用户名: 密码: 验证码:
磁控溅射WS_2、WS_2-C固体润滑薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为固体润滑材料,WS2以其优异的摩擦学性能在航空航天、机械加工、微电子等领域有广泛的应用价值。但是纯WS2薄膜的承载能力较低、且易在潮湿空气中吸潮氧化,从而缩短了其使用寿命。为提高纯WS2薄膜的承载能力及服役寿命,本研究以WS2、石墨和纯Ti为靶材,采用孪生靶中频磁控溅射、直流磁控溅射结合离子增强的方法,在单晶硅片及TC4合金(Ti6A14V)基体表面制备了WS2和WS2-C复合薄膜。通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、Raman光谱仪、金相显微镜(OM)、显微硬度仪、划痕仪和球盘式摩擦磨损试验机对薄膜的微观组织、物相结构、力学性能及摩擦磨损性能进行了研究。结果表明:
     通过中频磁控溅射方法制备的WS2薄膜有不同程度的S元素损失现象,其S/W原子比与工作气压密切相关,受沉积温度的影响不太明显;WS2薄膜呈现明显的(002)晶面择优生长,随着沉积温度的升高,薄膜的(002)衍射峰逐渐减弱;纯WS2薄膜的显微硬度较低,膜/基结合强度较好;较低温度条件下制备的WS2薄膜具有较低的的摩擦系数,减摩效果良好,升高沉积温度,薄膜的摩擦系数有所提高。
     共溅射WS2靶和石墨靶制备的WS2-C复合薄膜结构致密,S/W原子比接近于同条件下的WS2薄膜;随着碳含量的增加,复合薄膜的WS2(002)晶面衍射峰逐渐减弱;碳钨化合物的出现使得薄膜的硬度有了一定程度的提高;添加碳元素,复合薄膜的膜/基结合强度有降低的趋势;随着碳含量的增加,复合薄膜的摩擦系数逐渐升高,其减摩效果不如纯WS2薄膜,但是其耐磨寿命有了很大程度的提高;纯WS2膜及低碳含量复合薄膜的摩擦系数随载荷的增加而有所降低,对于较高碳含量的复合薄膜,摩擦系数受载荷的影响不太明显,载荷变大时薄膜的摩擦过程基本上都逐渐趋于稳定。
As a kind of solid lubrication materials, tungsten disulphide (WS2) with perfect tribological properties is very practical in these fields such as aerospace, mechanical manufacturing and micro-electron. But WS2 film will react with oxygen in humid environment forming WO3 that has a high friction coefficient and poor wear behavior. To improve its bearing capacity and tribological behavior, we deposited pure WS2 films and WS2-C composite films using WS2, graphite and pure titanium targets on silicon and Ti6A14V (TC4) alloy substrates by twin-target MF magnetron sputtering and DC magnetron sputtering combined with ion source. Their surface morphology, phase structure, mechanical and tribological properties were investigated via SEM, EDX, Raman spectroscopy, OM, microhardness gauge, scratch tester and ball-on-disk friction/wear test machine. The results showed that:
     The films depodited by twin-target MF magnetron sputtering was deficient in sulfer element, the S/W atomic ratio of the tungsten disulfide films was more obviously related to the working pressure than the deposition temperature. The films showed the strongest (002) crystal plane at fifty degree, and the diffraction peak decreased as improving the deposition temperature. The micro-hardness of the films was low, but the adhesion force between the substrate and the film was high. The tungsten disulfide films deposited at lower temperatures exhibited much better tribological properties, and the friction coefficient of the films grudurally went up as increasing the deposition temperature.
     The S/W ratio of the WS2-C composite films was close to the pure films, and the structure was much denser than pure films. The WS2 (002) diffraction peak weakened as increasing the carbon content, but the hardness of WS2-C composite films become much higher because of the presence of carbide phases. The critical load values, Lc2, of the composite films obtained by scratch testing varied from 50N to 70N, and it gradurally decreased with incrementing the carbon content. Compared with the pure films, the anti-wear life of the composite films were much longer, though the friction coefficient was a little higher. The friction coefficient of the pure WS2 film and low carbon content films were observed to decrease continuously with increasing load. It could be concluded that the friction mechanisms of high carbon content films fundamentally differ from those of low carbon content films and pure films.
引文
[1]王海斗,徐滨士,刘家俊.微纳米硫系固体润滑.北京:科学出版社,2009
    [2]温诗铸.润滑理论研究的进展与思考.摩擦学学报,2007,27(6):497-503
    [3]杨威锋.固体自润滑材料及其研究趋势.润滑与密封,2007,32(12):118-122
    [4]Teer D G. New solid lubricant coatings. Wear,2001,251:1068-1074
    [5]Donnet C, Eedemir A. Solid lubricant coatings:recent developments and future trends. Tribology Letters,2004,17(3):389-397
    [6]Donnet C, Eedemir A. Historical developments and new trends in tribological and solid lubricant coatings. Surface & Coatings Technology,2004,180-181:76-84
    [7]马国政,徐滨士,王海斗,等.空间固体润滑材料的研究现状.材料导报,2010,24(1):68-71
    [8]孙建.磁控溅射MoS2/WS2复合薄膜的制备及其摩擦学性能研究:[硕士学位论文].镇江:江苏大学,2009
    [9]于德洋,翁立军.物理气相沉积减摩与耐磨薄膜.摩擦学学报,1996,16(3):282-288
    [10]张永振,贾利晓.材料干滑动摩擦磨损性能的研究进展.润滑与密封,2010,35(9):1-7
    [11]Savan A, Pfluger E, Voumard P, et al. Modern solid lubrication recent developments and applications of MoS2. Lubrication Science,2000,12-2: 185-203
    [12]Vanhulesl A, Velasco F, Jacobs R, et al. DLC solid lubricant coatings on ball bearings for space applications. Tribology International,2007,40:1186-1194
    [13]代明江,林松盛,候惠君,等.类金刚石膜的性能及其在模具上的应用.模具制造技术,2005,(9):54-56
    [14]Zhao F, Li H, Ji L, et al. Ti-DLC films with superior friction perormance. Diamond & Related Materials,2010,19:342-349
    [15]Kim H I, Lince J R, Eryilmaz O L, et al. Environmental effects on the friction of hydrogenated DLC films. Tribology Letters,2006,21(1):53-58
    [16]王桂平,李宁刚.MoS2固体润滑膜的空间应用概述.红外,2005,(10):33-37
    [17]李红轩,徐姚,郝俊英.摩擦对偶件材料对非晶含氢碳薄膜摩擦学性能的影响.摩擦学学报,2004,24(6):483-487
    [18]Spalvins T. Lubrication with Sputtered MoS2 Films:Principles, Operation, and Limitations. JMEPEG,1992,1:347-352
    [19]李刘合,夏立芳,张海泉.类金刚石碳膜的摩擦学特性及其研究进展.摩擦学学报,2001,21(1):76-80
    [20]Kubart T, Polcar T, Kopecky L, et al. Temperature dependence of tribological properties of MoS2 and MoSe2 coatings. Surface & Coatings Technology,2005, 193:230-233
    [21]Baker C C, Chromik R R, Wahl K J, et al. Preparation of chameleon coatings for space and ambient environments. Thin Solid Films,2007,515:6737-6743
    [22]Tagawa M, Yokota K, Matsumoto K, et al. Space environmental effects on MoS2 and diamond-like carbon lubricating films:Atomic oxygen-induced erosion and its effect on tribological properties. Surface & Coatings Technology,2007,202: 1003-1010
    [23]Evaristo M, Polcar T, Cavalerio A. Tribological behaviour of C-alloyed transition metal dichalcogenides (TMD) coatings in different environments. Int J Mech Mater Des,2008,4:137-143
    [24]Ding X, Zeng X T, He X Y, et al. Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere. Surface & Coatings Technology,2010,205:224-231
    [25]赖德明,涂江平,张升才,等.溅射沉积WS2/Ag纳米复合薄膜在不同环境中的摩擦磨损性能研究.摩擦学学报,2006,26(6):515-519
    [26]Kalin M, Vizintin J. A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contacts when lubricated with mineral and biodegradable oils. Wear,2006,261:22-31
    [27]孙晓军,汪晓萍,孙嘉奕,等.MoS2基共溅射薄膜摩擦学性能的研究.摩擦学学报,1998,18(1):20-24
    [28]Polcar T, Evaristo M, Cavaleiro A. Friction of slef-lubricating W-S-C sputtered coatings sliding under increasing load. Plasma Processes and Polymers,2007,4: 5541-5546
    [29]Zhu X, Lauwerens W, Cosemans P, et al. Different tribological behavior of MoS2 coatings under fretting and pin-on-disk conditions. Surface & Coatings Technology,2003,163-164:422-428
    [30]石淼森.固体润滑技术概论.制造技术与机床,1996,(7):49-51
    [31]胡黄卿.固体润滑剂应用的研讨.机械研究与应用,2003,16(3):21-23
    [32]孙荣禄,孙树文,郭立新,等.固体润滑技术在空间机械中的应用.宇航材料 工艺,1999,(1):17-22
    [33]刘家俊.复合表面技术研究的新进展.中国表面工程,1998,(1):10-15
    [34]赵滨海.固体润滑剂MoS2溅射技术.轴承,2002,(2):31-33
    [35]戴达煌,余志明.薄膜材料现代表面技术.中南大学出版社,2007.73-85
    [36]余东海,王成勇,成晓玲等.磁控溅射镀膜技术的发展.真空,2009,46(2):19-25
    [37]Zheng X H, Tu J P, Lai D M, et al. Microstructure and tribological behavior of WS2-Ag composite films deposited by RF magnetron sputtering. Thin Solid Films,2008,516:5404-5408
    [38]巴德纯,杜广煜,王晓光.硫化钨薄膜制备方法的研究.真空科学与技术学报,2009,29(1):73-77
    [39]王倩.磁控溅射WS2-Ag纳米复合薄膜的环境摩擦磨损:[硕士学位论文].杭州:浙江大学,2006
    [40]王庆年,隋忠祥,张明喆.国外某些金属基自润滑复合材料的开发与进展.摩擦学学报,1997,17(1):89-96
    [41]Scharf T W, Prasad S V, Dugger M T,et al. Growth, structure, and tribological behaviour of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta materialia.2006,54:4731-4743
    [42]Sadale S B, Patil P S. Synthesis of type-Ⅰ textured tungsten disulfide thin films on quattz substrate. Journal of Crystal Growth,2006,286:481-486
    [43]Sadale S B, Barman S R, Patil P S. Synthesis of type-Ⅱ textured tungsten disulfide thin films with bismuth interfacial layer as a texture promoter. Thin Solid Films,2007,515:2935-2942
    [44]Prasad S V, Zabinski J S. Pulsed-laser deposition of tungsten disulphide films on aluminium metal-matrix composite substrates. Journal of materials science letters, 1992,11:1282-1284
    [45]Regula M, Ballif C, Moser J H, et al. Structural, chemical, and electrical characterization of reactively sputtered WSx thin films. Thin Solid Films,1996, 280:67-75
    [46]杜广煜,巴德纯,王晓光,等.射频溅射法制备硫化钨固体润滑薄膜的研究.真空科学与技术学报.2009,29(3):277-281
    [47]Zhu L, Wang C, Wang H, et al. Tribological properties of WS2 composite film prepared by a two-step method. Vacuum,2010,85:16-21
    [48]陈卫祥,涂江平,马晓春,等.Ni-P-无机类富勒烯WS2纳米材料化学复合镀 层的制备及其摩擦学性能初步研究.化学学报,2002,60(9):1722-1726
    [49]王均安,于德洋,欧阳锦林.二硫化钼溅射膜在潮湿空气中贮存后润滑性能的退化与失效机理.摩擦学学报,1994,14(1):25-32
    [50]赖德明,涂江平,张升才,等.溅射沉积WS2/Ag纳米复合薄膜在不同环境中的摩擦磨损性能研究.摩擦学学报.2006,26(6):515-519
    [51]Wang Q, Tu J P, Zhang S C, et al. Effect of Ag content on microstructure and tribological performance of WS2-Ag composite films. Surface & Coatings Technology.2006,201:1666-1670
    [52]Chien H H, Ma K J, Vattikuti S P, et al. Tribological behaviour of MoS2/Au coatings. Thin Solid Films,2010,518:7532-7534
    [53]Deepthi B, Barshilia H C, Rajam K S, et al. Mechanical and tribological properties of sputter deposited nanostructure Cr-WS2 solid lubricant coatings. Surface and Coatings Tchnology,2010,205:1937-1946
    [54]Gangopadhyay S, Acharya R, Chattopadhyay A K, et al. Pulsed DC magnetron sputtered MoSx-TiN compositte coating for improved mechanical properties and tribological performance. Surface & Coatings Technology,2009,203:3297-3305
    [55]周磊,尹桂林,王玉东,等.反应溅射WS2/MoS2/C复合薄膜的摩擦磨损性能.中国有色金属学报,2010,20(3):483-487
    [56]Voevodin A A, O'Neill J P, Zabinski J S. WC/DLC/WS2 nanocomposite coatings for aerospace tribology. Tribology Letters,1999,6:75-78
    [57]Nassa A, Cavaleiro A, Carvalho N J M, et al. On the microstructure of tungsten disulfide films alloyed with carbon and nitrogen. Thin Solid Films.2005,484: 389-395
    [58]Nossa A, Cavaleiro A. Mechanical behaviour of W-S-N and W-S-C sputtered coatings deposited with a Ti interlayer. Surface and Coatings Technology,2003, 163-164:552-560
    [59]Nossa A, Cavaleiro A. The influence of the addition of C and N on the wear behaviour of W-S-C/N coatings. Surface & Coatings Technology,2001,142-144: 984-991
    [60]Evaristo M, Nossa A, Cavaleiro A. W-S-C sputtered films:Influence of the carbon alloying on the mechanical properties. Surface & Coatings Technology, 2005,200:1076-1079
    [61]Polcar T, Evaristo M, Cavaleiro A. The tribological behavior of W-S-C films in pin-on-disk testing at elevated temperature. Vacuum,2007,81:1439-1442
    [62]Polcar T, Evaristo M, Cavaleiro A. Friction of self-lubricating W-S-C sputtered coatings sliding under increasing load. Plasma Processes and Polymers,2007,4: S541-S546
    [63]Polcar T, Evaristo M, Cavaleiro A. Self-lubricating W-S-C Nanocomposite Coatings. Plasma Processes and Polymers,2009,6:417-424
    [64]Polcar T, Evaristo M, Stueber M, et al. Synthesis and structural properties of Mo-Se-C sputtered coatings. Surface & Coatings Technology,2008,202: 2418-2422
    [65]Polcar T, Evaristo M, Colaco R, et al. Nanoscale triboactivity: The response of Mo-Se-C coatings to sliding. Acta Materialia,2008,56:5101-5111
    [66]Polcar T, Evaristo M, Cavaleiro A. Comparative study of the tribological behavior of self-lubricating W-S-C and Mo-Se-C sputtered coatings. Wear,2009,266: 388-392
    [67]Evaristo M, Polcar T, Cavaleiro A. Synthesis and properties of W-Se-C coatings deposited by PVD in reactive and non-reactive processes. Vacuum,2009,83: 1262-1265
    [68]Evaristo M, Polcar T, Cavaleiro A. Can W-Se-C Coatings Be Competitive to W-S-C Ones. Plasma Processes and Polymers,2009,6:S92-S95
    [69]黄伯云,李成功,石力开,等.有色金属材料工程(上).北京:化学工业出版社,2006.585
    [70]谢致薇,罗广南,袁镇海.真空阴极电弧沉积TiN硬质膜的研究.广东有色金属学报,1992,12(5):403-407
    [71]杜广煜,巴德纯,王晓光.Ti/Ni过渡层对WS2薄膜的摩擦学性能影响.摩擦学学报,2009,29(2):146-151
    [72]魏全金.材料电子显微分析.北京:冶金工业出版社,1997:149-161
    [73]米彦郁,胡奈赛,何家文,等.对几种薄膜硬度测试方法的评定.中国表面工程,2002,3:20-23
    [74]马峰,蔡殉.膜基界面结合强度表征和评价.表面技术,2001,30(5):15-19
    [75]中华人民共和国机械工业部.JB/T 8554-1997.气相沉积薄膜与基体附着力的划痕试验法.北京:中国标准出版社,1997-04-15
    [76]华敏奇,袁振海.划痕试验法对特殊薄膜系结合力的检测与评价.分析测试技术与仪器,2002,8(4):218-225
    [77]ASTM International. Designation:C 1624-05. Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. United States:ASTM International, 2005
    [78]于德洋,翁立军.物理气相沉积减摩与耐磨薄膜.摩擦学学报,1996,16(3):282-288
    [79]李金桂,肖定全编.现代表面工程设计手册.北京:国防工业出版社,2000.209-242
    [80]周晖,桑瑞鹏,温庆平,等.非平衡磁控溅射沉积MoS2-Ti复合薄膜的结构与真空摩擦磨损性能研究.摩擦学学报,2009,29(4):374-378
    [81]Scharf T W, Rajendran A, Banerjee R, et al. Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite thin films. Thin Solid Films,2009,517:5666-5675
    [82]高立刚,陈刚,邓书康,等.磁控溅射Ge薄膜的结晶特性研究.功能材料,2004,35:1097-1110
    [83]牛仕超.掺Cr类金刚石及其梯度过渡层的制备与性能研究:[硕士学位论文].长沙:中南大学,2007
    [84]冯爱新,张永康,谢华琨等.划痕试验法表征薄膜涂层界面结合强度.江苏大学学报,2003,24(2):15-19
    [85]刘勇,罗崇泰,叶铸玉,等.MoS2/石墨溅射涂层在真空中不同载荷下的摩擦磨损行为研究.润滑与密封,2007,32(11):131-132
    [86]林松盛,代明江,侯惠君,等.掺钛类金刚石膜的微观结构研究.真空科学与技术学报,2007,27(5):418-421
    [87]姚固文.二硫化钼复合固体润滑薄膜研究:[硕士学位论文].镇江:江苏大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700