机理。
     研究结果表明:制备的C/Cr复合镀层主要为非晶态,靶基相对位置对镀层性能和组织结构有显著影响,且靶基径向距的影响明显强于靶基轴向距。随着靶基径向距增大,镀层的厚度减小,镀层的硬度、结合力、摩擦系数、比磨损率都先增大后减小,镀层表面组织先变粗糙后变平滑,镀层中的sp2键含量先降低后升高;随着靶基轴向距的远离中心,镀层的厚度和sp2键含量减小,镀层硬度和摩擦系数增大,镀层结合力和比磨损率变化不大,镀层表面组织略变平滑。靶基径向距70mm~140mm区域和靶基轴向距-50mm~50mm区域为UDP450设备制备优质C/Cr复合镀层均匀区。靶基相对位置对镀层性能和组织结构影响的实质原因是真空腔内的磁场分布不均匀、各处粒子在沉积过程中的散射碰撞程度差异和基体负偏压对各处沉积离子加速作用不同导致了不同靶基相对位置处的沉积粒子流密度和能量不同。
There is a biggish working chamber in closed-field unbalanced magnetron sputtering deposition system, and it’s very possible for substrate-placed position to affect the quality of coatings markedly. At present, correlative investigations are all focus on the effect of substrate-placed position on thickness of coatings, this problem need a comprehensive and in-depth research yet. The carbon/chromium composite coatings were deposited on M2 high speed steel using a Britainic Teer UDP450 unbalanced magnetron sputtering deposition system, these coatings had been deposited at different substrate-placed position and the others deposition parameters are same. The thickness of coatings were measured using a Teer BC-1 ball crater device, the micro-hardness of coatings were measured using a Fischerscope HVS-1000 micro-hardness tester, the adhesion of coatings were measured using a Teer ST2200 scratch tester , and the tribological properties of coatings were measured using a Teer POD-1 pin-on-disc tester. The microstructures of the coatings were observed and analyzed using scan electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectra. Furthermore, the distribution of magnetic field in the working chamber was characterized using Model 6010 Hall Effect Gauss/Tesla-Meter. The effects of substrate-to-target distance on properties and microstructures of the coatings were investigated, and the mechanisms about these effects were also discussed in this paper.
     The investigative results indicated that the carbon/chromium composite coatings be deposited in this paper are mostly amorphous material, the effects of substrate-to-target distance on properties and microstructures of the coatings are great, and the effects caused by substrate-to-target radial distance are stronger markedly than that caused by substrate-to-target axial distance. With the increasing of substrate-to-target radial distance, the thickness of coatings are decreased, the micro-hardness of coatings are increased and then are decreased, the adhesion of coatings are increased and then are decreased, the friction coefficient of coatings are increased and then are decreased, the wear rate of coatings are increased and then are decreased, surface morphology of coatings become rough and then become slick, and the sp2 content of coatings have a minimum value. With the substrate-to-target axial distance away from the center of working chamber, the thickness and sp2 content of coatings are decreased, the micro-hardness and friction coefficient of coatings are increased, the adhesion and wear rate of coatings are invariable approximately, surface morphology of coatings becomeslick appreciably. The uniform carbon/chromium composite coatings can be deposited in the range of the substrate-to-target radial distance from 70mm to 140mm or the substrate-to-target axial distance from -50mm to 50mm using UDP450 unbalanced magnetron sputtering deposition system. The essential reason creating the effects of substrate-to-target distance on properties and microstructures of the coatings is the dissimilitude of deposition particle current density and energy with the different substrate-placed position, and this dissimilitude was caused by three factors, viz. the asymmetric distribution of magnetic field in the working chamber of UDP450 system , the difference of scattering collision intensity of deposition particles during their movements at the different substrate-placed position and the difference of acceleration of deposition ion from the substrate negative bias voltage at the different substrate-placed position.
引文
【1】王学刚.不同物理气相沉积方法制备碳膜的性能研究:[硕士学位论文][D].西安:西安交通大学,2002
    【2】杜军.IBAD 法制备类石墨碳膜的组织结构及性能:[硕士学位论文][D].西安:西安交通大学,2003
    【3】黄鹤.离子束辅助沉积类石墨碳膜和 BXO 膜的结构及其摩擦学性能的研究:[博士学位论文][D].西安:西安交通大学,2003
    【4】严一心,林鸿海.薄膜技术[M].兵器工业出版社,1994
    【5】H.Huang,X.Wang,J.He.Synthesis and properties of graphite like carbon by ion beam assisted deposition.Materials Letters[J],2002,Vol.57,Issue 22-23:3431~3436
    【6】黄鹤,王学刚,朱晓东,陈华,何家文.离子束辅助磁控溅射沉积 TiN 薄膜的研究.稀有金属材料与工程[J],2002,Vol.31(3):205~208(SCI:570HB,EI:0240712776)
    【7】D.G.Teer.New solid lubricant coatings.Wear[J],2001,251:1068~1074
    【8】 S.Yang,D.G.Teer.Investigation of sputtered carbon and carbon/chromium multi-layered coatings. Surfare and Coatings Technology[J],2000,131:412~416
    【9】张成武.磁过滤真空阴极弧等离子体制备四面体非晶碳膜:[硕士学位论文][D].大连:大连理工大学,2004
    【10】程宇航.类金刚石薄膜及改性研究:[博士学位论文][D].武汉:华中理工大学,1997
    【11】S.Aisenberg and R.Chabot.Ion-beam deposition of thin films of diamon like carbon.J.Appl. Phys.[J],1971,42(7):2953~2958
    【12】Karl E.Spear,John P.Dismukes.Synthetic Diamond:Emerging CVD Science and Technology [M].New York:John Wiley & Sons,1994:450~462
    【13】D.Nir.Stress relief forms of diamond like carbon thin films under internal compressive stress.Thin Solid Films[J],1984,112:41~49
    【14】 B.I.Suman,K.S.harshaverdhan,V.Kumar.Bucking patterns in diamond like carbon films. Thin Solid Films[J],1995,256:94~100
    【15】 A.Grill,V.Patel.Tribological properties of diamond-like carbon and related materials.Diamond and Related Materials[J],1993(2):597~605
    【16】A.Grill.Tribology of diamondlike carbon and related materials: An updated review.Surface and Coatings Technology[J],1997,94-95:507~513
    【17】Jianguo Deng,Manuel Braun.DLC multilayer coatings for wear proportion.Diamond and Related Materials[J],1995(4):936~943
    【18】S.Yang,D.Camino,A.H.S.Jones etal.Deposition and tribological behavior of sputtered carbon hard coatings.Surface and Coatings Technology[J],2000,124:110~116
    【19】Bell T.Surface engineering:its current and future impact on tribology.Journal of Physics D: Applied physics[J],1992,25:297~306
    【20】He J W,Hendrix B C,Hu N S.Interfacial fatigue limit as measure of cyclic bonding strength of hard coating.Surface Engineering[J],1996,12(1):1~16
    【21】黄鹤,何家文.刀具的抗磨和减摩镀层.机械工程学报[J],2002,Vol.38(4):155~158
    【22】唐宾.离子束增强沉积 Cr-N 镀层组织性能以及结合强度研究:[博士学位论文][D].西安:西安交通大学,1998
    【23】材料耐磨抗蚀及表面技术丛书编委会.离子束表面强化[M].机械工业出版社,1992
    【24】M.J.Neale.Tribology Handbook[M].London:Butterworths,1973
    【25】王茂祥,吴宗汉,孙承休.物理气相沉积技术在建筑装饰材料中的应用.物理[J],1998,(7):426~428
    【26】唐伟忠.薄膜材料制备原理、技术及应用[M].冶金工业出版社,2003
    【27】Kelly P J,Arnell R D.Magnetron sputtering a review of recent Development and applications. Vaccum[J],2000,56:159~172
    【28】董骐,范毓殿.非平衡磁控溅射及其应用.真空科学与技术[J],1996,16(1):51~57
    【29】徐均琪,杭凌侠,蔡长龙.磁控溅射离子束流密度的研究.真空科学与技术学报[J],2004, 24(1):74~76
    【30】王贵义,王世忠,唐素筠.磁控溅射和它的应用.核聚变与等离子体物理[J],1989,9(2):125~128
    【31】牟宗信,关秉羽,李国卿,宋林峰.非平衡磁控溅射中调制磁场的作用.真空[J],2002,(3):27~29
    【32】牟宗信,李国卿,车德良,黄开玉,柳 翠.非平衡磁控溅射沉积系统伏安特性模型研究.物 理 学 报[J],2004,53(6):1994~1999
    【33】高 鹏,刘传胜,吴大维,彭友贵,范湘军.用非平衡磁控溅射法制备 CNx 薄膜.武汉大学学报(理学版)[J],2001,47(1):99~102
    【34】王福贞.几种沉积氮化钛涂层的新技术.金属热处理[J],2000(1):3~5
    【35】Window B and Savides NJ.Development and application of sputtering technology.Vacuum Science and Technology[J],1986,A4(2):196~202
    【36】Sproul W D,Rudnik P J,Graham M E et al.High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system.Surface and Coatings Technology[J], 1990,43-44:270~278
    【37】徐滨士,等.表面工程[M].北京:机械工业出版社,2000.6
    【38】何万强,雷旭,徐新乐.非平衡磁控溅射系统的研究.新技术新工艺》·机械加工与自动化[J],2002(6):19~20
    【39】P.J.Kelly,R.D.Arnell.The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system.Surface and Coatings Technology[J], 1998,108–109:317~322
    【40】R.D.Arnella,P.J.Kellyb,J.W.Bradley.Recent developments in pulsed magnetron sputtering. Surface and Coatings Technology[J], 2004,188–189:158~163
    【41】J.Musil,J.Vlcˇek.A perspective of magnetron sputtering in surface engineering.Surface and Coatings Technology[J], 1999,112:162~169
    【42】 Hiroshi Fujiyama,Kiyoshi Kuwahara.Magnetron plasmas for large-area uniform sputtering. Surface and Coatings Technology[J],1995,74-75:75~79
    【43】 Reiner Kukla.Magnetron sputtering on large scale substrates:an overview on the state of the art. Surface and Coatings Technology[J],1997,93:1~6
    【44】惠迎雪,杭凌侠,徐均琪,陈伟.不同磁控溅射模式膜厚均匀性研究.西安工业学院学报[J], 2003,23(1):32~36
    【45】宋建全,刘正堂,于忠奇,耿东生,郑修麟.平面磁控溅射薄膜厚度分布模拟.机械科学与技术[J], 2001,20(6):884~885
    【46】韩雷刚.多工位平面磁控溅射镀膜装置及膜厚分布均匀性研究:[硕士学位论文][D].成都:电子科技大学,2004
    【47】徐均琪,易红伟,等.磁控溅射膜厚均匀性与靶-基距关系的研究.真空[J],2004,41(2):25~28
    【48】王璘,余欧明,杭凌侠,等.磁控溅射镀膜中工作气压对沉积速率的影响.真空[J],2004,41(1): 9~12
    【49】匡同春,刘正义.类金刚石碳膜的复合硬度与本征硬度的研究.理化检验-理化分册[J], 1998,34(2):5~9
    【50】Jonsson B and Hogmark S.Hardness measurements of thin films.Thin Solid Films[J], 1984,114(3):257~269
    【51】Puchi-Cabrera E S,Berr?os J A,Teer D G.On the computation of the absolute hardness of thin solid films.Surface and Coatings Technology[J],2002,157 :185~196
    【52】 胡树兵,朱晓青,李志章,崔山昆.用划痕法测定 TiN 涂层结合力的影响因素. 湖北汽车工业学院学报[J],2001,15(2):25~27
    【 53 】 Hyun S.Myung,Yong S.Park,Min J.Jung,B.Hong,Jeon G.Han.Synthesis and mechanical properties of amorphous carbon films by closed-field unbalanced magnetron sputtering.Materials Letters[J],2004,58:1513~1516
    【54】杨益民.脉冲激光烧蚀石墨靶制备超硬非晶碳膜:[硕士学位论文][D].湘潭:湘潭大学,2002
    【55】柳翠,李国卿,张成武,李新.非平衡磁控溅射类金刚石碳膜的性能.材料研究学报[J],2004,18 (2):171~175
    【56】赵建生,Choy KL,Teer DG.非平衡磁控溅射氟化类金刚石(DLC)薄膜的结构和性能.中国机械工程[J],1999,10(1):93~96
    【57】李刘合,张海泉,夏立芳,等.X 射线光电子能谱辅助 Raman 光谱分析类金刚石碳膜的结构细节.物理学报[J],2001,50(8):1549~1554
    【58】赵蕾,付永辉,刘登益,等.离子束辅助磁控溅射制备类石墨碳膜的结构与性能研究. 无机材料学报[J],2005,20(1):181~186
    【59】刘金声.离子束沉积薄膜技术及应用[M].北京:国防工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700